首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein misfolding causes serious biological malfunction, resulting in diseases including Alzheimer’s disease, Parkinson’s disease and cataract. Molecules which inhibit protein misfolding are a promising avenue to explore as therapeutics for the treatment of these diseases. In the present study, thioflavin T fluorescence and transmission electron microscopy experiments demonstrated that hemin prevents amyloid fibril formation of kappa-casein, amyloid beta peptide and α-synuclein by blocking β-sheet structure assembly which is essential in fibril aggregation. Further, inhibition of fibril formation by hemin significantly reduces the cytotoxicity caused by fibrillar amyloid beta peptide in vitro. Interestingly, hemin degrades partially formed amyloid fibrils and prevents further aggregation to mature fibrils. Light scattering assay results revealed that hemin also prevents protein amorphous aggregation of alcohol dehydrogenase, catalase and γs-crystallin. In summary, hemin is a potent agent which generically stabilises proteins against aggregation, and has potential as a key molecule for the development of therapeutics for protein misfolding diseases.  相似文献   

2.
The amyloidoses are a heterogeneous group of diseases, which are characterized by the local or systemic deposition of amyloid. At the root of these diseases are changes in protein conformation where normal innocuous proteins transform into insoluble amyloid fibrils and deposit in tissues. The amyloid fibrils of Alzheimer's disease are composed of the Abeta peptide and deposit in the form of senile plaques. Neurodegeneration surrounds the amyloid deposits, indicating that neurotoxic substances are produced during the deposition process. Whether the neurotoxic species is the amyloid fibril or a fibril precursor is a current area of active research. This review focuses on advancements made in elucidating the molecular structures of the Abeta amyloid fibril and alternate aggregation products of the Abeta peptide formed during fibrillogenesis.  相似文献   

3.
A range of disorders such as Alzheimer's disease and type II diabetes have been linked to protein misfolding and aggregation. Transthyretin is an amyloidogenic protein which is involved in familial amyloid polyneuropathy, the most common form of systemic amyloid disease. A peptide fragment of this protein, TTR105-115, has been shown to form well-defined amyloid fibrils in vitro. In this study, the stability of amyloid fibrils towards high hydrostatic pressure has been investigated by Fourier transform infrared spectroscopy. Information on the morphology of the species exposed to high hydrostatic pressure was obtained by atomic force microscopy. The species formed early in the aggregation process were found to be dissociated by relatively low hydrostatic pressure (220 MPa), whereas mature fibrils are pressure insensitive up to 1.3 GPa. The pressure stability of the mature fibrils is consistent with a fibril structure in which there is an extensive hydrogen bond network in a tightly packed environment from which water is excluded. The fact that early aggregates can be dissociated by low pressure suggests, however, that hydrophobic and electrostatic interactions are the dominant factors stabilizing the species formed in the early stages of fibril formation.  相似文献   

4.
Halophilic proteins are characterized by high net negative charges and relatively small fraction of hydrophobic amino acids, rendering them aggregation resistant. These properties are also shared by histidine‐rich metal binding protein (HP) from moderate halophile, Chromohalobacter salexigens, used in this study. Here, we examined how halophilic proteins form amyloid fibrils in vitro. His‐tagged HP, incubated at pH 2.0 and 58°C, readily formed amyloid fibrils, as observed by thioflavin fluorescence, CD spectra, and transmission or atomic force microscopies. Under these low‐pH harsh conditions, however, His‐HP was promptly hydrolyzed to smaller peptides most likely responsible for rapid formation of amyloid fibril. Three major acid‐hydrolyzed peptides were isolated from fibrils and turned out to readily form fibrils. The synthetic peptides predicted to form fibrils in these peptide sequences by Waltz software also formed fibrils. Amyloid fibril was also readily formed from full‐length His‐HP when incubated with 10–20% 2,2,2‐trifluoroethanol at pH 7.8 and 25°C without peptide bond cleavage.  相似文献   

