首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fluorescence detection is extensively used in high throughput screening. In HTS there is a continuous migration toward higher density plates and smaller sample volumes. In the present report we describe the advantages of two-photon or multiphoton excitation for HTS. Multiphoton excitation (MPE) is the simultaneous absorption of two long-wavelength photons to excite the lowest singlet state of the fluorophore. MPE is typically accomplished with short but high-intensity laser pulses, which allows simultaneous absorption of two or more photons. The intensity of the multiphoton-induced fluorescence is proportional to the square, cube, or higher power of the instantneous photon flux. Consequently, two-photon or multiphoton excitation only occurs at the focal point of the incident beam. This property of two-photon excitation allows the excited volume to be very small and to be localized in the center of each well in the HTS plate. We show that two-photon-induced fluorescence of fluorescein can be reliably measured in microwell plates. We also show the use of 6-carboxy fluorescein as a pH probe with two-photon excitation, and measure 4'-6-diamidino-2-phenylindole (DAPI) binding and two-photon-induced fluorescence. In further studies we measure the time-dependent intensity decays of DAPI bound to DNA and of calcium-dependent fluorophores. Finally, we demonstrate the possibility of three-photon excitation of several fluorophores, including indole, in the HTS plate. These results suggest that MPE can be used in high-density multiwell plates.  相似文献   

2.
Hopt A  Neher E 《Biophysical journal》2001,80(4):2029-2036
Two-photon fluorescence excitation is being increasingly used in laser scan microscopy due to very low photodamage induced by this technique under normal operation. However, excitation intensity has to be kept low, because nonlinear photodamage sets in when laser power is increased above a certain threshold. We studied this kind of damage in bovine adrenal chromaffin cells, using two different indicators of damage: changes in resting [Ca(2+)] level and the degranulation reaction. In agreement with previous studies, we found that, for both criteria, damage is proportional to the integral (over space and time) of light intensity raised to a power approximately 2.5. Thus, widening the laser pulse shape at constant average intensity both in time and in focal volume is beneficial for avoiding this kind of damage. Both measures, of course, reduce the two-photon fluorescence excitation. However, loss of signal can be compensated by increasing excitation power, such that, at constant damaging potential, signals may be even larger with long pulses and large focal volumes, because the exponent of the power law of damage is higher (mu approximately 2.5) than that of the two-photon signal (mu approximately 2).  相似文献   

3.
A new separation-free method for detection of single nucleotide polymorphisms (SNPs) is described. The method is based on the single base extension principle, fluorescently labeled dideoxy nucleotides and two-photon fluorescence excitation technology, known as ArcDia™ TPX technology. In this assay technique, template-directed single base extension is carried out for primers which have been immobilized on polymer microparticles. Depending on the sequence of the template DNA, the primers are extended either with a labeled or with a non-labeled nucleotide. The genotype of the sample is determined on the basis of two-photon excited fluorescence of individual microparticles. The effect of various assay condition parameters on the performance of the assay method is studied. The performance of the new assay method is demonstrated by genotyping the SNPs of human individuals using double-stranded PCR amplicons as samples. The results show that the new SNP assay method provides sensitivity and reliability comparable to the state-of-the-art SNaPshot™ assay method. Applicability of the new method in routine laboratory use is discussed with respect to alternative assay techniques.  相似文献   

4.
Combination of green fluorescent protein (GFP) and two-photon excitation fluorescence microscopy (TPE) has been used increasingly to study dynamic biochemical events within living cells, sometimes even in vivo. However, the high photon flux required in TPE may lead to higher-order photobleaching within the focal volume, which would introduce misinterpretation about the fine biochemical events. Here we first studied the high-order photobleaching rate of GFP inside live cells by measuring the dependence of the photobleaching rate on the excitation power. The photobleaching rate under one- and two-photon excitation increased with 1-power and 4-power of the incident intensity, respectively, implying the excitation photons might interact with excited fluorophore molecules and increase the probability of photobleaching. These results suggest that in applications where two-photon imaging of GFP is used to study dynamic molecular process, photobleaching may ruin the imaging results and attention should be paid in interpreting the imaging results.  相似文献   

