首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitochondrial GrpE (Mge1p) is a mitochondrial cochaperone essential for viability of the yeast Saccharomyces cerevisiae. To study the role of Mge1p in the biogenesis of mitochondrial proteins, we isolated a conditional mutant allele of MGE1 which conferred a temperature-sensitive growth phenotype and led to the accumulation of mitochondrial preproteins after shifting of the cells to the restrictive temperature. The mutant Mge1 protein was impaired in its interaction with the matrix heat shock protein mt-Hsp70. The mutant mitochondria showed a delayed membrane translocation of preproteins, and the maturation of imported proteins was impaired, as evidenced by the retarded second proteolytic processing of a preprotein in the matrix. Moreover, the aggregation of imported proteins was decreased in the mutant mitochondria. The mutant Mge1p differentially modulated the interaction of mt-Hsp70 with preproteins compared with the wild type, resulting in decreased binding to preproteins in membrane transit and enhanced binding to fully imported proteins. We conclude that the interaction of Mge1p with mt-Hsp70 promotes the progress of the Hsp70 reaction cycle, which is essential for import and maturation of mitochondrial proteins.  相似文献   

2.
Import of preproteins into the mitochondrial matrix is driven by the ATP-dependent interaction of mt-Hsp70 with the peripheral inner membrane import protein Tim44 and the preprotein in transit. We show that Mge1p, a co-chaperone of mt-Hsp70, plays a key role in the ATP-dependent import reaction cycle in yeast. Our data suggest a cycle in which the mt-Hsp70-Tim44 complex forms with ATP: Mge1p promotes assembly of the complex in the presence of ATP. Hydrolysis of ATP by mt-Hsp70 occurs in complex with Tim44. Mge1p is then required for the dissociation of the ADP form of mt-Hsp70 from Tim44 after release of inorganic phosphate but before release of ADP. ATP hydrolysis and complex dissociation are accompanied by tight binding of mt-Hsp70 to the preprotein in transit. Subsequently, the release of mt-Hsp70 from the polypeptide chain is triggered by Mge1p which promotes release of ADP from mt-Hsp70. Rebinding of ATP to mt-Hsp70 completes the reaction cycle.  相似文献   

3.
Mdj1p, a DnaJ homolog in the mitochondria of Saccharomyces cerevisiae, is involved in the folding of proteins in the mitochondrial matrix. In this capacity, Mdj1p cooperates with mitochondrial Hsp70 (mt-Hsp70). Here, we analyzed the role of Mdj1p as a chaperone for newly synthesized proteins encoded by mitochondrial DNA and for nucleus-encoded proteins as they enter the mitochondrial matrix. A series of conditional mutants of mdj1 was constructed. Mutations in the various functional domains led to a partial loss of Mdj1p function. The mutant Mdj1 proteins were defective in protecting the tester protein firefly luciferase against heat-induced aggregation in isolated mitochondria. The mitochondrially encoded var1 protein showed enhanced aggregation after synthesis in mdj1 mutant mitochondria. Mdj1p and mt-Hsp70 were found in a complex with nascent polypeptide chains on mitochondrial ribosomes. Mdj1p was not found to interact with translocation intermediates of imported proteins spanning the two membranes and exposing short segments into the matrix, in accordance with the lack of requirement of Mdj1p in the mt-Hsp70-mediated protein import into mitochondria. On the other hand, precursor proteins in transit which had further entered the matrix were found in a complex with Mdj1p. Our results suggest that Mdj1p together with mt-Hsp70 plays an important role as a chaperone for mitochondrially synthesized polypeptide chains emerging from the ribosome and for translocating proteins at a late import step.  相似文献   