5.
Heat shock protein 10 (hsp10) is a member of the molecular chaperones and works with hsp60 in mediating various protein folding reactions. GroES is a representative protein of hsp10 from Escherichia coli. Recently, we found that GroES formed a typical amyloid fibril from a guanidine hydrochloride (Gdn-HCl) unfolded state at neutral pH. Here, we report that other hsp10 homologues, such as human hsp10 (Hhsp10), rat mitochondrial hsp10 (Rhsp10), Gp31 from T4 phage, and hsp10 from the hyperthermophilic bacteria Thermotoga maritima, also form amyloid fibrils from an unfolded state. Interestingly, whereas GroES formed fibrils from either the Gdn-HCl unfolded state (at neutral pH) or the acidic unfolded state (at pH 2.0-3.0), Hhsp10, Rhsp10, and Gp31 formed fibrils from only the acidic unfolded state. Core peptide regions of these protein fibrils were determined by proteolysis treatment followed by a combination of Edman degradation and mass spectroscopy analyses of the protease-resistant peptides. The core peptides of GroES fibrils were identical for fibrils formed from the Gdn-HCl unfolded state and those formed from the acidic unfolded state. However, a peptide with a different sequence was isolated from fibrils of Hhsp10 and Rhsp10. With the use of synthesized peptides of the determined core regions, it was also confirmed that the identified regions were capable of fibril formation. These findings suggested that GroES homologues formed typical amyloid fibrils under acidic unfolding conditions but that the fibril core structures were different, perhaps owing to differences in local amino acid sequences.  相似文献   

6.
beta-Amyloid protein (beta-A/4) is the major protein component of Alzheimer disease-related senile plaques and has been postulated to be a significant contributing factor in the onset and/or progression of the disease. In the senile plaque, beta-A/4 appears as bundles of amyloid fibrils. The biological activity of beta-A/4 may be related to its state of aggregation. In this work, self-assembly, fibril formation, and interfibrillary aggregation of beta(1-28), a synthetic peptide homologous with the amino-terminal fragment of beta-A/4, were investigated. The predominant form of beta(1-28) detected by size-exclusion chromatography and polyacrylamide gel electrophoresis was apparently a tetramer which does not bind Congo red. Aggregates containing cross-beta sheet structures which bind Congo red and thioflavin T were observed at concentrations of approximately 0.3 mg/ml or greater. Concentrations of 0.5-1 mg/ml were necessary for aggregation into fibrils to be detectable by classical or quasielastic light scattering. Both fibril elongation and fibril-fibril aggregation occur over the time scale investigated. The kinetics of aggregation were much faster at physiological salt concentrations than at lower ionic strength. Ionic strength also appeared to influence the morphology of the fibril aggregates. The data indicate that sample preparation method and sample history influence fibril size and number density.  相似文献   

7.
Abstract: The serine protease inhibitor α1-antichymotrypsin (ACT) consistently colocalizes with amyloid deposits of Alzheimer's disease (AD) and may contribute to the generation of amyloid proteins and/or physically affect fibril assembly. AD amyloid fibrils are composed primarily of Aβ, which is a proteolytic fragment of the larger β-amyloid precursor protein. Using negative-stain and immunochemical electron microscopy, we have investigated the binding of ACT to the fibrils formed by four synthetic Aβ analogues corresponding to the wild-type human 1–40 sequence [HWt(1–40)], a 1–40 peptide [HDu(1–40)] containing the Glu22→ Gln mutation found in hereditary cerebral hemorrhage with amyloidosis of the Dutch type, the N-terminal 1–28 residues [β(1–28)], and an internal fragment of Aβ containing residues 11–28 [β(11–28)]. Each of these peptide analogues assembled into 70–90-Å-diameter fibrils resembling native amyloid and, except for β(11–28), bound ACT, as indicated by the appearance of 80–100-Å globular particles that adhered to preformed fibrils and that could be decorated with anti-ACT antibodies. Under the conditions used, ACT binding destabilized the in vitro fibrils and produced a gradual dissolution of the macromolecular assemblies into constituent filaments and shorter fragments. The internal fragment (11–28) did not exhibit ACT binding or any structural changes. These results suggest that a specific sequence likely contained within the N-terminal 10 residues of Aβ is responsible for the formation of the ACT-amyloid complex. Although the observed fibril disassembly is surprising in view of the notion that ACT contributes directly to the physical process involved in amyloid fibril formation, the induced structural changes may expose new domains in Aβ for additional proteolysis or for interactions with cell-surface receptors.  相似文献   

