首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The adsorption rate of a guanidine-resistant strain of poliovirus LSc 2ab was measured in Long Island soils with in situ field cores (10.1 by 75 cm). The test virus was chosen because it exhibited soil adsorption and elution characteristics of a number of non-polioviruses. After the inoculation of cores with seeded sewage effluent at a 1-cm/h infiltration rate, cores were extracted, fractionated, and analyzed for total plaque-forming units per each 5-cm fraction. The results showed that 77% of the viruses were adsorbed in the first 5 cm of soil. An additional 11% were found in the 5- to 10-cm fraction, and a total of 96% of the viruses were adsorbed by 25 cm. The remaining 4% were uniformly distributed over the next 50 cm of soil, with a minimum of 0.23% in each soil section. Few viruses (< 0.22%) were observed in core filtrates. Analysis of the viral distribution pattern in seeded cores, after an application of a single rinse of either sewage effluent or rainwater, indicated that large-scale viral mobilization was absent. However, localized areas of viral movement were noted in both of the rinsed cores, with the rainwater-rinsed cores exhibiting more expensive movement. All mobilized viruses were resorbed at lower core depths.  相似文献   

2.
Virus movement in soil columns flooded with secondary sewage effluent.   总被引:13,自引:13,他引:0       下载免费PDF全文
Secondary sewage effluent containing about 3 X 10(4) plaque-forming units of polio virus type 1 (LSc) per ml was passed through columns 250 cm in length packed with calcareous sand from an area in the Salt River bed used for ground-water recharge of secondary sewage effluent. Viruses were not detected in 1-ml samples extracted from the columns below the 160-cm level. However, viruses were detected in 5 of 43 100-ml samples of the column drainage water. Most of the viruses were adsorbed in the top 5 cm of soil. Virus removal was not affected by the infiltration rate, which varied between 15 and 55 cm/day. Flooding a column continuosly for 27 days with the sewage water virus mixture did not saturate the top few centimeters of soil with viruses and did not seem to affect virus movement. Flooding with deionized water caused virus desorption from the soil and increased their movement through the columns. Adding CaCl2 to the deionized water prevented most of the virus desorption. Adding a pulse of deionized water followed by sewage water started a virus front moving through the columns, but the viruses were readsorbed and none was detected in outflow samples. Drying the soil for 1 day between applying the virus and flooding with deionized water greatly reduced desorption, and drying for 5 days prevented desorption. Large reductions (99.99% or more) of virus would be expected after passage of secondary sewage effluent through 250 cm of the calcareous sand similar to that used in our laboratory columns unless heavy rains fell within 1 day after the application of sewage stopped. Such virus movement could be minimized by the proper management of flooding and drying cycles.  相似文献   

3.
Secondary sewage effluent containing about 3 X 10(4) plaque-forming units of polio virus type 1 (LSc) per ml was passed through columns 250 cm in length packed with calcareous sand from an area in the Salt River bed used for ground-water recharge of secondary sewage effluent. Viruses were not detected in 1-ml samples extracted from the columns below the 160-cm level. However, viruses were detected in 5 of 43 100-ml samples of the column drainage water. Most of the viruses were adsorbed in the top 5 cm of soil. Virus removal was not affected by the infiltration rate, which varied between 15 and 55 cm/day. Flooding a column continuosly for 27 days with the sewage water virus mixture did not saturate the top few centimeters of soil with viruses and did not seem to affect virus movement. Flooding with deionized water caused virus desorption from the soil and increased their movement through the columns. Adding CaCl2 to the deionized water prevented most of the virus desorption. Adding a pulse of deionized water followed by sewage water started a virus front moving through the columns, but the viruses were readsorbed and none was detected in outflow samples. Drying the soil for 1 day between applying the virus and flooding with deionized water greatly reduced desorption, and drying for 5 days prevented desorption. Large reductions (99.99% or more) of virus would be expected after passage of secondary sewage effluent through 250 cm of the calcareous sand similar to that used in our laboratory columns unless heavy rains fell within 1 day after the application of sewage stopped. Such virus movement could be minimized by the proper management of flooding and drying cycles.  相似文献   