4.
《The Journal of cell biology》1994,127(6):1547-1556
The import of preproteins into mitochondria involves translocation of the polypeptide chains through putative channels in the outer and inner membranes. Preprotein-binding proteins are needed to drive the unidirectional translocation of the precursor polypeptides. Two of these preprotein-binding proteins are the peripheral inner membrane protein MIM44 and the matrix heat shock protein hsp70. We report here that MIM44 is mainly exposed on the matrix side, and a fraction of mt- hsp70 is reversibly bound to the inner membrane. Mt-hsp70 binds to MIM44 in a 1:1 ratio, suggesting that mt-hsp70 is localizing to the membrane via its interaction with MIM44. Formation of the complex requires a functional ATPase domain of mt-hsp70. Addition of Mg-ATP leads to dissociation of the complex. Overexpression of mt-hsp70 rescues the protein import defect of mutants in MIM44; conversely, overexpression of MIM44 rescues protein import defects of mt-hsp70 mutants. In addition, yeast strains with conditional mutations in both MIM44 and mt-hsp70 are barely viable, showing a synthetic growth defect compared to strains carrying single mutations. We propose that MIM44 and mt-hsp70 cooperate in translocation of preproteins. By binding to MIM44, mt-hsp70 is recruited at the protein import sites of the inner membrane, and preproteins arriving at MIM44 may be directly handed over to mt-hsp70.  相似文献   

5.
《The Journal of cell biology》1993,122(5):1003-1012
To identify new components that mediate mitochondrial protein import, we analyzed mas6, an import mutant in the yeast Saccharomyces cerevisiae. mas6 mutants are temperature sensitive for viability, and accumulate mitochondrial precursor proteins at the restrictive temperature. We show that mas6 does not correspond to any of the presently identified import mutants, and we find that mitochondria isolated from mas6 mutants are defective at an early stage of the mitochondrial protein import pathway. MAS6 encodes a 23-kD protein that contains several potential membrane spanning domains, and yeast strains disrupted for MAS6 are inviable at all temperatures and on all carbon sources. The Mas6 protein is located in the mitochondrial inner membrane and cannot be extracted from the membrane by alkali treatment. Antibodies to the Mas6 protein inhibit import into isolated mitochondria, but only when the outer membrane has been disrupted by osmotic shock. Mas6p therefore represents an essential import component located in the mitochondrial inner membrane.  相似文献   

6.
Despite the growing evidence of the role of oxidative stress in disease, its molecular mechanism of action remains poorly understood. The yeast Saccharomyces cerevisiae provides a valuable model system in which to elucidate the effects of oxidative stress on mitochondria in higher eukaryotes. Dimeric yeast Mge1, the cochaperone of heat shock protein 70 (Hsp70), is essential for exchanging ATP for ADP on Hsp70 and thus for recycling of Hsp70 for mitochondrial protein import and folding. Here we show an oxidative stress–dependent decrease in Mge1 dimer formation accompanied by a concomitant decrease in Mge1–Hsp70 complex formation in vitro. The Mge1-M155L substitution mutant stabilizes both Mge1 dimer and Mge1–Hsp70 complex formation. Most important, the Mge1-M155L mutant rescues the slow-growth phenomenon associated with the wild-type Mge1 strain in the presence of H2O2 in vivo, stimulation of the ATPase activity of Hsp70, and the protein import defect during oxidative stress in vitro. Furthermore, cross-linking studies reveal that Mge1–Hsp70 complex formation in mitochondria isolated from wild-type Mge1 cells is more susceptible to reactive oxygen species compared with mitochondria from Mge1-M155L cells. This novel oxidative sensor capability of yeast Mge1 might represent an evolutionarily conserved function, given that human recombinant dimeric Mge1 is also sensitive to H2O2.  相似文献   