5.
Multi-color fluorescence emission from leaf tissues is presented as a powerful reporter on plant biochemistry and physiology that can be applied both at macro- and micro-scales. The blue–green fluorescence emission is typically excited by ultraviolet (UV) excitation. However, this approach cannot be applied in investigating intact leaf interior because the UV photons are largely absorbed in the epidermis of the leaf surface. This methodological barrier is eliminated by replacing the UV photon excitation by excitation with two infra-red photons of the same total energy. We demonstrate this approach by using two-photon excitation for microscopy of Arabidopsis thaliana leaves infected by pathogenic bacterium Pseudomonas syringae. The leaf structures are visualized by red chlorophyll fluorescence emission reconstructed in 3-D images while the bacteria are detected by the green emission of engineered fluorescence protein.  相似文献   

6.
Two-photon excitation microscopy provides attractive advantages over confocal microscopy for three-dimensionally resolved fluorescence imaging. Since two-photon excitation occurs only at the focal point of the microscope, it inherently provides three-dimensional resolution. This localization of excitation also minimizes photobleaching and photodamage, which are the ultimate limiting factors in imaging living cells. Furthermore, no pinhole is required to attain three-dimensional discrimination, so the efficiency of fluorescence collection is increased. These advantages allow experiments on thick living samples that would not be possible with other imaging techniques. The cost and complexity of the lasers required for two-photon excitation microscopy have limited its use, but appropriate turn-key lasers have now been introduced, and their cost should decrease. Finally, the recent introduction of commercial two-photon excitation laser-scanning microscope systems allows a much larger group of researchers access to this state-of-the-art methodology.  相似文献   

7.
Four different luminescent lanthanide complexes have been studied with respect to multiphoton excitation using near-infrared femtosecond pulses. The method for measuring action cross sections of two-photon excited fluorescence in solution relative to a known standard is reviewed. Two refractive index-related corrections are necessary in this method: one for the multiphoton excitation process, the other for the collection of the emitted light. It has been found that (2,4,6-trimethoxyphenyl)dipicolinic acid and Michler's ketone are reasonable sensitisers of two-photon excited lanthanide luminescence in solution, whereas dipicolinic acid and carbostyril-124 do not give rise to any detectable two-photon excited lanthanide luminescence using modest excitation powers (<20 mW focused at the sample) in the 700-1000 nm range.  相似文献   

8.
We describe a custom one-photon (confocal) and two-photon all-digital (photon counting) laser scanning microscope. The confocal component uses two avalanche photodiodes (APDs) as the fluorescence detector to achieve high sensitivity and to overcome the limited photon counting rate of a single APD ( approximately 5 MHz). The confocal component is approximately nine times more efficient than our commercial confocal microscope (fluorophore fluo 4). Switching from one-photon to two-photon excitation mode (Ti:sapphire laser) is accomplished by moving a single mirror beneath the objective lens. The pulse from the Ti:sapphire laser is 109 fs in duration at the specimen plane, and average power is approximately 5 mW. Two-photon excited fluorescence is detected by a fast photomultiplier tube. With a x63 1.4 NA oil-immersion objective, the resolution of the confocal system is 0.25 microm laterally and 0.52 microm axially. For the two-photon system, the corresponding values are 0.28 and 0.82 microm. The system is advantageous when excitation intensity must be limited, when fluorescence is low, or when thick, scattering specimens are being studied (with two-photon excitation).  相似文献   