4.
Laboratory experiments were performed on four different soils, using 100 cm long columns, to determine the extent of virus movement when wastewater percolated through the soils at various hydraulic flow rates. Unchlorinated secondary sewage effluent seeded with either poliovirus type 1 (strain LSc) or echovirus type 1 (isolate V239) was continuously applied to soil columns for 3 to 4 days at constant flow rates. Water samples were extracted daily from ceramic samplers at various depths of the column for the virus assay. The effectiveness of virus removal from wastewater varied greatly among the different soil types but appeared to be largely related to hydraulic flow rates. At a flow rate of 33 cm/day, Anthony sandy loam removed 99% of seeded poliovirus within the first 7 cm of the column. At flow rates of 300 cm/day and above, Rubicon sand gave the poorest removal of viruses; less than 90% of the seeded viruses were removed by passage of effluent through the entire length of the soil column. By linear regression analyses, the rate of virus removal in soil columns was found to be negatively correlated with the flow of the percolating sewage effluent. There was no significant difference in rate of removal between poliovirus and echovirus in soil columns 87 cm long. The rate of virus removal in the upper 17 cm of the soil column was found to be significantly greater than in the lower depths of the soil column. This study suggests that the flow rate of water through the soil may be the most important factor in predicting the potential of virus movement into the groundwater. Furthermore, the length of the soil column is critical in obtaining useful data to predict virus movement into groundwater.  相似文献   

5.
Effect of soil permeability on virus removal through soil columns.   总被引:2,自引:2,他引:0       下载免费PDF全文
Laboratory experiments were performed on four different soils, using 100 cm long columns, to determine the extent of virus movement when wastewater percolated through the soils at various hydraulic flow rates. Unchlorinated secondary sewage effluent seeded with either poliovirus type 1 (strain LSc) or echovirus type 1 (isolate V239) was continuously applied to soil columns for 3 to 4 days at constant flow rates. Water samples were extracted daily from ceramic samplers at various depths of the column for the virus assay. The effectiveness of virus removal from wastewater varied greatly among the different soil types but appeared to be largely related to hydraulic flow rates. At a flow rate of 33 cm/day, Anthony sandy loam removed 99% of seeded poliovirus within the first 7 cm of the column. At flow rates of 300 cm/day and above, Rubicon sand gave the poorest removal of viruses; less than 90% of the seeded viruses were removed by passage of effluent through the entire length of the soil column. By linear regression analyses, the rate of virus removal in soil columns was found to be negatively correlated with the flow of the percolating sewage effluent. There was no significant difference in rate of removal between poliovirus and echovirus in soil columns 87 cm long. The rate of virus removal in the upper 17 cm of the soil column was found to be significantly greater than in the lower depths of the soil column. This study suggests that the flow rate of water through the soil may be the most important factor in predicting the potential of virus movement into the groundwater. Furthermore, the length of the soil column is critical in obtaining useful data to predict virus movement into groundwater.  相似文献   

6.
The adsorption and elution of a variety of human enteroviruses in a highly permeable, sandy soil was studied by using cores (43 by 125 mm) collected from an operating recharge basin on Long Island. Viruses studied included field and reference strains of polioviruses types 1 and 3 and reference strains of coxsackie virus B3 and echovirus types 1 and 6. Viruses suspended in treated sewage effluent were allowed to percolate through soil cores, and the filtrate was assayed for unadsorbed viruses. To determine the likelihood of desorption and mobilization, soil-bound viruses were subjected to a rinse with either treated sewage effluent or simulated rainwater which reflected the anion, cation, and pH characteristics of a typical northeastern United States rainfall. The results demonstrated that all polioviruses tested, including both reference and field strains, adsorbed extremely well to cores. Adsorption was somewhat reduced when clean, unconditioned soils were used. Soil-bound poliovirus strain LSc was not significantly mobilized by flooding columns with either a sewage effluent or rainwater rinse. One virus was mobilized by both types of rinses. The amount of viruses mobilized by rainwater rinses ranged from 24 to 66%. Variable adsorption-elution results were observed with other enteroviruses. Two guanidine-resistant mutants of poliovirus LSc demonstrated a soil adsorption-elution profile different from that of the parent strain. The data support the conclusion that soil adsorption-elution behavior is strain dependent and that poliovirus, particularly strain LSc, represents an inappropriate model.  相似文献   