7.
Mas37p, a novel receptor subunit for protein import into mitochondria   总被引:21,自引:5,他引:16       下载免费PDF全文
By screening a collection of Saccharomyces cerevisiae mutants temperature sensitive for growth on a nonfermentable carbon source, we have isolated a gene (termed MAS37) which encodes a novel receptor for protein import into mitochondria. Mas37p is a 37-kD outer membrane protein with two putative membrane-spanning regions. Inactivation of the MAS37 gene renders cells temperature-sensitive for respiration- driven growth, inhibits import of precursors into isolated mitochondria, and is synthetically lethal with a deletion of one of the genes encoding the import receptors Mas70p or Mas20p. Inactivation of Mas37p with specific antibodies inhibits import of different precursors to different extents; the precursor specificity of Mas37p resembles that of the previously described import receptor Mas70p. Mas70p and Mas37p form a 1:1 complex in detergent extracts of mitochondria and overexpression of one protein enhances that of the other. We suggest that the Mas37p/Mas70p heterodimer functions as a receptor for protein import into yeast mitochondria and that the mitochondrial receptor system consists of hetero-oligomeric subcomplexes with distinct binding activities, but overlapping precursor specificities.  相似文献   

8.
The most abundant mitochondrial homolog of Hsp70, Ssc1p, is involved in the import and folding of mitochondrial proteins. We have developed an easy and efficient method for purifying Ssc1p. Following a first step of anion exchange at pH 6.6, a column of Mge1(His)(6) immobilized on Ni(2+)-agarose provides an efficient second dimension that results in highly purified protein. The strong and specific interaction between Ssc1p and its cofactor protein, Mge1, ensures that primarily functional protein is isolated. Ssc1p purified by this method hydrolyzed ATP with a turnover rate of 0.3/min. The ATP hydrolysis was enhanced slightly by Mge1, about 5 times by Mdj1, and 12 times by both cofactors together. The CD spectrum of Ssc1p had a pattern and temperature dependence similar to those shown for other hsp70 homologs, with a midpoint of the major transition at approximately 70 degrees C.  相似文献   

9.
Two members of the heat shock protein 70 kDa (Hsp70) family, Ssc1 and Ssq1, perform important functions in the mitochondrial matrix. The essential Ssc1 is an abundant ATP-binding protein required for both import and folding of mitochondrial proteins. The function of Ssc1 is supported by an interaction with the preprotein translocase subunit Tim44, the cochaperone Mdj1, and the nucleotide exchange factor Mge1. In contrast, only limited information is available on Ssq1. So far, a basic characterization of Ssq1 has demonstrated its involvement in the maintenance of mitochondrial DNA, the maturation of the yeast frataxin (Yfh1) after import, and assembly of the mitochondrial Fe/S cluster. Here, we analyzed the biochemical properties and the interaction partners of Ssq1 in detail. Ssq1 showed typical chaperone properties by binding to unfolded substrate proteins in an ATP-regulated manner. Ssq1 was able to form a specific complex with the nucleotide exchange factor Mge1. In particular, complex formation in organello was enhanced significantly when Ssc1 was inactivated selectively. However, even under these conditions, no interaction of Ssq1 with the two other mitochondrial Hsp70-cochaperones, Tim44 and Mdj1, was observed. The Ssq1-Mge1 interaction showed a lower overall stability but the same characteristic nucleotide-dependence as the Ssc1-Mge1 interaction. A quantitative analysis of the interaction properties indicated a competition of Ssq1 with Ssc1 for binding to Mge1. Perturbation of Mge1 function or amounts resulted in direct effects on Ssq1 activity in intact mitochondria. We conclude that mitochondria represent the unique case where two Hsp70s compete for the interaction with one nucleotide exchange factor.  相似文献   

10.
The essential yeast gene MPI1 encodes a mitochondrial membrane protein that is possibly involved in protein import into the organelle (A. C. Maarse, J. Blom, L. A. Grivell, and M. Meijer, EMBO J. 11:3619-3628, 1992). For this report, we determined the submitochondrial location of the MPI1 gene product and investigated whether it plays a direct role in the translocation of preproteins. By fractionation of mitochondria, the mature protein of 44 kDa was localized to the mitochondrial inner membrane and therefore termed MIM44. Import of the precursor of MIM44 required a membrane potential across the inner membrane and involved proteolytic processing of the precursor. A preprotein in transit across the mitochondrial membranes was cross-linked to MIM44, whereas preproteins arrested on the mitochondrial surface or fully imported proteins were not cross-linked. When preproteins were arrested at two distinct stages of translocation across the inner membrane, only preproteins at an early stage of translocation could be cross-linked to MIM44. Moreover, solubilized MIM44 was found to interact with in vitro-synthesized preproteins. We conclude that MIM44 is a component of the mitochondrial inner membrane import machinery and interacts with preproteins in an early step of translocation.  相似文献   

