首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Off the Po Delta in the northern Adriatic, three different foraminiferal associations were identified in the fraction >0.125 mm of 25 sediment samples. The first association concerns sample stations between depths of 5 and 13.5 m in the shallow, nutrient-rich belt and is characterised by dominant Ammonia beccarii. The second occupies the 29.5–38.5-m-deep, nutrient-rich zone of clay-rich sediment, where inputs from the Po are concentrated, and is dominated by Nonionella opima. The third association, in the 21–46-m-deep and nutrient-poor zone, is dominated by Textularia agglutinans. The same distribution of communities was obtained using total associations (living and dead specimens) and biocenosis (stained individuals). The good correspondence with the foraminiferal distributions described in the past indicates that, in spite of the occurrence of anoxic and dysoxic events, the environmental state in the northern Adriatic may be considered stable.  相似文献   

2.
Effects of stress and disturbance on morphology, reproductive effort, size and sex ratio were studied for Fucus vesiculosus populations from the Baltic Sea at Askö and the North Sea on the west coast of Sweden at Tjäm[otilde]. High morphological variation was found between Fucus populations, with significant differences in length and weight of individuals, thallus breadth, number of branches and receptacles and receptacle weight, not only between Baltic and North Sea populations but also between populations within the same area, differing in wave exposure. With increasing disturbance, individuals in both studied populations were smaller and less branched. Differences were observed in plant size, with longer, broader and more branched plants being found in Askö compared with Tjärnö. Fucus populations at Tjämö allocated more biomass to reproduction and had longer, heavier receptacles than at Askö. Although the observed morphological changes may be partly explained by differences in wave exposure and salinity between the two sites, it is not possible to rule out genetic differences between the Baltic and North Sea populations. However, it is unlikely that the variations observed within the populations and between populations from the same area are genetically determined.  相似文献   

3.
The abundance and biomass of benthic foraminifera are high in intertidal rocky‐shore habitats. However, the availability of food to support their high biomass has been poorly studied in these habitats compared to those at seafloor covered by sediments. Previous field and laboratory observations have suggested that there is diversity in the food preferences and modes of life among rocky‐shore benthic foraminifera. In this study, we used the stable nitrogen isotopic composition of amino acids to estimate the trophic position, trophic niche, and feeding strategy of individual foraminifera species. We also characterized the configuration and structure of the endobiotic microalgae in foraminifera using transmission electron microscopy, and we identified the origin of endobionts based on nucleotide sequences. Our results demonstrated a large variation in the trophic positions of different foraminifera from the same habitat, a reflection of endobiotic features and the different modes of life and food preferences of the foraminifera. Foraminifera did not rely solely on exogenous food sources. Some species effectively used organic matter derived from endobionts in the cell cytoplasm. The high biomass and species density of benthic foraminifera found in intertidal rocky‐shore habitats are thus probably maintained by the use of multiple nitrogen resources and by microhabitat segregation among species as a consequence.  相似文献   

4.
Species interactions underlie most ecosystem functions and are important for understanding ecosystem changes. Representing one type of species interaction, trophic networks were constructed from biodiversity monitoring data and known trophic links to assess how ecosystems have changed over time. The Baltic Sea is subject to many anthropogenic pressures, and low species diversity makes it an ideal candidate for determining how pressures change food webs. In this study, we used benthic monitoring data for 20 years (1980–1989 and 2010–2019) from the Swedish coast of the Baltic Sea and Skagerrak to investigate changes in benthic invertebrate trophic interactions. We constructed food webs and calculated fundamental food web metrics evaluating network horizontal and vertical diversity, as well as stability that were compared over space and time. Our results show that the west coast of Sweden (Skagerrak) suffered a reduction in benthic invertebrate biodiversity by 32% between the 1980s and 2010s, and that the number of links, generality of predators, and vulnerability of prey have been significantly reduced. The other basins (Bothnian Sea, Baltic Proper, and Bornholm Basin) do not show any significant changes in species richness or consistent significant trends in any food web metrics investigated, demonstrating resilience at a lower species diversity. The decreased complexity of the Skagerrak food webs indicates vulnerability to further perturbations and pressures should be limited as much as possible to ensure continued ecosystem functions.  相似文献   