7.
The adsorption and elution of a variety of human enteroviruses in a highly permeable, sandy soil was studied by using cores (43 by 125 mm) collected from an operating recharge basin on Long Island. Viruses studied included field and reference strains of polioviruses types 1 and 3 and reference strains of coxsackie virus B3 and echovirus types 1 and 6. Viruses suspended in treated sewage effluent were allowed to percolate through soil cores, and the filtrate was assayed for unadsorbed viruses. To determine the likelihood of desorption and mobilization, soil-bound viruses were subjected to a rinse with either treated sewage effluent or simulated rainwater which reflected the anion, cation, and pH characteristics of a typical northeastern United States rainfall. The results demonstrated that all polioviruses tested, including both reference and field strains, adsorbed extremely well to cores. Adsorption was somewhat reduced when clean, unconditioned soils were used. Soil-bound poliovirus strain LSc was not significantly mobilized by flooding columns with either a sewage effluent or rainwater rinse. One virus was mobilized by both types of rinses. The amount of viruses mobilized by rainwater rinses ranged from 24 to 66%. Variable adsorption-elution results were observed with other enteroviruses. Two guanidine-resistant mutants of poliovirus LSc demonstrated a soil adsorption-elution profile different from that of the parent strain. The data support the conclusion that soil adsorption-elution behavior is strain dependent and that poliovirus, particularly strain LSc, represents an inappropriate model.  相似文献   

8.
Adsorption of poliovirus from primary sewage effluent was similar to that from secondary sewage effluent in both batch soil studies and experiments with soil columns 240 cm long. Virus desorption by distilled water was also similar in a soil column that had been flooded with either primary or secondary effluent seeded with virus. These results indicated that absorption of poliovirus from primary effluent and virus movement through the soil were not affected by the higher organic content of primary sewage effluent.  相似文献   

9.
Adsorption of poliovirus from primary sewage effluent was similar to that from secondary sewage effluent in both batch soil studies and experiments with soil columns 240 cm long. Virus desorption by distilled water was also similar in a soil column that had been flooded with either primary or secondary effluent seeded with virus. These results indicated that absorption of poliovirus from primary effluent and virus movement through the soil were not affected by the higher organic content of primary sewage effluent.  相似文献   

10.
The downward migration through soil of seeded poliovirus type 1 and echovirus type 1 and of naturally occurring enteroviruses during infiltration of sewage effluent through rapid-infiltration basins was investigated. After 5 days of flooding, the amount of seeded poliovirus type 1 that had migrated 5 to 10 cm downward through the soil profile was found to be 11% of that remaining at the initial burial depth. The amount of echovirus type 1 determined to have moved an equal distance was at least 100-fold less. Migration of naturally occurring enteroviruses during infiltration of sewage effluent through soil could not be measured with accuracy because of the possibility of virus survival from previous applications of effluent. The rate of inactivation for seeded poliovirus 1 and echovirus 1 buried in the infiltration basins ranged between 0.04 and 0.15 log10 units per day during the time when the basins were flooded. Inactivation of these same seeded virus types and of indigenous enterovirus populations in the infiltration basins during the drying portion of the sewage application cycle ranged between 0.11 and 0.52 log10 units per day. The rate of virus inactivation was dependent upon the rate of soil moisture loss. These results indicate that drying cycles during the land application of wastewater enhance virus inactivation in the soil.  相似文献   

11.
The downward migration through soil of seeded poliovirus type 1 and echovirus type 1 and of naturally occurring enteroviruses during infiltration of sewage effluent through rapid-infiltration basins was investigated. After 5 days of flooding, the amount of seeded poliovirus type 1 that had migrated 5 to 10 cm downward through the soil profile was found to be 11% of that remaining at the initial burial depth. The amount of echovirus type 1 determined to have moved an equal distance was at least 100-fold less. Migration of naturally occurring enteroviruses during infiltration of sewage effluent through soil could not be measured with accuracy because of the possibility of virus survival from previous applications of effluent. The rate of inactivation for seeded poliovirus 1 and echovirus 1 buried in the infiltration basins ranged between 0.04 and 0.15 log10 units per day during the time when the basins were flooded. Inactivation of these same seeded virus types and of indigenous enterovirus populations in the infiltration basins during the drying portion of the sewage application cycle ranged between 0.11 and 0.52 log10 units per day. The rate of virus inactivation was dependent upon the rate of soil moisture loss. These results indicate that drying cycles during the land application of wastewater enhance virus inactivation in the soil.  相似文献   

12.
Virus movement in soil during saturated and unsaturated flow   总被引:3,自引:0,他引:3  
Virus movement in soil during saturated and unsaturated flow was compared by adding poliovirus to sewage water and applying the water at different rates to a 250-cm-long soil column equipped with ceramic samplers at different depths. Movement of viruses during unsaturated flow of sewage through soil columns was much less than during saturated flow. Viruses did not move below the 40-cm level when sewage water was applied at less than the maximum infiltration rate; virus penetration in columns flooded with sewage was at least 160 cm. Therefore, virus movement in soils irrigated with sewage should be less than in flooded groundwater recharge basins or in saturated soil columns. Management of land treatment systems to provide unsaturated flow through the soil should minimize the depth of virus penetration. Differences in virus movement during saturated and unsaturated flow must be considered in the development of any model used to simulate virus movement in soils.  相似文献   

