首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
最近日本京都大学医学院 Numa 实验室丛家兔骨骼肌纯化了钙通道阻断剂二氢嘧啶(dihydropyridine,DHP)的受体,并利用重组 DNA 技术推出其一级结构。比较 DHP 受体、Na~+通道和 K~+通道及由此预测的二级结构,发现三者具有十分相似的共同特征,提示 DHP 受体就是骨骼肌细胞膜上起兴奋收缩偶联作用的电压感受器和 Ca~(2+)通道。因此,Na~+、K~+、Ca~(2+)这三种通道构成由一个祖先基因进化而来的电压门控通道家族。  相似文献   

2.
Shosaku Numa博士,日本人,1952年毕业于京都大学医学系,曾先后在美国哈佛大学医学院和Max-Planck细胞化学研究所接受博士后训练,现任京都大学医学院医用化学及分子遗传学教授。在利用DNA重组技术探索递质受体和离子通道的研究中,Numa博士阐明了胆碱N和M受体、钠通道、钙通道以及钙释放通道的初级结构,所获得的有关受体结构的资料还表明递质问离子通道、电压门离子通  相似文献   

3.
日本的Numa实验室在1982年曾因应用基因工程手段阐明阿片肽前体结构而闻名。最近,该实验室又将M型乙酰胆碱受体(mAChR)mRNA的互补DNA(cDNA)克隆成功,并进行了序列分析;在非洲蟾蜍卵中得到表达,产生出具有功能的 M 型受体。打点杂交结果表明,mRNA 的组织定位与 M_1型受体  相似文献   

4.
1983年Numa 等实验室报告,应用基因工程技术阐明了乙酰胆碱受体(AChR)四个亚单位的氨基酸序列。随之而来的问题是,这些亚单位如何组成跨膜的离子通道。对此曾有两种假说。第一种假说(三个实验室)认为,通道是不带电荷的,而是被亲水的侧链所覆盖,因此,水和离子可以自由通过;第二种假说(两个实验室)认为,通道是带电荷的,而且带阳电荷和阴电荷的段落交替出现。最新的证据认为后者是正确的。  相似文献   

5.
昆虫细胞膜离子通道是多种杀虫剂的作用靶标,通道功能特性的变异等与害虫抗药性密切相关.电压钳及膜片钳等电生理技术在离子通道功能研究中具有独特优势,在杀虫剂作用机理及害虫抗性机理研究中越来越受到重视.昆虫细胞膜离子通道主要包括配体门控通道和电压门控通道两大类.配体门控通道主要包括乙酰胆碱受体、GABA和谷氨酸受体通道等.电压门控通道主要有钠、钾和钙通道等,其中钠通道研究成果较多,与害虫抗性关系密切.由于钙离子的重要生理功能,随着研究深入,钙通道将成为研究重点.  相似文献   

6.
人们一直认为,胃粘膜壁细胞的功能失调是溃疡病的主要病因,抗溃疡药组胺H_2受体阻断剂、多巴胺受体阻断剂、毒蕈碱型胆碱能受体阻断剂均作用于壁细胞而产生疗效。最近匈牙利两位学者Eva Mezey和Miklos Palkovits所做的实验对这一传统观点提出质疑。他们用组织化学杂交定位法显示出组胺H_2受体、M_1至M_5胆碱能受体、胃泌素受体及D_1至D_5多巴胺受体的mRNA在胃粘膜内的分布。结果表明,含有这些mRNA的阳  相似文献   

7.
疼痛长期困扰人类健康,其发病机制纷繁复杂,究竟谁在其中扮演了重要的作用是目前亟待解决的重大问题。随着对疼痛研究的不断深入,超极化激活的环核苷酸门控通道逐渐引起广泛关注。在炎性痛和神经病理性痛过程中,它都扮演了至关重要的作用,其数目改变和开放频率增加都参与介导了疼痛部位的异常放电,成为诱发疼痛的开关。在给与阻断剂或敲除通道2亚型后,能明显缓解炎性痛和神经病理性痛的不良反应,成为可以缓解疼痛发生的新靶点。超极化激活的环核苷酸门控通道在机体分布广泛,参与多种重要生理功能的调节,但目前还没有针对该门控通道某种亚型的特异性阻断剂。在今后,也许超极化激活的环核苷酸门控通道会成为临床治疗疼痛的新靶点,该通道的特异性药物也将为广大患者带来新的福音。  相似文献   

8.
学习记忆中的关键物质   总被引:6,自引:0,他引:6  
谷氨酸是神经系统中较普遍的兴奋性神经递质,其受体有三种亚型:海人草酸(kainate,KA)受体、使君子氨酸(quisqualate,QA)受体和N-甲基-D-天门冬氨酸(N-methyl-D-aspartate,NMDA)受体。KA、QA、NMDA都是L-谷氨酸的类似物。KA受体、QA受体通道维持平时的信息传递,而NMDA受体通道只在学习记忆过程中才开启,因而被认为是学习记忆中的关键物质。  相似文献   