8.
Amyloid fibrils characterize a diverse group of human diseases that includes Alzheimer's disease, Creutzfeldt-Jakob and type II diabetes. Alzheimer's amyloid fibrils consist of amyloid-β (Aβ) peptide and occur in a range of structurally different fibril morphologies. The structural characteristics of 12 single Aβ(1-40) amyloid fibrils, all formed under the same solution conditions, were determined by electron cryo-microscopy and three-dimensional reconstruction. The majority of analyzed fibrils form a range of morphologies that show almost continuously altering structural properties. The observed fibril polymorphism implies that amyloid formation can lead, for the same polypeptide sequence, to many different patterns of inter- or intra-residue interactions. This property differs significantly from native, monomeric protein folding reactions that produce, for one protein sequence, only one ordered conformation and only one set of inter-residue interactions.  相似文献   

9.
The ABri is a 34 residue peptide that is the major component of amyloid deposits in familial British dementia. In the amyloid deposits, the ABri peptide adopts aggregated beta-pleated sheet structures, similar to those formed by the Abeta peptide of Alzheimer's disease and other amyloid forming proteins. As a first step toward elucidating the molecular mechanisms of the beta-amyloidosis, we explored the ability of the environmental variables (pH and peptide concentration) to promote beta-sheet fibril structures for synthetic ABri peptides. The secondary structures and fibril morphology were characterized in parallel using circular dichroism, atomic force microscopy, negative stain electron microscopy, Congo red, and thioflavin-T fluorescence spectroscopic techniques. As seen with other amyloid proteins, the ABri fibrils had characteristic binding with Congo red and thioflavin-T, and the relative amounts of beta-sheet and amyloid fibril-like structures are influenced strongly by pH. In the acidic pH range 3.1-4.3, the ABri peptide adopts almost exclusively random structure and a predominantly monomeric aggregation state, on the basis of analytical ultracentrifugation measurements. At neutral pH, 7.1-7.3, the ABri peptide had limited solubility and produced spherical and amorphous aggregates with predominantly beta-sheet secondary structure, whereas at slightly acidic pH, 4.9, spherical aggregates, intermediate-sized protofibrils, and larger-sized mature amyloid fibrils were detected by atomic force microscopy. With aging at pH 4.9, the protofibrils underwent further association and eventually formed mature fibrils. The presence of small amounts of aggregated peptide material or seeds encourage fibril formation at neutral pH, suggesting that generation of such seeds in vivo could promote amyloid formation. At slightly basic pH, 9.0, scrambling of the Cys5-Cys22 disulfide bond occurred, which could lead to the formation of covalently linked aggregates. The presence of the protofibrils and the enhanced aggregation at slightly acidic pH is consistent with the behavior of other amyloid-forming proteins, which supports the premise that a common mechanism may be involved in protein misfolding and beta-amyloidosis.  相似文献   

10.
The specific functional structure of natural proteins is determined by the way in which amino acids are sequentially connected in the polypeptide. The tight sequence/structure relationship governing protein folding does not seem to apply to amyloid fibril formation because many proteins without any sequence relationship have been shown to assemble into very similar β-sheet-enriched structures. Here, we have characterized the aggregation kinetics, seeding ability, morphology, conformation, stability, and toxicity of amyloid fibrils formed by a 20-residue domain of the islet amyloid polypeptide (IAPP), as well as of a backward and scrambled version of this peptide. The three IAPP peptides readily aggregate into ordered, β-sheet-enriched, amyloid-like fibrils. However, the mechanism of formation and the structural and functional properties of aggregates formed from these three peptides are different in such a way that they do not cross-seed each other despite sharing a common amino acid composition. The results confirm that, as for globular proteins, highly specific polypeptide sequential traits govern the assembly pathway, final fine structure, and cytotoxic properties of amyloid conformations.  相似文献   