9.
Two-photon probe excitation data are commonly presented as absorption cross section or molecular brightness (the detected fluorescence rate per molecule). We report two-photon molecular brightness spectra for a diverse set of organic and genetically encoded probes with an automated spectroscopic system based on fluorescence correlation spectroscopy. The two-photon action cross section can be extracted from molecular brightness measurements at low excitation intensities, while peak molecular brightness (the maximum molecular brightness with increasing excitation intensity) is measured at higher intensities at which probe photophysical effects become significant. The spectral shape of these two parameters was similar across all dye families tested. Peak molecular brightness spectra, which can be obtained rapidly and with reduced experimental complexity, can thus serve as a first-order approximation to cross-section spectra in determining optimal wavelengths for two-photon excitation, while providing additional information pertaining to probe photostability. The data shown should assist in probe choice and experimental design for multiphoton microscopy studies. Further, we show that, by the addition of a passive pulse splitter, nonlinear bleaching can be reduced--resulting in an enhancement of the fluorescence signal in fluorescence correlation spectroscopy by a factor of two. This increase in fluorescence signal, together with the observed resemblance of action cross section and peak brightness spectra, suggests higher-order photobleaching pathways for two-photon excitation.  相似文献   

10.
Two-photon fluorescence excitation spectra of the peripheral light-harvesting complex LH2 from the purple photosynthetic bacterium Chromatium minutissimum were examined within the expected spectral range of the optically forbidden S1 singlet state of carotenoids. LH2 preparations isolated from wild-type and carotenoid-depleted cells were used. 100-fs laser pulses in the range of 1300-1490 nm with an energy of 7-9 mW (corresponding to one-photon absorption between 650 and 745 nm) were used for two-photon fluorescence excitation. It was shown that two-photon fluorescence excitation spectra of LH2 complex from wild and carotenoid-depleted cells are very similar to each other and to the two-photon fluorescence excitation spectrum of bacteriochlorophyll a in acetone. It was concluded that direct two-photon excitation of bacteriochlorophyll a determines the fluorescence of both samples within the 650-745 nm spectral range.  相似文献   

11.
P E H?nninen  J T Soini  E Soini 《Cytometry》1999,36(3):183-188
We studied the use of a dramatically reduced testing zone in combination with two-photon excitation and photon-burst analysis in high-throughput rare-event detection simulation using a modified flow cytometer. Two-photon excitation measurements were performed with a mode-locked titanium:sapphire laser. Fluorescence emission was measured with a photon-counting avalanche photodiode. Measured signal was analysed offline by autocorrelation and burst detection methods. Test samples were composed of full blood and orange fluorescent polystyrene nanospheres mixed in full blood. Results show that two-photon fluorescence excitation and time-correlation analysis provide a good signal-to-noise ratio for rare-event particle detection in a turbid sample environment.  相似文献   

12.
We describe the use of fluorophore-doped nanoparticles as reporters in a recently developed ArcDia TPX bioaffinity assay technique. The ArcDia TPX technique is based on the use of polymer microspheres as solid-phase reaction carrier, fluorescent bioaffinity reagents, and detection of two-photon excited fluorescence. This new assay technique enables multiplexed, separation-free bioaffinity assays from microvolumes with high sensitivity. As a model analyte we chose C-reactive protein (CRP). The assay of CRP was optimized for assessment of CRP baseline levels using a nanoparticulate fluorescent reporter, 75 nm in diameter, and the assay performance was compared to that of CRP assay based on a molecular reporter of the same fluorophore core. The results show that using fluorescent nanoparticles as the reporter provides two orders of magnitude better sensitivity (87 fM) than using the molecular label, while no difference between precision profiles of the different assay types was found. The new assay method was applied for assessment of baseline levels of CRP in sera of apparently healthy individuals.  相似文献   