9.
富含半胱氨酸分泌蛋白(cystein-rich secretory protein, CRISP)家族包括众多不同起源的蛋白质,其大部分成员功能未知.近来研究表明,CRISP也是蛇毒中进化上十分保守的成分,已有多种蛇毒CRISP的晶体结构被解析.蛇毒CRISP可阻断Ca2 通道、K 通道及环核苷酸门控通道,因此是研究离子通道的潜在工具.本文综述近年来蛇毒CRISP结构和功能等方面的研究.  相似文献   

10.
钙离子(Ca2+)是重要的第二信使,通过与效应蛋白的结合和解离,以及在不同细胞器之间的穿梭运动而精确调控细胞活动,参与多种重要生命过程。细胞内具有精确调节Ca2+时空分布的调控系统。在静息状态下,细胞内的游离Ca2+浓度约为100 nmol/L;而当细胞受到信号刺激后,胞内的Ca2+浓度可上升至1000 nmol/L甚至更高。细胞中存在多种跨膜运送Ca2+的膜蛋白,以精确调节Ca2+浓度的时空动态变化,其中,细胞质膜上的多种Ca2+通道(包括电压门控通道、受体门控通道、储存控制通道等),以及内质网/肌质网和线粒体等胞内"钙库"膜上的雷诺丁受体、三磷酸肌醇受体等膜蛋白复合物,均可提升胞内Ca2+浓度,而细胞质膜上的钠钙交换体、质膜Ca2+-ATP酶、"钙库"膜上的内质网Ca2+-ATP酶、线粒体Ca2+单向转运体等,可将Ca2+浓度降低至静息态水平。质膜钙ATP酶是向细胞外运送Ca2+的关键膜蛋白,本文将对其结构、功能及其酶活性的调控机制做一简要综述。  相似文献   

11.
超极化激活的环核苷酸门控通道(HCN通道)有四个亚型,分别为HCN1-4。HCN通道各亚型之间的基本结构相似,在许多组织中均有表达,其中以大脑和心脏组织中表达最为丰富。HCN通道既参与所在组织的正常生理功能,也与所在组织的病理状态密切相关。如神经损伤引起的神经源性疼痛常检测到HCN1通道表达量的增加,肥厚性心肌病和终末期心力衰竭等病理状态下常检测到心室肌细胞HCN4 mRNA及HCN2 mRNA表达增加。鉴于HCN通道与许多疾病密切相关,因此,以其为靶点来治疗相关疾病成为可能,但是由于HCN通道分布广泛,而目前该通道阻滞剂均为非选择性亚型抑制剂,临床应用时不可避免的引起副反应,因此发展选择性HCN通道亚型抑制剂就显得刻不容缓。本文就HCN通道抑制剂的研究发展做进一步探讨。  相似文献   

12.
自从七十年代确定P物质(SP)结构以来,对它的生理功能进行了大量研究,认为它很可能是一种中枢神经介质。但近年来发现,SP的前体除生成SP以外,还可生成K物质(SK)和neuromedin K(NK),它们的化学结构相似,都属于“快速激肽”,所作用的受体也大同小异。因此,从前被认为是SP的功能,实际上可能是SK或NK的作用。Ivesen等曾提出激肽受体不止一种,至少有P和E两种,SP和physalaemin以及eledoisin和kassinin分别作为二者的配基。新肽SK和NK可与E型受体结合,而且其激动作用似乎较SP更强。最近,在外周组织中又发现了另一种激肽受体——K受体,SK可能是其最适配基。激肽受体的多样性及内源性激肽的陆  相似文献   

13.
中枢NMDA受体通道具有一种独特的门控方式,既受配基门控又受电压门控,而这种独特的门控通道又必须由各种亚单位形成的多样化的异寡聚体才具有一定的活性和功能.从胚胎形成到生后发育,中枢NMDA受体各亚单位及其所组成的异寡聚体具有各自不同的时空特性,其功能以及药理学特性也随发育过程而变化.本研究应用RT-PCR技术,研究在生后发育过程中听觉中枢神经系统下丘NMDA受体NR1、NR2A、NR2B和NR2CmRNA基因的表达,以期为在分子水平上揭示其在生后发育过程中的规律.  相似文献   

14.
胰腺腺泡存在胆碱能神经的 M 受体。胆碱能神经激动剂通过作用于 M 受体引起腺泡释放淀粉酶。新近,美国密执安州医科大学的 Dexter 等发现,胰腺腺泡有两种不同亚型的胆碱能神经 M 受体。Dexter 首先用 M_1受体阻断剂 pirenzepine 和 M_2受体阻断剂4-DAMP 研究了对乙酰胆碱引起的腺泡淀  相似文献   