5.
Nutrient loading and climate change affect coastal ecosystems worldwide. Unravelling the combined effects of these pressures on benthic macrofauna is essential for understanding the future functioning of coastal ecosystems, as it is an important component linking the benthic and pelagic realms. In this study, we extended an existing model of benthic macrofauna coupled with a physical–biogeochemical model of the Baltic Sea to study the combined effects of changing nutrient loads and climate on biomass and metabolism of benthic macrofauna historically and in scenarios for the future. Based on a statistical comparison with a large validation dataset of measured biomasses, the model showed good or reasonable performance across the different basins and depth strata in the model area. In scenarios with decreasing nutrient loads according to the Baltic Sea Action Plan but also with continued recent loads (mean loads 2012–2014), overall macrofaunal biomass and carbon processing were projected to decrease significantly by the end of the century despite improved oxygen conditions at the seafloor. Climate change led to intensified pelagic recycling of primary production and reduced export of particulate organic carbon to the seafloor with negative effects on macrofaunal biomass. In the high nutrient load scenario, representing the highest recorded historical loads, climate change counteracted the effects of increased productivity leading to a hyperbolic response: biomass and carbon processing increased up to mid‐21st century but then decreased, giving almost no net change by the end of the 21st century compared to present. The study shows that benthic responses to environmental change are nonlinear and partly decoupled from pelagic responses and indicates that benthic–pelagic coupling might be weaker in a warmer and less eutrophic sea.  相似文献   

6.
Live (Rose Bengal stained) benthic foraminifera were investigated in surface sediment samples from the Okhotsk Sea to reveal the relationship between faunal characteristics and environmental parameters. Live benthic foraminifera were quantified in the size fraction > 125 µm in the upper 8 cm of replicate sediment cores, recovered with a multicorer at five stations along the Sakhalin margin, and at three stations on the southwestern Kamchatka slope. The stations are from water depths between 625 to 1752 m, located close or within the present Okhotsk Sea oxygen minimum zone, with oxygen levels between 0.3 and 1.5 ml l- 1. At the high-productivity and ice-free Kamchatka stations, live benthic foraminifera are characterized by maximal standing stocks (about 1700-3700 individuals per 50 cm2), strong dominance of calcareous species (up to 87-91% of total live faunas), and maximal habitat depths (down to 5.2-6.7 cm depth). Vertical distributions of total faunal abundances exhibit a clear subsurface maximum in sediments. At the Sakhalin stations, which are seasonally ice-covered and less productive, live benthic foraminifera show lower standing stocks (about 200-1100 individuals per 50 cm2), lower abundance of calcareous species (10-64% of total live faunas), and shallower habitat depths (down to 2.5-5.4 cm depth). Faunal vertical distributions are characterized by maximum in the uppermost surface sediments. It is suggested that 1) lower and strongly seasonal organic matter flux, caused by the seasonal sea ice cover and seasonal upwelling, 2) lower bottom water oxygenation (0.3-1.1 ml l- 1), and 3) more pronounced influence of carbonate undersaturated bottom water along the Sakhalin margin are the main factors responsible for the observed faunal differences. According to species downcore distributions and average living depths, common calcareous species were identified as preferentially shallow, intermediate and deep infaunal. Foraminiferal microhabitat occupation correlates with the organic matter flux and the depth of the oxygenated layer in sediments.  相似文献   

7.
Climate change will not only shift environmental means but will also increase the intensity of extreme events, exerting additional stress on ecosystems. While field observations on the ecological consequences of heat waves are emerging, experimental evidence is rare, and lacking at the community level. Using a novel “near‐natural” outdoor mesocosms approach, this study tested whether marine summer heat waves have detrimental consequences for macrofauna of a temperate coastal community, and whether sequential heat waves provoke an increase or decrease of sensitivity to thermal stress. Three treatments were applied, defined and characterized through a statistical analysis of 15 years of temperature records from the experimental site: (1) no heat wave, (2) two heat waves in June and July followed by a summer heat wave in August and (3) the summer heat wave only. Overall, 50% of the species showed positive, negative or positive/negative responses in either abundance and/or biomass. We highlight four possible ways in which single species responded to either three subsequent heat waves or one summer heat wave: (1) absence of a response (tolerance, 50% of species), (2) negative accumulative effects by three subsequent heat waves (tellinid bivalve), (3) buffering by proceeding heat waves due to acclimation and/or shifts in phenology (spionid polychaete) and (4) an accumulative positive effect by subsequent heat waves (amphipod). The differential responses to single or sequential heat waves at the species level entailed shifts at the community level. Community‐level differences between single and triple heat waves were more pronounced than those between regimes with vs. without heat waves. Detritivory was reduced by the single heat wave while suspension feeding was less common in the triple heat wave regime. Critical extreme events occur already today and will occur more frequently in a changing climate, thus, leading to detrimental impacts on coastal marine systems.  相似文献   

