首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 959 毫秒
1.
《Aquatic Botany》2003,77(2):99-110
Between 1996 and 1998 phytoplanktonic primary production and bacterioplankton production were measured monthly at five sampling stations in the lower Kis-Balaton reservoir. The open water area of the reservoir was rich in phytoplankton and had hypertrophic characteristics, but inside the reed stand (80% of the surface area) phytoplankton biomass and production were substantially (30–50 times) lower. The algal removal efficiency of the lower Kis-Balaton reservoir was 96%. The reservoir had a considerably smaller effect on bacterioplankton removal than on the phytoplankton. The decrease of biomass and production of bacterioplankton in the through-flowing water was approximately 60%. Inside the reed stand the biomass and the production of planktonic bacteria exceeded that of the phytoplankton by several times, suggesting that the release of biodegradable dissolved organic (humic) substances from macrophytes stimulated the metabolism of bacterioplankton. The significant reduction of phytoplankton inside the dense reed stand was primarily the result of the shading effect of the reeds. In the open water area a shading experiment demonstrated that a 1-week residence period for planktonic algae in the reed-covered area was sufficient for their complete elimination. The decomposition of planktonic algae, reed material and the lack of primary production inside the reed stand created oxygen-deficient and phosphorus-rich conditions during the vegetative period. These results suggest that reed-covered water bodies can effectively retain suspended solids and planktonic algae, but because of decomposition processes they cannot retain biologically-available phosphorus.  相似文献   

2.
Shifts in bacterioplankton community composition along the salinity gradient of the Parker River estuary and Plum Island Sound, in northeastern Massachusetts, were related to residence time and bacterial community doubling time in spring, summer, and fall seasons. Bacterial community composition was characterized with denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S ribosomal DNA. Average community doubling time was calculated from bacterial production ([14C]leucine incorporation) and bacterial abundance (direct counts). Freshwater and marine populations advected into the estuary represented a large fraction of the bacterioplankton community in all seasons. However, a unique estuarine community formed at intermediate salinities in summer and fall, when average doubling time was much shorter than water residence time, but not in spring, when doubling time was similar to residence time. Sequencing of DNA in DGGE bands demonstrated that most bands represented single phylotypes and that matching bands from different samples represented identical phylotypes. Most river and coastal ocean bacterioplankton were members of common freshwater and marine phylogenetic clusters within the phyla Proteobacteria, Bacteroidetes, and Actinobacteria. Estuarine bacterioplankton also belonged to these phyla but were related to clones and isolates from several different environments, including marine water columns, freshwater sediments, and soil.  相似文献   

3.
SUMMARY. 1. The population densities, dynamics and production of Daphnia hyalina and Bosmina longirostris were studied over a 2-year period in a shallow eutrophic reservoir in eastern England. The diet of the two species was assessed and their ecology was compared in relation to environmental factors. 2. Daphnia hyalina was characterized by small overall body size, probably due to heavy size-selective predation by fish. The first generation produced from the overwintering population appeared in April and Depopulation peaked in late spring and early summer. Adult survival was poor. Peak egg production varied between years, while mean brood size fell in summer probably due to food limitation during the cyanobacterial bloom. At this time selection for individual algal species was high and many guts were empty. Reproductive ratios were inversely related to population density. Bosmina longirostris exhibited a similar annual cycle. 3. Patterns of production were very different in the 2 years in D. hyalina. In 1981 production was high from August to early October, but in 1982 the peak was in spring. Annual production was 32.4 g C m?2 in 1981 and 13.3 g C m?2 in 1982. In 1981 B. longirostris production peaked in spring and late summer; in 1982 there was a high production in summer only. Annual production was 3.2 g C m?2 in 1981 and 2.2 g Cm?2 in 1982. 4. The number of adult D. hyalina was highly correlated with water temperature and total phytoplankton biomass, but these were negatively correlated with the number of eggs, mean brood size and instantaneous birth rate. In contrast, clutch size of B. longirostris was positively correlated with water temperature while birth rate was positively correlated with both temperature and phytoplankton biomass. The biomass of both species was positively related to total phytoplankton biomass, but neither relationship explained much of the variation in zooplankton biomass. 5. The significance of the observations on plankton in terms of managing the water quality in eutrophic reservoirs is discussed.  相似文献   