13.
Multiphoton excitation fluorescence imaging generates an optical section of sample by restricting fluorophore excitation to the plane of focus. High photon densities, achieved only in the focal volume of the objective, are sufficient to excite the fluorescent probe molecules by density-dependent, multiphoton excitation processes. We present comparisons of confocal with multiphoton excitation imaging of identical optical sections within a sample. These side-by-side comparisons of imaging modes demonstrate a significant advantage of multiphoton imaging; data can be obtained from deeper within biological specimens. Observations on a variety of biological samples showed that in all cases there was at least a twofold improvement in the imaging penetration depth obtained with multiphoton excitation relative to confocal imaging. The more pronounced degradation in image contrast deep within a confocally imaged sample is primarily due to scattered emission photons, which reduce the signal and increase the local background as measurements of point spread functions indicated that resolution does not significantly change with increasing depth for either mode of microscopy. Multiphoton imaging does not suffer from degradation of signal-to-background to nearly the same extent as confocal imaging because this method is insensitive to scatter of the emitted signal. Direct detection of emitted photons using an external photodetector mounted close to the objective (possible only in a multiphoton imaging system) improves system sensitivity and the utilization of scattered emission photons for imaging. We demonstrate that this technique provides yet further improvements in the capability of multiphoton excitation imaging to produce good quality images from deeper within tissue relative to confocal imaging.  相似文献   

14.
Two-photon microscopy (TPM), which uses two photons of lower energy as the excitation source, is a vital tool in biology and clinical science, due to its capacity to image deep inside intact tissues for a long period of time. To make TPM a more versatile tool in biomedical research, we have developed a variety of two-photon probes for specific applications. In this mini review, we will briefly discuss two-photon probes for lipid rafts, lysosomes, mitochondria, and pH, and their biomedical applications. [BMB Reports 2013; 46(4): 188-194]  相似文献   

15.
The irreversible photoconversion of T203V green fluorescent protein (GFP) via decarboxylation is studied under femtosecond excitation using an accumulative product detection method that allows us to measure small conversion efficiencies of down to ΔOD = 10−7 absorbance change per pulse. Power studies with 800- and 400-nm pulse excitation reveal that excitation to higher states of the neutral form of the GFP chromophore induces photoconversion very efficiently. The singly excited neutral chromophore is a resonant intermediate of the two-step excitation process that leads to efficient photoconversion. We determine the dynamics of this two-step process by separating the excitation step of the neutral chromophore from the further excitation step to the reactive state in a time-resolved two-color experiment. The dynamics show that a further excitation to the very reactive higher excited state is only possible from the initially excited neutral chromophore and not from the fluorescent intermediate state. For applications of GFP in two-photon fluorescence microscopy, the found photochemical behavior implies that the high intensity conditions used in microscopy can lead to photoconversion easily and care has to be taken to avoid unwanted photoconversion.  相似文献   

16.
In this study, we demonstrate a noninvasive imaging approach based on multimodal nonlinear optical microscopy to in vivo image the responses of immune cells (neutrophils) to the tissue injury and bacterial infection in a zebrafish model. Specifically, the second harmonic generation from myosin thick filaments in sarcomere enabled a clear visualization of the muscle injury and infection. Two-photon excited fluorescence was used to track the behavior of the neutrophils that were transgenically labeled by red fluorescent protein. The corresponding reduced nicotinamide adenine dinucleotide (NADH) two-photon excited fluorescence images revealed a detailed morphological transformation process of individual neutrophils during muscle tissue injury and bacterial infection. The analysis of time-resolved NADH signals from the neutrophils provided important biological insights of the cellular energy metabolism during the immune responses. We found a significant increase of free/protein-bound NADH ratios in activated neutrophils in bacterial-infected tissue. In this study, we also discovered that, under 720 nm excitation, two wild-type strains (DH5α and BL21) of bacteria Escherichia coli emitted distinct endogenous fluorescence of double-peak at ∼450 and ∼520 nm, respectively. We demonstrated that the double-peak fluorescence signal could be used to differentiate the E. coli from surrounding tissues of dominant NADH signals, and to achieve label-free tracking of E. coli bacteria in vivo.  相似文献   

