首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
cis-acting RNA sequences and structures in the 5' and 3' nontranslated regions of poliovirus RNA interact with host translation machinery and viral replication proteins to coordinately regulate the sequential translation and replication of poliovirus RNA. The poliovirus internal ribosome entry site (IRES) in the 5' nontranslated region (NTR) has been implicated as a cis-active RNA required for both viral mRNA translation and viral RNA replication. To evaluate the role of the IRES in poliovirus RNA replication, we exploited the advantages of cell-free translation-replication reactions and preinitiation RNA replication complexes. Genetic complementation with helper mRNAs allowed us to create preinitiation RNA replication complexes containing RNA templates with defined deletions in the viral open reading frame and the IRES. A series of deletions revealed that no RNA elements of either the viral open reading frame or the IRES were required in cis for negative-strand RNA synthesis. The IRES was dispensable for both negative- and positive-strand RNA syntheses. Intriguingly, although small viral RNAs lacking the IRES replicated efficiently, the replication of genome length viral RNAs was stimulated by the presence of the IRES. These results suggest that RNA replication is not directly dependent on a template RNA first functioning as an mRNA. These results further suggest that poliovirus RNA replication is not absolutely dependent on any protein-RNA interactions involving the IRES.  相似文献   

2.
Translation initiation by internal ribosome binding is a recently discovered mechanism of eukaryotic viral and cellular protein synthesis in which ribosome subunits interact with the mRNAs at internal sites in the 5' untranslated RNA sequences and not with the 5' methylguanosine cap structure present at the extreme 5' ends of mRNA molecules. Uncapped poliovirus mRNAs harbor internal ribosome entry sites (IRES) in their long and highly structured 5' noncoding regions. Such IRES sequences are required for viral protein synthesis. In this study, a novel poliovirus was isolated whose genomic RNA contains two gross deletions removing approximately 100 nucleotides from the predicted IRES sequences within the 5' noncoding region. The deletions originated from previously in vivo-selected viral revertants displaying non-temperature-sensitive phenotypes. Each revertant had a different predicted stem-loop structure within the 5' noncoding region of their genomic RNAs deleted. The mutant poliovirus (Se1-5NC-delta DG) described in this study contains both stem-loop deletions in a single RNA genome, thereby creating a minimum IRES. Se1-5NC-delta DG exhibited slow growth and a pinpoint plaque phenotype following infection of HeLa cells, delayed onset of protein synthesis in vivo, and defective initiation during in vitro translation of the mutated poliovirus mRNAs. Interestingly, the peak levels of viral RNA synthesis in cells infected with Se1-5NC-delta DG occurred at slightly later times in infection than those achieved by wild-type poliovirus, but these mutant virus RNAs accumulated in the host cells during the late phases of virus infection. UV cross-linking assays with the 5' noncoding regions of wild-type and mutated RNAs were carried out in cytoplasmic extracts from HeLa cells and neuronal cells and in reticulocyte lysates to identify the cellular factors that interact with the putative IRES elements. The cellular proteins that were cross-linked to the minimum IRES may represent factors playing an essential role in internal translation initiation of poliovirus mRNAs.  相似文献   

3.
A M Borman  F G Deliat    K M Kean 《The EMBO journal》1994,13(13):3149-3157
The 5' untranslated region of poliovirus RNA has been reported to possess two functional elements: (i) the 5' proximal 88 nucleotides form a cloverleaf structure implicated in positive-strand RNA synthesis during viral replication, and (ii) nucleotides 134 to at least 556 function as a highly structured internal ribosome entry segment (IRES) during cap-independent, internal initiation of translation. We show here that the IRES itself is bifunctional and contains sequences necessary for viral RNA synthesis per se. For this purpose, we used a dicistronic poliovirus RNA in which the translation of the viral non-structural (replication) proteins is uncoupled from the poliovirus IRES. In this system, RNA synthesis is readily detectable in transfected cells, even when the poliovirus IRES is inactivated by point mutation. However, deletion of the major part of the poliovirus IRES renders viral-specific RNA synthesis undetectable. Using the same system, we show that a three nucleotide deletion at position 500 in the 5' untranslated region drastically affects both translation efficiency and RNA synthesis. Furthermore, disruption of the secondary structure of the IRES around nucleotide 343 has minimal effects on IRES function, but dramatically reduces viral RNA replication. Taken together, these results provide direct evidence that sequences essential for viral RNA synthesis are located in the 3' region of the poliovirus IRES.  相似文献   