13.
Virus movement in soil during saturated and unsaturated flow.   总被引:7,自引:3,他引:4       下载免费PDF全文
Virus movement in soil during saturated and unsaturated flow was compared by adding poliovirus to sewage water and applying the water at different rates to a 250-cm-long soil column equipped with ceramic samplers at different depths. Movement of viruses during unsaturated flow of sewage through soil columns was much less than during saturated flow. Viruses did not move below the 40-cm level when sewage water was applied at less than the maximum infiltration rate; virus penetration in columns flooded with sewage was at least 160 cm. Therefore, virus movement in soils irrigated with sewage should be less than in flooded groundwater recharge basins or in saturated soil columns. Management of land treatment systems to provide unsaturated flow through the soil should minimize the depth of virus penetration. Differences in virus movement during saturated and unsaturated flow must be considered in the development of any model used to simulate virus movement in soils.  相似文献   

14.
Aims:  This study investigated the survival and transport of sewage sludge-borne pathogenic organisms in soils.
Methods and Results:  Undisturbed soil cores were treated with Salmonella enterica ssp. enterica serovar Typhimurium- lux (STM- lux ) and human adenovirus (HAdV)-spiked sewage sludge. Following an artificial rainfall event, these pathogens were analysed in the leachate and soil sampled from different depths (0–5 cm, 5–10 cm and 10–20 cm) after 24 h, 1 and 2 months. Significantly more STM- lux and HAdV leached through the soil cores when sewage sludge was present. Significantly more STM- lux were found at all soil depths, at all time periods in the sewage sludge treatments, compared to the controls. The rate of decline of STM- lux in the controls was more rapid than in the sewage sludge treatments. Survival and transport of HAdV were minimal.
Conclusions:  The presence of sewage sludge can significantly influence the transport and survival of bacterial pathogens in soils, probably because of the presence of organic matter. Environmental contamination by virus is unlikely because of strong soil adsorption.
Significance and Impact of the Study:  This study suggests that groundwater contamination from vertical movement of pathogens is a potential risk and that it highlights the importance of the treatment requirements for biosolids prior to their application to land.  相似文献   

15.
Virus adsorption to soils is considered to be the most important factor in removing viruses after land treatment of wastewater. Most of the studies on virus adsorption to soils have utilized poliovirus as the model system. In the present study, comparative adsorption of a number of different types and strains of human enteroviruses and bacteriophages to nine different soil types was studied. Under the experimental conditions of this study, greater than 90% of all viruses adsorbed to a sandy loam soil except echovirus types 1, 12, and 29 and a simian rotavirus (SA-11), which adsorbed to a considerably lower degree. A great deal of variability was observed between adsorption of different strains of echovirus type 1, indicating that viral adsorption to soils is highly strain dependent. Of the five phages studied, f2 and phi X174 adsorbed the least. In addition to being dependent on type and strain of virus, adsorption was found to be influenced also by type of soil. Thus, soils having a saturated pH of less than 5 were generally good adsorbers. From these results, it appears that no one enterovirus or coliphage can be used as the sole model for determining the adsorptive behavior of viruses to soils and that no single soil can be used as the model for determining viral adsorptive capacity of all soil types.  相似文献   

16.
The (sup15)N isotope dilution and pairing methods were applied to investigate the vertical distribution of nitrogen transformations during infiltration in one peaty soil and one sandy soil. Water containing (sup15)N-nitrate (99.9%; 200 (mu)M) as the only nitrogen fraction was infiltrated through cores containing homogenized soil, with lengths varying from 5.5 to 38 cm. Oxygen and nitrogen dynamics were investigated by measuring inflowing and outflowing water. The experimental design allowed determinations of vertical profiles of aerobic respiration, nitrification, and coupled and uncoupled denitrification and ammonification. In the sandy soil, all oxygen was consumed in the upper 14 cm and nitrate was subsequently consumed and removed, up to a maximum of 70% in the longest core (28 cm). In the peaty soil, oxygen was consumed in the upper 7.5 cm and all nitrate was denitrified in the top 20 cm. In both soils, nitrogen removal by denitrification was counteracted by the release of ammonium and dissolved organic nitrogen. In the sandy soil, net nitrogen removal occurred in cores of 14 cm and longer; in the longest core, 40% was removed. In the peaty soil, release was equal to removal in the top 14 cm but release exceeded removal in the deeper layers, leading to a 100% increase of total nitrogen in the effluent water from the longest core (38 cm).  相似文献   