15.
以 BC_3HI 肌细胞为模型,用膜片-电压固定(patch-clamp)技术,研究观察在单一细胞或膜单通道的Ca~(2+)、Na~+和 K~+的变化。肌肉的分化与膜的电压-门控离子通道(voltage-gated ion channels)的表达是依赖于促细胞分裂剂的消退和细胞的生长停滞。通常,电压-门控通道能诱发肌细胞的特异基因产物,但其致癌性的基本机理仍不明。分化的 BC_3HI 肌细胞表达了机能性的 Ca~(2+)和 Na~+通道,当细胞生长增殖和为某些等位癌基因转染时,机能性的离子通道被阻抑。这种机能性的 Ca~(2+)和 Na~+通道,在促细胞分裂剂消退约5天后,才首次检出Ca~(2+)和 Na~+的内向电流。在促细胞分裂剂消退时,暂时诱发 BC_3HI 细胞的电压-门控通道。为了试验细胞癌基因是否能阻止膜离子通道的表达,以 BC_3HI 细胞的克隆细胞株,即以 BC_3HI 细胞,用癌基因表达载  相似文献   

16.
Qi C  Zhang WW  Li XN  Zhou C 《生理学报》2011,63(2):131-137
白介素1β(interleukin-1β,IL-1β)是重要的促炎细胞因子,在中枢神经系统的生理学和病理学过程中发挥关键作用.电压门控钠通道是可兴奋细胞电学活动的基础,控制神经元的兴奋性和动作电位.最近的研究又显示了IL-1β与电压门控通道之间的相互作用.为考察中枢神经元中IL-1β与电压门控钠通道之间的相互作用,本研...  相似文献   

17.
两种化学修饰菌紫质的光化循环和光电位   总被引:1,自引:1,他引:0  
本文分别用两种氮氧自由基对菌紫质(bR)中的两种氨基酸残基——赖氨酸和丝氨酸进行了修饰,并对修饰后的bR光循环中间产物M_(412)动力学过程、质子泵效率及光电响应信号进行了测量。通过与正常紫膜进行比较,可以看出:赖氨酸被修饰后,M_(412)快、慢组分的衰减及质子的吸收过程均减慢,M_(412)和质子的产额、跨膜光电位信号均有不同程度的提高;丝氨酸被修饰后,M_(412)和质子的动力学过程的变化与赖氨酸基本相同,但M_(412)和质子的产额及跨膜光电位提高很大,且光电位出现缓慢反向现象。结果表明赖氨酸不大可能直接参与质子的传递过程,其对紫膜质子泵的影响主要是通过其所带电荷对表面电位的贡献;而丝氨酸却似乎对bR的功能影响很大并对维持质子通道构象环境的稳定起着很大作用。  相似文献   

18.
P2X受体是一类离子型配体门控通道,分为7个不同的亚型(P2X1~7)。嘌呤能离子通道型受体7(purinergic ligand-gated ion channel 7 receptor, P2X7R)是ATP门控的,非选择性的阳离子通道,属于嘌呤受体P2X家族。P2X7受体广泛表达于神经系统、肌肉组织和免疫系统。在胞外ATP作用下,P2X7受体偶联多种胞内信号通路,参与细胞增殖、凋亡及炎症因子的释放等多种生理功能。研究发现,P2X7受体与诸多疾病有着密切联系,包括自身免疫性疾病(如关节炎和炎症性肠病)、神经退行性疾病、慢性疼痛、情绪障碍和癌症等。P2X7受体异常表达会导致这些疾病的发生,增加疾病的易感性与病变程度。现就P2X7受体的生物学特征、P2X7受体与疾病的关系及其特异性阻断剂和激动剂进行综述。  相似文献   

19.
乌拉坦对兴奋性和抑制性配体门控通道具有广泛的可检测的作用.作者运用全细胞膜片钳技术研究乌拉坦对wistar大鼠海马CA1神经元电压门控钠通道和动作电位的作用.结果发现乌拉坦可逆并剂量依赖性地抑制钠电流和动作电位,其中,在10mmol/L浓度时可减小钠电流强度达38%,使激活曲线向去极化方向移动,并延长钠通道失活后的恢复时间,降低动作电位的幅值.这些结果表明乌拉坦对电压门控钠通道的抑制作用可能是乌拉坦全身麻醉作用的机制之一.  相似文献   

20.
刘利  韩真  杨阳  李勃 《植物科学学报》2022,40(1):115-123
硝酸盐不仅是植物的主要氮源,而且是植物极为重要的信号分子,参与众多生理生化反应、代谢过程,调控植物的生长和发育.研究发现钙信号参与初级硝酸盐响应过程,然而关于钙信号如何参与硝酸盐信号的感知和硝酸盐信号的传递过程尚未清楚.本文综述了具有钙离子通道活性的环核苷酸门控通道与硝酸盐转运体复合体(Cyclic nucleotid...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号