4.
C U Hellen  T V Pestova    E Wimmer 《Journal of virology》1994,68(10):6312-6322
Initiation of poliovirus translation is mediated by a large, structured segment of the 5' nontranslated region known as the internal ribosome entry site (IRES) and normally occurs 155 nucleotides (nt) downstream of the IRES at AUG743 (the AUG at nucleotide 743). Functional AUG codons introduced at nt 611 or 614 reduced initiation at AUG743 by 10 to 40% in vitro but had no effect on virus phenotype. To investigate the role of the nt 586-743 spacer in greater detail, four intervening termination codons were removed, and an additional AUG triplet at nt 683 was introduced by nucleotide substitution. Initiation at AUG743 was reduced by only 50 to 80%, depending on the number of upstream initiation codons. Initiation at AUG743 was also reduced following insertion of a stable hairpin at nt 630, but the reduction was modest in an ascites carcinoma cell extract. Initiation was more frequent at AUG743 than at AUG683 if mRNAs contained either an upstream initiation codon or the stable hairpin. These results suggested that not all initiation events at AUG743 can be accounted for by a scanning-dependent mechanism. Translation of bicistronic mRNAs in which the intercistronic spacer contained nt 630 to 742 of the poliovirus 5' nontranslated region indicated that these residues are not able to act as an entry point for ribosomes independently of the IRES. Insertion of increasingly longer sequences immediately downstream of the stable hairpin progressively reduced initiation at AUG743 without affecting initiation at AUG683. These results are discussed in terms of a model for initiation of poliovirus translation in which a complex RNA superstructure upstream of nt 586 promotes ribosome binding at an entry point determined by specific downstream cis-acting elements.  相似文献   

5.
Poliovirus translation is initiated at the internal ribosome entry site (IRES). Most likely involving the action of standard initiation factors, this highly structured cis element in the 5" noncoding region of the viral RNA guides the ribosome to an internal silent AUG. The actual start codon for viral protein synthesis further downstream is then reached by ribosomal scanning. In this study we show that two of the secondary structure elements of the poliovirus IRES, domain V and, to a minor extent, domain VI, are the determinants for binding of the eukaryotic initiation factor eIF4B. Several mutations in domain V which are known to greatly affect poliovirus growth also seriously impair the binding of eIF4B. The interaction of eIF4B with the IRES is not dependent on the presence of the polypyrimidine tract-binding protein, which also binds to the poliovirus IRES. In contrast to its weak interaction with cellular mRNAs, eIF4B remains tightly associated with the poliovirus IRES during the formation of complete 80S ribosomes. Binding of eIF4B to the IRES is energy dependent, and binding of the small ribosomal subunit to the IRES requires the previous energy-dependent association of initiation factors with the IRES. These results indicate that the interaction of eIF4B with the 3" region of the poliovirus IRES may be directly involved in translation initiation.  相似文献   

6.
Rhopalosiphum padi virus (RhPV) is an insect virus of the Dicistroviridae family. Recently, the 579-nucleotide-long 5' untranslated region (UTR) of RhPV has been shown to contain an internal ribosome entry site (IRES) that functions efficiently in mammalian, plant, and insect in vitro translation systems. Here, the mechanism of action of the RhPV IRES has been characterized by reconstitution of mammalian 48S initiation complexes on the IRES from purified components combined with the toeprint assay. There is an absolute requirement for the initiation factors eIF2 and eIF3 and the scanning factor eIF1 to form 48S complexes on the IRES. In addition, eIF1A, eIF4F (or the C-terminal fragment of eIF4G), and eIF4A strongly stimulated the assembly of this complex, whereas eIF4B had no effect. Although the eIF4-dependent pathway is dominant in the RhPV IRES-directed cell-free translation, omission of either eIF4G or eIF4A or both still allowed the assembly of 48S complexes from purified components with approximately 23% of maximum efficiency. Deletions of up to 100 nucleotides throughout the 5'-UTR sequence produced at most a marginal effect on the IRES activity, suggesting the absence of specific binding sites for initiation factors. Only deletion of the U-rich unstructured 380-nucleotide region proximal to the initiation codon resulted in a complete loss of the IRES activity. We suggest that the single-stranded nature of the RhPV IRES accounts for its strong but less selective potential to bind key mRNA recruiting components of the translation initiation apparatus from diverse origins.  相似文献   