11.
Parmar AS  Nunes AM  Baum J  Brodsky B 《Biopolymers》2012,97(10):795-806
Type XXV collagen, or collagen‐like amyloidogenic component, is a component of amyloid plaques, and recent studies suggest this collagen affects amyloid fibril elongation and has a genetic association with Alzheimer's disease. The relationship between the collagen triple helix and amyloid fibrils was investigated by studying peptide models, including a very stable triple helical peptide (Pro‐Hyp‐Gly)10, an amyloidogenic peptide GNNQQNY, and a hybrid peptide where the GNNQQNY sequence was incorporated between (GPO)n domains. Circular dichroism and nuclear magnetic resonance (NMR) spectroscopy showed the GNNQQNY peptide formed a random coil structure, whereas the hybrid peptide contained a central disordered GNNQQNY region transitioning to triple‐helical ends. Light scattering confirmed the GNNQQNY peptide had a high propensity to form amyloid fibrils, whereas amyloidogenesis was delayed in the hybrid peptide. NMR data suggested the triple‐helix constraints on the GNNQQNY sequence within the hybrid peptide may disfavor the conformational change necessary for aggregation. Independent addition of a triple‐helical peptide to the GNNQQNY peptide under aggregating conditions delayed nucleation and amyloid fibril growth. The inhibition of amyloid nucleation depended on the Gly‐Xaa‐Yaa sequence and required the triple‐helix conformation. The inhibitory effect of the collagen triple‐helix on an amyloidogenic sequence, when in the same molecule or when added separately, suggests Type XXV collagen, and possibly other collagens, may play a role in regulating amyloid fibril formation. © 2012 Wiley Periodicals, Inc. Biopolymers 97: 795–806, 2012.  相似文献   

12.
Deposits of amyloid fibrils characterize a diverse group of human diseases that includes Alzheimer disease, Creutzfeldt-Jakob disease and type II diabetes. Amyloid fibrils formed from different polypeptides contain a common cross-β spine. Nevertheless, amyloid fibrils formed from the same polypeptide can occur in a range of structurally different morphologies. The heterogeneity of amyloid fibrils reflects different types of polymorphism: (1) variations in the protofilament number, (2) variations in the protofilament arrangement and (3) different polypeptide conformations. Amyloid fibril polymorphism implies that fibril formation can lead, for the same polypeptide sequence, to many different patterns of inter- or intra-residue interactions. This property differs significantly from native, monomeric protein folding reactions that produce, for one protein sequence, only one ordered conformation and only one set of inter-residue interactions.Key words: Alzheimer disease, aggregation, neurodegeneration, prion, protein folding  相似文献   

13.
Konno T 《Biochemistry》2001,40(7):2148-2154
Amyloid-induced aggregation and precipitation of soluble proteins were investigated in vitro using the amyloid fibrils of the beta(25--35) peptide, a cytotoxic fragment of the Alzheimer's beta-peptide at positions 25--35. The aggregation rate of firefly luciferase was found to be modulated by both a chaperone molecule DnaK and the beta(25--35) amyloid, but their effects were opposite in direction. The amyloid fibril drastically facilitated the luciferase aggregation, which may define a kind of anti-chaperone activity. The effect of the beta(25--35) amyloid to promote protein aggregation and precipitation was further demonstrated for a wide variety of target proteins. The amount of coprecipitation was well correlated with the predicted isoelectric point of the target proteins, indicating that the interaction between the beta(25--35) amyloid and the target was driven by an electrostatic force between them. This view was confirmed by the experiments using an electrically neutral mutant peptide, beta(25--35)KA. It was also found that clustering of the beta(25--35) peptide to form amyloid and the conformation of the target protein are additional factors that determine the strength of the amyloid-protein interaction. Spectroscopic and electron microscopic methods have revealed that the proteins coprecipitated with the beta(25--35) amyloid formed amorphous aggregates deposited together with the amyloid fibrils. The conformation of protein molecules left in the residual soluble fraction was also damaged in the amyloid-containing solution. As a summary, this study has proposed a scheme for events related to the nonspecific amyloid-protein interaction, which may play substantial roles in in vivo conditions.  相似文献   

14.
The molecular basis of fibril formation in Alzheimers disease was explored by electron micrographic and x-ray diffraction analysis of a series of synthetic peptides corresponding to portions of the amino acid sequence of beta protein and that of its putative precursor. A minimum 14 residue peptide was identified that formed typical amyloid fibrils under physiological conditions. Of these 14 residues, 10 were sufficient to give an identical 4.76 A and 10.6 A diffraction pattern as that recently described for isolated neurofibrillary tangles, amyloid plaque cores and leptomeningeal amyloid fibrils.  相似文献   