11.
Oxa1p, a nuclear-encoded protein of the mitochondrial inner membrane with five predicted transmembrane (TM) segments is synthesized as a precursor (pOxa1p) with an N-terminal presequence. It becomes imported in a process requiring the membrane potential, matrix ATP, mt-Hsp70 and the mitochondrial processing peptidase (MPP). After processing, the negatively charged N-terminus of Oxa1p (approximately 90 amino acid residues) is translocated back across the inner membrane into the intermembrane space and thereby attains its native N(out)-C(in) orientation. This export event is dependent on the membrane potential. Chimeric preproteins containing N-terminal stretches of increasing lengths of Oxa1p fused on mouse dehydrofolate reductase (DHFR) were imported into isolated mitochondria. In each case, their DHFR moieties crossed the inner membrane into the matrix. Thus Oxa1p apparently does not contain a stop transfer signal. Instead the TM segments are inserted into the membrane from the matrix side in a pairwise fashion. The sorting pathway of pOxa1p is suggested to combine the pathways of general import into the matrix with a bacterial-type export process. We postulate that at least two different sorting pathways exist in mitochondria for polytopic inner membrane proteins, the evolutionarily novel pathway for members of the ADP/ATP carrier family and a conserved Oxa1p-type pathway.  相似文献   

12.
Mitochondria import the vast majority of their proteins from the cytosol. The mitochondrial import motor of the TIM23 translocase drives the translocation of precursor proteins across the outer and inner membrane in an ATP-dependent reaction. Tim44 at the inner face of the translocation pore recruits the chaperone mtHsp70, which binds the incoming precursor protein. This reaction is assisted by the cochaperones Tim14 and Mge1. We have identified a novel essential cochaperone, Tim16. It is related to J-domain proteins and forms a stable subcomplex with the J protein Tim14. Depletion of Tim16 has a marked effect on protein import into the mitochondrial matrix, impairs the interaction of Tim14 with the TIM23 complex and leads to severe structural changes of the import motor. In conclusion, Tim16 is a constituent of the TIM23 preprotein translocase, where it exerts crucial functions in the import motor.  相似文献   

13.
The yeast mitochondrial outer membrane contains a major 70 kd protein with an amino-terminal hydrophobic membrane anchor and a hydrophilic 60 kd domain exposed to the cytosol. We now show that this protein (which we term MAS70) accelerates the mitochondrial import of many (but not all) precursor proteins. Anti-MAS70 IgGs or removal of MAS70 from the mitochondria by either mild trypsin treatment or by disrupting the nuclear MAS70 gene inhibits import of the F1-ATPase beta-subunit, the ADP/ATP translocator, and of several other precursors into isolated mitochondria by up to 75%, but has little effect on the import of porin. Intact cells of a mas70 null mutant import the F1-ATPase alpha-subunit and beta-subunits, cytochrome c1 and other precursors at least several fold more slowly than wild-type cells. Removal of MAS70 from wild-type mitochondria inhibits binding of the ADP/ATP translocator to the mitochondrial surface, indicating that MAS70 mediates one of the earliest import steps. Several precursors are thus imported by a pathway in which MAS70 functions as a receptor-like component. MAS70 is not essential for import of these precursors, but only accelerates this process.  相似文献   