7.
The highly conserved internal ribosome entry site (IRES) of hepatitis C virus (HCV) regulates translation of the viral RNA genome and is essential for the expression of HCV proteins in infected host cells. The structured subdomain IIa of the IRES element is the target site of recently discovered benzimidazole inhibitors that selectively block viral translation through capture of an extended conformation of an RNA internal loop. Here, we describe the development of a FRET-based screening assay for similarly acting HCV translation inhibitors. The assay relies on monitoring fluorescence changes that indicate rearrangement of the RNA target conformation upon ligand binding. Screening of a small pilot set of potential RNA binders identified a benzoxazole scaffold as a ligand that bound selectively to IIa IRES target and was confirmed as an inhibitor of in vitro viral translation. The screening approach outlined here provides an efficient method to discover HCV translation inhibitors that may provide leads for the development of novel antiviral therapies directed at the highly conserved IRES RNA.  相似文献   

8.
A cell cycle-dependent internal ribosome entry site   总被引:10,自引:0,他引:10  
The eukaryotic mRNA 5' cap structure facilitates translation. However, cap-dependent translation is impaired at mitosis, suggesting a cap-independent mechanism for mRNAs translated during mitosis. Translation of ornithine decarboxylase (ODC), the rate-limiting enzyme in the biosynthesis of polyamines, peaks twice during the cell cycle, at the G1/S transition and at G2/M. Here, we describe a cap-independent internal ribosome entry site (IRES) in the ODC mRNA that functions exclusively at G2/M. This ensures elevated levels of polyamines, which are implicated in mitotic spindle formation and chromatin condensation. c-myc mRNA also contains an IRES that functions during mitosis. Thus, IRES-dependent translation is likely to be a general mechanism to synthesize short-lived proteins even at mitosis, when cap-dependent translation is interdicted.  相似文献   

9.
Most poliovirus strains infect only primates. The host range (HR) of poliovirus is thought to be primarily determined by a cell surface molecule that functions as poliovirus receptor (PVR), since it has been shown that transgenic mice are made poliovirus sensitive by introducing the human PVR gene into the genome. The relative levels of neurovirulence of polioviruses tested in these transgenic mice were shown to correlate well with the levels tested in monkeys (H. Horie et al., J. Virol. 68:681-688, 1994). Mutants of the virulent Mahoney strain of poliovirus have been generated by disruption of nucleotides 128 to 134, at stem-loop II within the 5' noncoding region, and four of these mutants multiplicated well in human HeLa cells but poorly in mouse TgSVA cells that had been established from the kidney of the poliovirus-sensitive transgenic mouse. Neurovirulence tests using the two animal models revealed that these mutants were strongly attenuated only in tests with the mouse model and were therefore HR mutants. The virus infection cycle in TgSVA cells was restricted by an internal ribosomal entry site (IRES)-dependent initiation process of translation. Viral protein synthesis and the associated block of cellular protein synthesis were not observed in TgSVA cells infected with three of four HR mutants and was evident at only a low level in the remaining mutant. The mutant RNAs were functional in a cell-free protein synthesis system from HeLa cells but not in those from TgSVA and mouse neuroblastoma NS20Y cells. These results suggest that host factor(s) affecting IRES-dependent translation of poliovirus differ between human and mouse cells and that the mutant IRES constructs detect species differences in such host factor(s). The IRES could potentially be a host range determinant for poliovirus infection.  相似文献   

10.
R Klinck  T Sprules    K Gehring 《Nucleic acids research》1997,25(11):2129-2137
Structural characteristics of three RNA hairpins from the internal ribosome entry site of poliovirus mRNAs have been determined in solution by NMR. Complete proton, phosphorus and carbon resonance assignments were made for the three 16 nt hairpins. The loop sequences, 5'-AAUCCA , AAACCA and GAACCA, have been shown to be essential for viral mRNA translation. NOESY spectra for the three oligomers were very similar indicating a common three dimensional structure. Stems were A-type duplexes with C3'-endo sugar pucker. In the loops, sequential base stacking interactions were detected for all bases except between U8/A8 and C9, indicating a turn in the phosphodiester backbone at this point. Only one nucleotide, U8/A8, had a sugar pucker which deviated appreciably from C3'-endo. The final base in the loop, A11, exhibited an unusual gauche (-) gamma angle. An ensemble of 10 structures calculated for one hairpin using restrained molecular dynamics shows that the first three bases of the loop are turned so as to be exposed to the exterior of the molecule, while the remaining three bases are in an orientation approximating a continuation of the stem helix. Structure calculations and NMR relaxation measurements indicate that the loop apex is subject to considerable local dynamics.  相似文献   