15.
Nilsson MR  Dobson CM 《Biochemistry》2003,42(2):375-382
Lactoferrin has previously been identified in amyloid deposits in the cornea, seminal vesicles, and brain. We report in this paper a highly amyloidogenic region of lactoferrin (sequence of NAGDVAFV). This region was initially identified by sequence comparison with medin, a 5.5 kDa amyloidogenic fragment derived from lactadherin. Subsequent characterization revealed that this peptide forms amyloid fibrils at pH 7.4 when incubated at 37 degrees C. Furthermore, although full-length lactoferrin does not by itself form amyloid fibrils, the protein does bind to the peptide fibrils as revealed by an increase in thioflavin T fluorescence and the presence of enlarged fibrils by transmission electron microscopy and polarized light microscopy. The binding of lactoferrin is a selective interaction with the NAGDVAFV fibrils. Lactoferrin does not bind to insulin or lysozyme fibrils, and the NAGDVAFV fibrils do not bind to soluble insulin or lysozyme. The lactoferrin appears to coat the peptide fibril surface to form mixed peptide/protein fibrils, but again there is no evidence for the formation of lactoferrin-only fibrils. This interaction, therefore, seems to involve selective binding rather than conventional seeding of fibril formation. We suggest that such a process could be generally important in the formation of amyloid fibrils in vivo since the identification of both full-length protein and protein fragments is common in ex vivo amyloid deposits.  相似文献   

16.
Ecroyd H  Carver JA 《IUBMB life》2008,60(12):769-774
This mini-review focuses on the processes and consequences of protein folding and misfolding. The latter process often leads to protein aggregation and precipitation with the aggregates adopting either highly ordered (amyloid fibril) or disordered (amorphous) forms. In particular, the amyloid fibril is discussed because this form has gained considerable notoriety due to its close links to a variety of debilitating diseases including Alzheimer's, Parkinson's, Huntington's, and Creutzfeldt-Jakob diseases, and type-II diabetes. In each of these diseases a different protein forms fibrils, yet the fibrils formed have a very similar structure. The mechanism by which fibrils form, fibril structure, and the cytotoxicity associated with fibril formation are discussed. The generic nature of amyloid fibril structure suggests that a common target may be accessible to treat amyloid fibril-associated diseases. As such, the ability of some molecules, for example, the small heat-shock family of molecular chaperone proteins, to inhibit fibril formation is of interest due to their therapeutic potential.  相似文献   

17.
Protein material was extracted from amyloid-rich sections of formalin-fixed and paraffin-embedded heart tissue from an individual with senile systemic amyloidosis, known to contain wild-type transthyretin as major amyloid fibril protein. Amino acid sequence analysis of tryptic peptides of this material revealed in addition to transthyretin sequences, also amino acid sequence corresponding to an N-terminal fragment of apolipoprotein A-IV. In immunohistochemistry, an antiserum to a synthetic apolipoprotein A-IV peptide labeled amyloid specifically. This peptide formed spontaneously amyloid-like fibrils in vitro and enhanced fibril formation from wild-type transthyretin. We conclude that several apolipoproteins, including apolipoprotein A-IV, may be important minor amyloid constituents, promoting fibril formation.  相似文献   

18.
BACKGROUND: Conformational alteration and fibril formation of proteins have a key role in a variety of amyloid diseases. A simplified model peptide would lead to a better understanding of underlying mechanisms whereby protein misfolding and aggregation occur. Recently, we reported the design of peptides that undergo a self-initiated structural transition from an alpha helix to a beta sheet and form amyloid fibrils. In this study, we focus on two glutamine residues in the peptide, and report a mutational analysis of these residues. RESULTS: A coiled-coil alpha-helix structure bearing a hydrophobic adamantanecarbonyl (Ad) group at the N terminus was designed (parent peptide Ad-QQ). In neutral aqueous solution, the double Gln-->Ala mutant (Ad-AA) underwent the alpha-->beta structural transition within four hours, which was similar to the case of Ad-QQ. In contrast, two kinds of single Gln-->Ala mutant (Ad-QA and Ad-AQ) required three days for the transition. Furthermore, Ad-QQ and Ad-AA formed amyloid fibrils, whereas Ad-QA and Ad-AQ did not. Interestingly, however, Ad-QA and Ad-AQ complementarily assembled into the fibrils when they were mixed. CONCLUSIONS: The Gln-->Ala substitution in the peptide significantly alters the alpha-->beta transitional properties and the ability to form amyloid fibrils. A heterogeneous assembly of two peptide species into the fibrils is also presented. These results suggest that the secondary structural transition and self-assembly into the well-organized fibril may depend strictly on the primary structure, which determines the beta-sheet packing. The results might provide insights into misfolding and fibril formation of disease-associated mutant proteins.  相似文献   