8.
In this study we investigate the species composition and spatial distribution patterns of Rose Bengal stained and unstained benthic foraminifera from the central part of the Sunda Shelf in the south-western South China Sea in relation to environmental factors. The uppermost centimetre of the surface sediments (> 150 μm) from 45 sites from inner (60 m) to outer shelf (226 m) water depths revealed 584 species including 443 stained species.The univariate analyses of individual species abundances and community parameters and next canonical correspondence analysis were used to relate the faunal data to a set of measured environmental parameters. Four biofacies recognised on the Sunda Shelf are most strongly correlated to water depth, primary production and sediment type of the habitat. The inner shelf biofacies (CCA cluster A), defined by Ammomassilina alveoliniformis and Asterorotalia pulchella, occurs in fine grained sediments classified as modern terrigenous mud in the region with the highest primary production values. The high-energy inner shelf biofacies (CCA cluster B), defined by Heterolepa dutemplei and Textularia lythostrota, occurs in modern terrigenous sand and silt dominated sediments, northeast from the Natuna Island. The high-energy outer shelf biofacies (CCA cluster C), defined by Cibicidoides pachyderma and Textularia bocki, is sandwiched between assemblages of biofacies D. It occurs in the region characterised by neritic relict sand. In the shallow-waters on the Sunda Shelf the relationship of benthic foraminiferal faunal composition to grain size of sediments indirectly signals the prevailing bottom hydrodynamic conditions. The dominance of the epibenthic foraminifera attached to bigger particles (e.g. Cibicides lobatulus, Planulina arimiensis) and much higher abundances of empty tests suggest greater current velocities northeast of Natuna Island. The outer shelf biofacies (CCA cluster D) is defined by Facetocochlea pulchra and Bulimina marginata. It occurs in an area covered with modern terrigenous silt and mud and is characterised by lower annual primary production, but seasonally influenced by weak upwelling.  相似文献   

9.
The benthic fish communities of 26 Swedish lakes were monitored annually with multi-mesh gillnets in a standardized way in the years 1994–1997. No major environmental changes (e.g. in nutrient level or acidity) occurred within the lakes during the 4 years of study. In most of the lakes, the between-year variation of biomass (per unit of effort) was close to the sampling precision, and biomass was usually less variable than abundance. Median values of lakespecific indices of variance compensation indicated no general covariance of biomass between species, but a tendency for positive covariance between size classes. This indicates that the benthic fish communities of small to intermediate-sized Swedish lakes most often show low between-year variation in total biomass of fish older than 0+, and that their biomass–size distributions are not, in general, shaped by periodic strong year-classes of keystone species. In a few individual lakes, density compensation was indicated as complementary proportions of a pair of species or size classes that made major contributions to the total biomass.  相似文献   

10.
The majority of studies in metacommunity ecology have focused on systems other than marine benthic ecosystems, thereby providing an impetus to broaden the focus of metacommunity research to comprise marine systems. These systems are more open than many other systems and may thus exhibit relatively less discrete patterns in community structure across space. Metacommunity structure of soft‐sediment benthic invertebrates was examined using a fine‐grained (285 sites) data set collected during one summer across a large spatial extent (1700 km2). We applied the elements of metacommunity structure (EMS) approach, allowing multiple hypothesis of variation in community structure to be tested. We demonstrated several patterns associated with environmental variation and associated processes that could simultaneously assemble species to occur at the sites. A quasi‐Clementsian pattern was observed frequently, suggesting interdependent ecological relationships among species or similar response to an underlying environmental gradient across sites. A quasi‐nested clumped species loss pattern was also observed, which suggests nested habitat specialization. Species richness declined with depth (from 0.5 to 44.8 m). We argue that sensitive species may survive in shallower water, which are more stable with regard to oxygen conditions and present greater habitat complexity, in contrast to deeper waters, which may experience periodic disturbance due to hypoxia. Future studies should better integrate disturbance in terms of temporal dynamics and dispersal rates in the EMS approach. We highlight that shallow water sites may act as sources of recruitment to deeper water sites that are relatively more prone to periodic disturbances due to hypoxia. However, these shallow sites are not currently monitored and should be better prioritized in future conservation strategies in marine systems.  相似文献   