17.
Virus adsorption to soils is considered to be the most important factor in removing viruses after land treatment of wastewater. Most of the studies on virus adsorption to soils have utilized poliovirus as the model system. In the present study, comparative adsorption of a number of different types and strains of human enteroviruses and bacteriophages to nine different soil types was studied. Under the experimental conditions of this study, greater than 90% of all viruses adsorbed to a sandy loam soil except echovirus types 1, 12, and 29 and a simian rotavirus (SA-11), which adsorbed to a considerably lower degree. A great deal of variability was observed between adsorption of different strains of echovirus type 1, indicating that viral adsorption to soils is highly strain dependent. Of the five phages studied, f2 and phi X174 adsorbed the least. In addition to being dependent on type and strain of virus, adsorption was found to be influenced also by type of soil. Thus, soils having a saturated pH of less than 5 were generally good adsorbers. From these results, it appears that no one enterovirus or coliphage can be used as the sole model for determining the adsorptive behavior of viruses to soils and that no single soil can be used as the model for determining viral adsorptive capacity of all soil types.  相似文献   

18.
The adsorption of several enteroviruses and rotavirus SA11 to sand from an aquifer in the Federal Republic of Germany was estimated in sand-filled columns loaded with ca. 10(7) PFU and run at a velocity of 2.5 m/day for 12 h. After either distilled water, groundwater, secondary effluent, or tertiary effluent was percolated, the sand core was slowly extruded out of the column and cut in 1-cm slices. The slices were eluted with nutrient broth, and the amount of viruses in the broth was estimated. The best adsorption was promoted by groundwater and tertiary effluent, followed by distilled water and secondary effluent. Similar experiments, carried out at different percolation rates, indicated that a 50-day underground stay of recharged water probably suffices to eliminate viruses in the groundwater-recharged tertiary effluent. However, when viruses and sand were incubated in the presence of the surfactants sodium dodecyl sulfate, nonyl phenol, dodigen 226, or alkylbenzylsulfonate, the adsorption of the viruses was substantially diminished. Experiments in the presence of nonyl phenol seem to indicate that hydrophobic interactions are involved in the adsorption of viruses to sand.  相似文献   

19.
The adsorption of several enteroviruses and rotavirus SA11 to sand from an aquifer in the Federal Republic of Germany was estimated in sand-filled columns loaded with ca. 10(7) PFU and run at a velocity of 2.5 m/day for 12 h. After either distilled water, groundwater, secondary effluent, or tertiary effluent was percolated, the sand core was slowly extruded out of the column and cut in 1-cm slices. The slices were eluted with nutrient broth, and the amount of viruses in the broth was estimated. The best adsorption was promoted by groundwater and tertiary effluent, followed by distilled water and secondary effluent. Similar experiments, carried out at different percolation rates, indicated that a 50-day underground stay of recharged water probably suffices to eliminate viruses in the groundwater-recharged tertiary effluent. However, when viruses and sand were incubated in the presence of the surfactants sodium dodecyl sulfate, nonyl phenol, dodigen 226, or alkylbenzylsulfonate, the adsorption of the viruses was substantially diminished. Experiments in the presence of nonyl phenol seem to indicate that hydrophobic interactions are involved in the adsorption of viruses to sand.  相似文献   

20.
Land disposal of sewage sludge and effluent is becoming a common practice in the United States. The fertilizer content and humus value of such wastes are useful for agricultural purposes, and the recycling of sewage onto the land eliminates many of our stream pollution problems. The potential exists for crops grown in such irrigated soil to be contaminated by viruses that may be present in the sewage. Studies were initiated to determine viral persistence in soil and on crops grown under natural conditions in field plots that had been flooded to a depth of 1 inch (2.54 cm) with poliovirus 1-inoculated sewage wastes. Lettuce and radishes were planted in sludge- or effluent-flooded soil. In one study, the vegetables were planted 1 day before flooding, and in another they were planted 3 days after the plots were flooded. Survival of poliovirus 1 in soil irrigated with inoculated sewage sludge and effluent was determined during two summer growing seasons and one winter period. The longest period of survival was during the winter, when virus was detected after 96 days. During the summer, the longest survival period was 11 days. Poliovirus 1 was recovered from the mature vegetables 23 days after flooding of the plots had ceased. Lettuce and radishes are usually harvested 3 to 4 weeks after planting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号