19.
Atomic force microscopy has been employed to investigate the structural organization of amyloid fibrils produced in vitro from three very different polypeptide sequences. The systems investigated are a 10-residue peptide derived from the sequence of transthyretin, the 90-residue SH3 domain of bovine phosphatidylinositol-3'-kinase, and human wild-type lysozyme, a 130-residue protein containing four disulfide bridges. The results demonstrate distinct similarities between the structures formed by the different classes of fibrils despite the contrasting nature of the polypeptide species involved. SH3 and lysozyme fibrils consist typically of four protofilaments, exhibiting a left-handed twist along the fibril axis. The substructure of TTR(10-19) fibrils is not resolved by atomic force microscopy and their uniform appearance is suggestive of a regular self-association of very thin filaments. We propose that the exact number and orientation of protofilaments within amyloid fibrils is dictated by packing of the regions of the polypeptide chains that are not directly involved in formation of the cross-beta core of the fibrils. The results obtained for these proteins, none of which is directly associated with any human disease, are closely similar to those of disease-related amyloid fibrils, supporting the concept that amyloid is a generic structure of polypeptide chains. The detailed architecture of an individual fibril, however, depends on the manner in which the protofilaments assemble into the fibrillar structure, which in turn is dependent on the sequence of the polypeptide and the conditions under which the fibril is formed.  相似文献   

20.
To model the possible involvement of sulfated proteoglycans in amyloidogenesis, we examined the influence of sulfate ions, heparan, and Congo red on the conformation and morphology of peptides derived from the Alzheimer beta/A4 amyloid protein. The peptides included residues 11-28, 13-28, 15-28, and 11-25 of beta/A4. Negative-stain electron microscopy revealed a sulfate-specific tendency of the preformed peptide fibrillar assemblies of beta(11-28), beta(13-28), and beta(11-25), but not beta(15-28), to undergo extensive lateral aggregation and axial growth into "macrofibers" that were approximately 0.1-0.2 micron wide by approximately 20-30 microns long. Such effects were observed at low sulfate concentrations (e.g., 5-50 mM) and could not be reproduced under comparable conditions with Na2HPO4, Na2SeO4, or NaCl. Macrofibers in NaCl were only observed at 1,000 mM. At physiological ionic strength of NaCl, fibril aggregation was observed only with addition of sulfate ions at 5-50 mM. Selenate ions, by contrast with sulfate ions, induced only axial and not substantial lateral aggregation of fibrils. X-ray diffraction indicated that the original cross-beta peptide conformation remained unchanged; however, sulfate binding did produce an intense approximately 65 A meridional reflection not recorded with control peptides. This new reflection probably arises from the periodic deposition of the electron-dense sulfate along the (long) axis of the fibril. The sulfate binding could provide sites for the binding of additional fibrils that generate the observed lateral and axial aggregation. The binding of heparan to beta(11-28) also produced extensive aggregation, suggesting that in vivo sulfated compounds can promote macrofibers. The amyloid-specific, sulfonated dye Congo red, even in the presence of sulfate ions, produced limited aggregation and reduced axial growth of the fibrils. Therefore, electrostatic interactions are important in the binding of exogenous compounds to amyloid fibrils. Our findings suggest that the sulfate moieties of certain molecules, such as glycosaminoglycans, may affect the aggregation and deposition of amyloid fibrils that are observed as extensive deposits in senile plaques and cerebrovascular amyloid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号