11.
Large benthic foraminifera are significant contributors to sediment formation on coral reefs, yet they are vulnerable to ocean acidification. Here, we assessed the biochemical and morphological impacts of acidification on the calcification of Amphistegina lessonii and Marginopora vertebralis exposed to different pH conditions. We measured growth rates (surface area and buoyant weight) and Ca-ATPase and Mg-ATPase activities and calculated shell density using micro-computer tomography images. In A. lessonii, we detected a significant decrease in buoyant weight, a reduction in the density of inner skeletal chambers, and an increase of Ca-ATPase and Mg-ATPase activities at pH 7.6 when compared with ambient conditions of pH 8.1. By contrast, M. vertebralis showed an inhibition in Mg-ATPase activity under lowered pH, with growth rate and skeletal density remaining constant. While M. vertebralis is considered to be more sensitive than A. lessonii owing to its high-Mg-calcite skeleton, it appears to be less affected by changes in pH, based on the parameters assessed in this study. We suggest difference in biochemical pathways of calcification as the main factor influencing response to changes in pH levels, and that A. lessonii and M. vertebralis have the ability to regulate biochemical functions to cope with short-term increases in acidity.  相似文献   

12.
Live (Rose Bengal stained) and dead benthic foraminiferal communities (hard-shelled species only) from the Pakistan continental margin oxygen minimum zone (OMZ) have been studied in order to determine the relation between faunal composition and the oxygenation of bottom waters. Samples were taken from 136 m to 1870 m water depth during the intermonsoon season of 2003 (March–April). Live foraminiferal densities show a clear maximum in the first half centimetre of the sediment only few specimens are found down to 4 cm depth. The faunas exhibit a clear zonation across the Pakistan margin OMZ. Down to 500 m water depth, Uvigerina ex gr. U. semiornata and Bolivina aff. B. dilatata dominate the assemblages. These taxa are largely restricted to the upper cm of the sediment. They are adapted to the very low bottom-water oxygen values (≈ 0.1 ml/l in the OMZ core) and the extremely high input of organic carbon on the upper continental slope. The lower part of the OMZ is characterised by cosmopolitan faunas, containing also some taxa that in other areas have been described in deep infaunal microhabitats. The contrast between faunas typical for the upper part of the OMZ, and cosmopolitan faunas in the lower part of the OMZ, may be explained by a difference in the stability of dysoxic conditions over geological time periods. The core of the OMZ has been characterised by prolonged periods of stable, strongly dysoxic conditions. The lower part of the OMZ, on the contrary, has been much more variable over time-scales of 1000s and 10,000 years because of changes in surface productivity and a fluctuating intensity of NADW circulation. We suggest that, as a consequence, well-adapted, shallow infaunal taxa occupy the upper part of the OMZ, whereas in the lower part of the OMZ, cosmopolitan deep infaunal taxa have repeatedly colonised these more intermittent low oxygen environments.  相似文献   

13.
Effects of climate change on natural ecosystems can be mediated by ecological processes, but also by rapid evolutionary adaptations and/or non-heritable trait changes in organisms. So far, most studies testing the importance of inter- versus intraspecific changes for how communities and their functioning responds to climate change are either short-term laboratory experiments in highly controlled (artificial) environments, or long-term field surveys suffering from lack of experimental manipulation. Here, we quantified how community composition and functioning has changed in response to long-term warming, including the potential direct and indirect effects via immediate and delayed physiological, non-heritable plastic, ecological, evolutionary and eco-evolutionary responses. We used a site-for-time approach, sampling sites in an artificially heated basin and a nearby area to quantify how >30 years of experimental warming in situ affects benthic grazer communities and traits of grazer taxa, as well as their contribution to a key ecosystem function: grazing on filamentous algae. The community composition shifted with warming, because a non-native species was highly common, and taxa with higher mobility, became more common in the heated areas compared to the control sites. Warming altered community functioning but the underlying mechanisms varied between traits: increased metabolism was caused by intraspecific trait change, while increased grazing rate was mainly driven by species turnover. Our results suggest that both population- and community-level processes mediate the responses of natural communities to long-term environmental change, and that the ongoing warming of coastal waters is likely to alter the functioning of key marine ecosystems.  相似文献   