14.
Unfolding of preproteins upon import into mitochondria.   总被引:5,自引:0,他引:5       下载免费PDF全文
Unfolding of preproteins and translocation across the mitochondrial membranes requires their interaction with mt-Hsp70 and Tim44 at the inner face of the inner membrane and ATP as an energy source. We measured the temperature dependence of the rates of unfolding and import into the matrix of two folded passenger domains, the tightly folded heme-binding domain (HBD) of cytochrome b2 and the loosely folded mouse dihydrofolate reductase (DHFR). Despite the stability of the HBD, its rates of thermal breathing were fast and the preprotein was imported rapidly at all temperatures. In contrast, rates of unfolding and import of DHFR were strongly temperature dependent and import was significantly slower than unfolding. In addition, import rates of DHFR were strongly dependent on the length of the presequence. We propose that the mitochondrial import motor does not exert a constant pulling force. Rather, mt-Hsp70 appears to release a translocating polypeptide chain such that the precursor can then slide back and refold on the surface of the mitochondria. Refolding competes with translocation, and passengers may undergo several rounds of unfolding and refolding prior to their import.  相似文献   

15.
Molecular Chaperones and Mitochondrial Protein Folding   总被引:7,自引:0,他引:7  
Precursor proteins destined for the mitochondrial matrix traverse inner and outer organelle membranes in an extended conformation. Translocation events are therefore integrally coupled to the processes of protein unfolding in the cytosol and protein refolding in the matrix. To successfully import proteins from the cytoplasm into mitochondria, cells have recruited a variety of molecular chaperone systems and folding catalysts. Within the organelles, mitochondrial Hsp70 (mt-Hsp70) is a major player in this process and exerts multiple functions. First, mt-Hsp70 binds together with cohort proteins to incoming polypeptide chains, thus conferring unidirectionality on the translocation process, and then assists in their refolding. A subset of imported proteins requires additional assistance by chaperonins of the Hsp60/Hsp10 family. Protein folding occurs within the cavity of these cylindrical complexes. A productive interaction of precursor proteins with molecular chaperones in the matrix is not only crucial for correct refolding and assembly, but also for processing of presequences, intramitochondrial sorting, and degradation of proteins. This review focuses on the role of mt-Hsp70 and Hsp60/Hsp10 in protein folding in the mitochondrial matrix and discusses recent findings on their molecular mechanism of action.  相似文献   

16.
The mitochondrial protein import motor   总被引:2,自引:0,他引:2  
Strub A  Lim JH  Pfanner N  Voos W 《Biological chemistry》2000,381(9-10):943-949
Mitochondrial proteins are synthesized as precursor proteins in the cytosol and are posttranslationally imported into the organelle. A complex system of translocation machineries recognizes and transports the precursor polypeptide across the mitochondrial membranes. Energy for the translocation process is mainly supplied by the mitochondrial membrane potential (deltapsi) and the hydrolysis of ATP. Mitochondrial Hsp70 (mtHsp70) has been identified as the major ATPase driving the membrane transport of the precursor polypeptides into the mitochondrial matrix. Together with the partner proteins Tim44 and Mge1, mtHsp70 forms an import motor complex interacting with the incoming preproteins at the inner face of the inner membrane. This import motor complex drives the movement of the polypeptides in the translocation channel and the unfolding of carboxy-terminal parts of the preproteins on the outside of the outer membrane. Two models of the molecular mechanism of mtHsp70 during polypeptide translocation are discussed. In the 'trapping' model, precursor movement is generated by Brownian movement of the polypeptide chain in the translocation pore. This random movement is made vectorial by the interaction with mtHsp70 in the matrix. The detailed characterization of conditional mutants of the import motor complex provides the basis for an extended model. In this 'pulling' model, the attachment of mtHsp70 at the inner membrane via Tim44 and a conformational change induced by ATP results in the generation of an inward-directed force on the bound precursor polypeptide. This active role of the import motor complex is necessary for the translocation of proteins containing tightly folded domains. We suggest that both mechanisms complement each other to reach a high efficiency of preprotein import.  相似文献   