11.
A region of about 435 bases from the 5' noncoding region of foot-and-mouth disease virus RNA directs internal initiation of protein synthesis. This region, termed the internal ribosome entry site (IRES), is predicted to contain extensive secondary structure. Precise deletion of five predicted secondary structure features has been performed. The mutant IRES elements have been constructed into vectors which express bicistronic mRNAs and assayed within cells. Each of the modified IRES elements was defective in directing internal initiation when assayed alone. However, coexpression of an intact foot-and-mouth disease virus IRES complemented four of these defective elements to an efficiency of up to 80% of wild-type activity. No complementation was observed with the structurally analogous element from encephalomyocarditis virus. The role of RNA-RNA interactions in the function of the picornavirus IRES is discussed.  相似文献   

12.
13.
The chemical synthesis of poliovirus (PV) cDNA combined with the cell-free synthesis of infectious particles yielded virus whose mouse neurovirulence was highly attenuated (J. Cello, A. V. Paul, and E. Wimmer, Science 297:1016-1018, 2002). Compared to the wild-type PV1 (Mahoney) [PV1(M)] sequence, the synthetic virus genome harbored 27 nucleotide (nt) changes deliberately introduced as genetic markers. Of the 27 nucleotide substitutions, the UA-to-GG exchanges at nucleotides 102/103, mapping to a region between the cloverleaf and the internal ribosome entry site (IRES) in the 5'-nontranslated region, were found to be involved in the observed attenuation phenotype in mice. The UA/GG mutation at nt 102/103 in the synthetic PV1(M) [sPV1(M)] background conferred also a ts phenotype of replication to the virus in human neuroblastoma cells. Conversely, the exchange of GG to wild-type (wt) UA at 102/103 in an sPV1(M) background restored wt neurovirulence in CD155 transgenic (tg) mice and suppressed the ts phenotype in SK-N-MC cells. All poliovirus variants replicated well in HeLa cells at the two temperatures, regardless of the sequence at the 102/103 locus. Analyses of variants isolated from sPV(M)-infected CD155 tg mice revealed that the G(102)G(103)-to-G(102)A(103) reversion alone reestablished the neurovirulent phenotype. This suggests that a single mutation is responsible for the observed change of the neurovirulence phenotype. sPV1(M) RNA is translated in cell extracts of SK-N-MC cells with significantly lower efficiency than PV1(M) RNA or sPV1(M) RNA with a G(102)-to-A(102) reversion. These studies suggest a function for the conserved nucleotide (A(103)) located between the cloverleaf and the IRES which is important for replication of PV in the central nervous system of CD155 tg mice and in human cells of neuronal origin.  相似文献   

14.
Internal ribosome entry site within hepatitis C virus RNA.   总被引:71,自引:21,他引:50       下载免费PDF全文
The mechanism of initiation of translation on hepatitis C virus (HCV) RNA was investigated in vitro. HCV RNA was transcribed from the cDNA that corresponded to nucleotide positions 9 to 1772 of the genome by using phage T7 RNA polymerase. Both capped and uncapped RNAs thus transcribed were active as mRNAs in a cell-free protein synthesis system with lysates prepared from HeLa S3 cells or rabbit reticulocytes, and the translation products were detected by anti-gp35 antibodies. The data indicate that protein synthesis starts at the fourth AUG, which was the initiator AUG at position 333 of the HCV RNA used in this study. Efficiency of translation of the capped methylated RNA appeared to be similar to that of the capped unmethylated RNA. However, a capped methylated RNA showed a much higher activity as mRNA than did the capped unmethylated RNA in rabbit reticulocyte lysates when the RNA lacked a nucleotide sequence upstream of position 267. The results strongly suggest that HCV RNA carries an internal ribosome entry site (IRES). Artificial mono- and dicistronic mRNAs were prepared and used to identify the region that carried the IRES. The results indicate that the sequence between nucleotide positions 101 and 332 in the 5' untranslated region of HCV RNA plays an important role in efficient translation. Our data suggest that the IRES resides in this region of the RNA. Furthermore, an IRES in the group II HCV RNA was found to be more efficient than that in the group I HCV RNA.  相似文献   