14.
The diversity and distribution of modern benthic foraminifera has been extensively studied in order to aid the paleoecological interpretation of their fossil record. Traditionally, foraminiferal species are identified based on morphological characters of their organic, agglutinated or calcareous tests. Recently, however, new molecular techniques based on analysis of DNA sequences have been introduced to study the genetic variation in foraminifera. Although the number of species for which DNA sequence data exist is still very limited, it appears that morphology-based studies largely underestimated foraminiferal diversity. Here, we present two examples of the use of DNA sequences to examine the diversity of benthic foraminifera. The first case deals with molecular and morphological variations in the well-known and common calcareous genus Ammonia. The second case presents molecular diversity in the poorly documented group of monothalamous (single-chambered) foraminifera. Both examples perfectly illustrate high cryptic diversity revealed in almost all molecular studies. Molecular results also confirm that the majority of foraminiferal species have a restricted geographic distribution and that globally distributed species are rare. This is in opposition to the theory that biogeography has no impact on the diversity of small-sized eukaryotes. At least in the case of foraminifera, size does not seem to have a main impact on dispersal capacities. However, the factors responsible for the dispersal of foraminiferal species and the extension of their geographic ranges remain largely unknown. Special Issue: Protist diversity and geographic distribution. Guest editor: W. Foissner.  相似文献   

15.
本文对南黄海西北陆架边缘的300个表层沉积物样品中的底栖有孔虫数据,与相应站位的水深、底层水温、盐度、沉积物粒度、有机碳含量等环境参数作了分析研究。除趋势对应分析(DCA)、典型对应分析(CCA)表明有孔虫种群分布与水深、夏季底层水温(Ts)和冬季底层水盐度(Sw)之间存在着显著的数值对应关系。利用加权平均偏最小二乘回归方法(WA-PLS)建立了底栖有孔虫数据与上述环境因子之间的数值转换函数。水深、Ts与Sw转换函数的预测均方根误差(RMSEP)分别是10.8%、11.5%和12.5%,与利用其他指标建立的此类转换函数水平(8%—20%)相当。利用此类统计建模方法建立近岸底栖有孔虫分布与浅海环境因子之间的数值关系是一项新的尝试,结果表明在我国近海底层水体古环境研究中底栖有孔虫转换函数是一种具有一定潜力的研究方法。  相似文献   

16.
The benthic environment in the Gulf of Cadiz, north-eastern Atlantic, is strongly affected by the Mediterranean outflow water undercurrent (MOW) which flows northwards along the western Iberian Margin at 500–1500 m water depth. Foraminiferal census counts of living and dead assemblages from 27 surface samples ranging from 103 to 1917 m water depth, and the examination of hard substrates reveal a close correlation of the fauna with the local hydrography and sediment facies. Four different faunal groups are separated by factor analysis of the living fauna. Assemblage 1 contains typical lower slope species and dominates samples from the lower MOW core layer and in the North Atlantic deep water below. Shelf edge foraminifera are common in assemblage 2a which shows the highest proportions in samples from 103 to 272 m. Assemblage 2b is dominated by upper slope species and suspension-feeders that are frequent in the upper MOW core layer and in distal settings between 396 and 901 m. Species from assemblage 3 prefer epibenthic habitats and are recorded with high proportions exclusively in the immediate flow paths of the upper MOW between 496 and 881 m. Colonisation structures and species composition of epibenthic assemblages from the proximal facies largely differ from those in distal settings. In general, epibenthic foraminifers only use elevated substrates under the influence of near-bottom flow. Under high current velocities, epibenthic foraminifers prefer large and heavy objects. They colonise high attachment levels where a maximum yield of advected food particles can be achieved. In distal settings at lower flow velocities, the elevation height does not exceed 20 mm above the surrounding sediment surface. This level is related to a hydrologic transition layer with high concentrations of suspended particles. The comparison of microhabitat preferences and faunal structure under high and low current velocities reveal that substrate stability may be a confining environmental variable for endobenthic and shallow epibenthic foraminifers. The observations also indicate that the preferential settling height of epibenthic foraminifera is related to the highest lateral flux rates of food particles within reach from the sea floor. A dynamic selection of elevated microhabitats is only used by 7.8% of all species recognised in the Gulf of Cadiz area.  相似文献   