17.
Protein import into mitochondria requires the energy of ATP hydrolysis inside and/or outside mitochondria. Although the role of ATP in the mitochondrial matrix in mitochondrial protein import has been extensively studied, the role of ATP outside mitochondria (external ATP) remains only poorly characterized. Here we developed a protocol for depletion of external ATP without significantly reducing the import competence of precursor proteins synthesized in vitro with reticulocyte lysate. We tested the effects of external ATP on the import of various precursor proteins into isolated yeast mitochondria. We found that external ATP is required for maintenance of the import competence of mitochondrial precursor proteins but that, once they bind to mitochondria, the subsequent translocation of presequence-containing proteins, but not the ADP/ATP carrier, proceeds independently of external ATP. Because depletion of cytosolic Hsp70 led to a decrease in the import competence of mitochondrial precursor proteins, external ATP is likely utilized by cytosolic Hsp70. In contrast, the ADP/ATP carrier requires external ATP for efficient import into mitochondria even after binding to mitochondria, a situation that is only partly attributed to cytosolic Hsp70.  相似文献   

18.
Transport of preproteins into the mitochondrial matrix requires the presequence translocase of the inner membrane (TIM23 complex) and the presequence translocase-associated motor (PAM). The motor consists of five essential subunits, the mitochondrial heat shock protein 70 (mtHsp70) and four cochaperones, the nucleotide exchange-factor Mge1, the translocase-associated fulcrum Tim44, the J-protein Pam18, and Pam16. Pam16 forms a complex with Pam18 and displays similarity to J-proteins but lacks the canonical tripeptide motif His-Pro-Asp (HPD). We report that Pam16 does not function as a typical J-domain protein but, rather, antagonizes the function of Pam18. Pam16 specifically inhibits the Pam18-mediated stimulation of the ATPase activity of mtHsp70. The inclusion of the HPD motif in Pam16 does not confer the ability to stimulate mtHsp70 activity. Pam16-HPD fully substitutes for wild-type Pam16 in vitro and in vivo but is not able to replace Pam18. Pam16 represents a new type of cochaperone that controls the stimulatory effect of the J-protein Pam18 and regulates the interaction of mtHsp70 with precursor proteins during import into mitochondria.  相似文献   

19.
MAS6 encodes an essential inner membrane protein required for mitochondrial protein import in the yeast Saccharomyces cerevisiae (Emtage and Jensen, 1993). To identify new inner membrane import components, we isolated a high-copy suppressor (SMS1) of the mas6-1 mutant. SMS1 encodes a 16.5-kDa protein that contains several potential membrane-spanning domains. The Sms1 protein is homologous to the carboxyl-terminal domain of the Mas6 protein. Like Mas6p, Sms1p is located in the mitochondrial inner membrane and is an essential protein. Depletion of Sms1p from cells causes defects in the import of several mitochondrial precursor proteins, suggesting that Sms1p is a new inner membrane import component. Our observations raise the possibility that Sms1p and Mas6p act together to translocate proteins across the inner membrane.  相似文献   

20.
Translocation and folding of proteins imported into mitochondria are mediated by two matrix-localized chaperones, mhsp70 and hsp60. In order to investigate whether these chaperones act sequentially or in parallel, we studied their interaction with newly imported precursor proteins in isolated yeast mitochondria by coimmunoprecipitation. All precursors bound transiently to mhsp70. Release from mhsp70 required hydrolysis of ATP and did not immediately generate a tightly folded protein. For example, after imported mouse dihydrofolate reductase (a soluble monomeric enzyme) had been released from mhsp70, folding to a protease resistant conformation occurred only after a lag and was much slower than the release. Under standard import conditions, no significant association of DHFR with hsp60 could be detected. Similarly, newly imported hsp60 subunit was released from mhsp70 as an incompletely folded, unassembled intermediate which accumulated at low temperature and assembled to hsp60 14-mer at higher temperature in an ATP-dependent manner. Mas2p (the larger subunit of the MAS-encoded processing protease) first bound to mhsp70, then to hsp60, and only then assembled with its partner subunit, Mas1p. We propose that ATP-dependent release from mhsp70 is insufficient to cause folding of imported proteins and that assembly of hsp60 and Mas2p requires sequential, ATP-dependent interactions with mhsp70 and hsp60.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号