15.
The cricket paralysis virus (CrPV), a member of the CrPV-like virus family, contains a single positive-stranded RNA genome that encodes two non-overlapping open reading frames separated by a short intergenic region (IGR). The CrPV IGR contains an internal ribosomal entry site (IRES) that directs the expression of structural proteins. Unlike previously described IRESs, the IGR IRES initiates translation by recruiting 80S ribosomes in the absence of initiator Met-tRNA(i) or any canonical initiation factors, from a GCU alanine codon located in the A-site of the ribosome. Here, we have shown that a variety of mutations, designed to disrupt individually three pseudoknot (PK) structures and alter highly conserved nucleotides among the CrPV-like viruses, inhibit IGR IRES-mediated translation. By separating the steps of translational initiation into ribosomal recruitment, ribosomal positioning and ribosomal translocation, we found that the mutated IRES elements could be grouped into two classes. One class, represented by mutations in PKII and PKIII, bound 40S subunits with significantly reduced affinity, suggesting that PKIII and PKII are involved in the initial recruitment of the ribosome. A second class of mutations, exemplified by alterations in PKI, did not affect 40S binding but altered the positioning of the ribosome on the IRES, indicating that PKI is involved in the correct positioning of IRES-associated ribosomes. These results suggest that the IGR IRES has distinct pseudoknot-like structures that make multiple contacts with the ribosome resulting in initiation factor-independent recruitment and correct positioning of the ribosome on the mRNA.  相似文献   

16.
细胞内部核糖体进入位点研究进展   总被引:2,自引:0,他引:2  
细胞内部核糖体进入位点(IRES)mRNA5’端非编码区的一段特殊的序列,它允许核糖体不从mRNA的5’到3’端阅读而直接在此序列处结合mRNA并起始翻译。本综述了IRES的发现、IRES的识别及细胞IRES的特征、作用机理、生物学意义及其生物学应用等方面的研究进展。  相似文献   

17.
18.
Cytoplasmic serine hydroxymethyltransferase (cSHMT) enzyme levels are elevated by the expression of the heavy chain ferritin (H ferritin) cDNA in cultured cells without corresponding changes in mRNA levels, resulting in enhanced folate-dependent de novo thymidylate biosynthesis and impaired homocysteine remethylation. In this study, the mechanism whereby H ferritin regulates cSHMT expression was determined. cSHMT translation is shown to be regulated by an H ferritin-responsive internal ribosome entry site (IRES) located within the cSHMT mRNA 5'-untranslated region (5'-UTR). The cSHMT 5'-UTR exhibited IRES activity during in vitro translation of bicistronic mRNA templates, and in MCF-7 and HeLa cells transfected with bicistronic mRNAs. IRES activity was depressed in H ferritin-deficient mouse embryonic fibroblasts and elevated in cells expressing the H ferritin cDNA. H ferritin was shown to interact with the mRNA-binding protein CUGBP1, a protein known to interact with the alpha and beta subunits of eukaryotic initiation factor eIF2. Small interference RNA-mediated depletion of CUGBP1 decreased IRES activity from bicistronic templates that included the cSHMT 3'-UTR in the bicistronic construct. The identification of this H ferritin-responsive IRES represents a mechanism that accounts for previous observations that H ferritin regulates folate metabolism.  相似文献   

19.
Translation of the hepatitis C virus (HCV) polyprotein is initiated at an internal ribosome entry site (IRES) element in the 5' untranslated region of HCV RNA. The HCV IRES element interacts directly with the 40S subunit, and biochemical experiments have implicated RNA elements near the AUG start codon as required for IRES-40S subunit complex formation. The data we present here show that two RNA stem loops, domains IIId and IIIe, are involved in IRES-40S subunit interaction. The structures of the two RNA domains were solved by NMR spectroscopy and reveal structural features that may explain their role in IRES function.  相似文献   

20.
正In eukaryotic cells,initiation of protein translation is to recruit the ribosome to a specific mRNA,which is generally dependent on the 5'cap structure.However,protein translation can also be initiated in a cap-independent manner by using a cis-regulatory element termed the internal ribosome entry site(IRES).The first experimentally validated IRES was reported in the poliovirus  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号