17.
Knowledge of the assemblage composition of large benthic foraminifera (LBF) in relation to environmental conditions is needed to interpret fossil records. In this study the assemblage composition of LBF is described for a carbonate shelf with a barrier reef system and some reefs outside the barrier. In a total of 140 samples, 34–35 species of LBF were found. Four clusters, roughly corresponding to substrate type were identified. Several small groups of samples were recognized that were collected locally inside, on, or outside the barrier. Microscale environmental gradients within the substrate or in the benthic boundary layer resulted in spatial differentiation of the microhabitat of each species.  相似文献   

18.
The European Marine Strategy Framework Directive requires EU Member States to prepare national strategies and manage their seas to achieve good environmental status (GES) by 2020. There are many multimetric indices proposed as indicators of the ecological quality of the benthic environment. Their functionality and utility are extensively discussed in the literature. Different frameworks are suggested for comparative assessments of indicators with no agreement on a standardized way of selecting the most appropriate one. In the current study, we apply signal detection theory (SDT) to evaluate the specificity and sensitivity of the Benthic Quality Index (BQI), its response to the eutrophication pressure, and its performance under the effects of estuarine water outflow. The BQI showed acceptable response to total nitrogen, total phosphorus and chlorophyll-a concentrations in the study area. Based on the results, we suggest using SDT for setting GES thresholds in a standardized way. This aids a robust assessment of the environmental status and supports differentiation between the quality classes.  相似文献   

19.
三亚岩相潮间带底栖海藻群落结构及其季节变化   总被引:5,自引:0,他引:5  
为了解三亚潮间带大型海藻生态现状,布设6条岩相断面,于2008年1—11月进行了四季野外的调查,并使用物种多样性指数与聚类分析研究了潮间带大型海藻四季的群落结构和多样性变化。调查共鉴定出大型底栖藻类130种,隶属于4门75属,其中红藻门41属67种、褐藻门16属31种、绿藻门15属29种、蓝藻门3属3种。潮间带海藻种类数季节变化不大,并呈低潮带>中潮带>高潮带的垂直分布特征,且中低潮带有共同分布种,夏季尤为普遍。潮间带海藻夏冬两季平均生物量高于春秋两季,但并无显著差异。优势种季节变化明显:春季有波利团扇藻Padina boryana、日本仙菜Ceramium japonicum、半叶马尾藻Sargassum hemiphyllum、海柏Polyopes polyideoides,夏季有波状软凹藻Chondrophycus undulates、冠叶马尾藻Sargassum cristaefolium、宽扁叉节藻Amphiroa dilatata、石花菜Gelidium amansii,秋季有冠叶马尾藻、波状软凹藻、叶状铁钉菜Ishige foliacea,冬季有瓦氏马尾藻Sargassum vachellianum、苔状鸭毛藻Symphyocladia marchantioides、珊瑚藻Corallina officinalis、波利团扇藻、日本仙菜。群落多样性冬高夏低:Shannon多样性和Margalef丰富度指数最大值出现在冬季,Shannon多样性和Pielou均匀度指数最低值出现在夏季。区域底栖藻类以暖水性热带-亚热带种为主,其次为温水性的暖温带种类,基本符合南海南区暖水区系特点。研究表明,尽管三亚潮间带底栖海藻种类数与生物量上并无显著的季节差异,但群落结构与多样性均显示出一定的季节变化。  相似文献   

20.
Many juvenile and adult double and multiple tests of benthic foraminifera were observed on specimens grown in laboratory cultures or collected in various natural environments. Our observations bring to light three possible causes for such abnormalities, each one referring to characteristic morphological features. Double tests may result: (1) from an anomaly in the development of a single juvenile, building two or three second chambers or two third chambers, each one possibly developing in an individual whorl; (2) from the early fusion of two juveniles, which both develop after their fusion; (3) from the attachment of a juvenile on a parental test after the schizogony followed by the young's development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号