17.
O-acetylserine sulfhydrylase, a homo-dimeric enzyme from Salmonella typhimurium, covalently binds one pyridoxal 5'-phosphate molecule per subunit as a fluorescent coenzyme. Different tautomers of the Schiff base between the coenzyme and lysine 41 generate structured absorption and fluorescence spectra upon one-photon excitation. We investigated the protein population heterogeneity by fluorescence correlation spectroscopy and lifetime techniques upon two-photon excitation. We sampled the fluorescence intensity from a small number of molecules (approximately 10) and analyzed the distribution of photon counts to separately determine the number and the fluorescence brightness of excited protein molecules. The changes in the average number of molecules and in the fluorescence brightness with the excitation wavelength indicate the presence of at least two fluorescent species, with two-photon excitation maxima at 660 and 800 nm. These species have been identified as the enolimine and ketoenamine tautomers of the protein-coenzyme internal aldimine. Their relative abundance is estimated to be 4:1, whereas the ratio of their two-photon cross sections is reversed with respect to the single-photon excitation case. Consistent results are obtained from the measurement of the lifetime decays, which are sensitive to the excited-state heterogeneity. At least two components were detected, with lifetimes of approximately 2.5 and 0.5 ns. The lifetimes are very close to the values measured in bulk solutions upon one-photon excitation and attributed to the ketoenamine tautomer and to a dipolar species formed upon proton dissociation in the excited state.  相似文献   

18.
An uncaging process refers to a fast and efficient release of a biomolecule after photochemical excitation from a photoactivatable precursor. Two-photon excitation produces excited states identical to standard UV excitation while overcoming major limitations when dealing with biological materials, like spatial resolution, tissue penetration and toxicity and has therefore been applied to the uncaging of different biological effectors. A literature survey of two-photon uncaging of biomolecules is described in this article, including applications in cellular- and neurobiology.  相似文献   

19.
Laser light microscopy enables observation of various simultaneously occurring events in living cells. This capability is important for monitoring the spatiotemporal patterns of the molecular interactions underlying such events. Two-photon excited fluorescence microscopy (two-photon microscopy), a technology based on multiphoton excitation, is one of the most promising candidates for such imaging. The advantages of two-photon microscopy have spurred wider adoption of the method, especially in neurological studies. Multicolor excitation capability, one advantage of two-photon micro-scopy, has enabled the quantification of spatiotemporal patterns of [Ca(2+)](i) and single episodes of fusion pore openings during exocytosis. In pancreatic acinar cells, we have successfully demonstrated the existence of "sequential compound exocytosis" for the first time, a process which has subsequently been identified in a wide variety of secretory cells including exocrine, endocrine and blood cells. Our newly developed method, the two-photon extracellular polar-tracer imaging-based quantification (TEPIQ) method, can be used for determining fusion pores and the diameters of vesicles smaller than the diffraction-limited resolution. Furthermore, two-photon microscopy has the demonstrated capability of obtaining cross-sectional images from deep layers within nearly intact tissue samples over long observation times with excellent spatial resolution. Recently, we have successfully observed a neuron located deeper than 0.9 mm from the brain cortex surface in an anesthetized mouse. This microscopy also enables the monitoring of long-term changes in neural or glial cells in a living mouse. This minireview describes both the current and anticipated capabilities of two-photon microscopy, based on a discussion of previous publications and recently obtained data.  相似文献   

20.
Long-range surface plasmon polaritons (SPPs), which propagate along metal/dielectric interfaces to submillimeter distances in the range of near-infrared (NIR) excitation wavelength, were examined by two-color two-photon photoelectron emission microscopy (2P-PEEM). Interferences between incident NIR photons and SPPs excited by the NIR photons at surface defects were imaged by detecting photoelectrons emitted from a gold surface, assisted by simultaneously irradiated ultraviolet photons which are to overcome the workfunction of the surface. The wavelength of the interference beat depends sensitively on the NIR wavelength. By analyzing the interference beat, the dispersion curve as well as phase and group velocities of SPP’s were experimentally obtained. The results closely match the theoretical one based on the Drude free electron model, indicating that two-color 2P-PEEM is applicable not only to the visualization of NIR-excited SPPs but also to the quantitative analysis of its physical properties. This method will be widely used to observe SPPs for various artificial plasmonic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号