4.
Light, nutrients, temperature, pH, and salinity are important factors in controlling the growth of phytoplankton and bacterioplankton. Supply of key nutrients to these communities can result in mutualistic or competitive relationships between bacterioplankton and phytoplankton. In this study, we investigated growth and uptake of nutrients by the marine prasinophyte flagellate Tetraselmis chui (strain PLY429) in the presence and absence of a community of bacterioplankton at two pH levels. Growth of PLY429 and total nutrient uptake were calculated for each treatment. The addition of bacterioplankton resulted in lower growth rates of PLY429, but the removal of ammonium was greater in those cultures with bacterioplankton present. The division rate of PLY429 was affected by pH; however, pH changes did not result in different uptake rates of nitrate, ammonium, or phosphate by the mixed algal and bacterial assemblage. These findings suggest that bacterioplankton and phytoplankton were competing for ammonium and that a lower pH resulted in more rapid algal growth. Mention of a trade name does not imply endorsement by the National Marine Fisheries Service.  相似文献   

5.
Spatial and temporal variation in phytoplankton community structure within a large flood-control reservoir (Sardis Reservoir, MS, USA) was investigated in relation to variation in physicochemical properties, location within the reservoir, hydraulic residence time (HRT), nutrient concentrations, temperature, and light conditions over a 14-month period. During periods of short HRT, phytoplankton communities throughout the reservoir were homogeneous in biomass, composition, and production. With a gradual increase in HRT from spring to summer, spatially heterogeneous phytoplankton communities developed along the longitudinal axis of the reservoir. During this period of longer HRT, diatoms and chlorophytes were a larger proportion of total phytoplankton biomass at shallow and more turbid locations near the head of the reservoir, whereas cyanobacteria were a larger proportion of the community at deeper and less turbid locations closer to the outflow. Seasonal succession of the phytoplankton community was represented by high abundance of diatoms in spring, increasing biomass of cyanobacteria through summer, and a secondary bloom of diatoms in fall. Species of Cyclotella, Asterionella, Nitzschia, and Ankistrodesmus were among the first colonizers in the early growing season, closely followed by Aulacoseira, whereas species of Staurastrum and Tetraedron appeared later in the spring. Species of Synedra, Crucigenia, Selenastrum, Scenedesmus, and Merismopedia occurred throughout the sampling period. As the diatoms started to decrease during mid-spring, cryptophytes increased, prior to dominance of species of Pseudanabaena in summer. Reservoir management of HRT, in combination with spatial variation in reservoir morphology and seasonal variation in temperature and riverine nutrient inputs, creates seasonally variable yet distinct spatial patterns in phytoplankton community biomass, composition, and production. Handling editor: L. Naselli-Flores  相似文献   

6.
Heo  Woo-Myung  Kim  Bomchul 《Hydrobiologia》2004,524(1):229-239
The effects of artificial destratification on limnological conditions and on phytoplankton were surveyed for 6 years (1995-2000) in Lake Dalbang (South Korea), a water supply reservoir receiving nutrients from agricultural non-point sources. In order to reduce odor problems caused by cyanobacterial blooms, six aerators were installed in 1996 and operated regularly during the warm season. Aeration destratified the water column of the reservoir and produced homogeneous physical and chemical parameters. The maximum surface temperature in summer decreased from 28.9 °C before aeration to 20.0-26.4 °C after aeration, whereas the maximum hypolimnetic temperature increased from 8.0 to 17.0-23.7 °C. Despite these changes, surface water concentrations of total phosphorus (TP) and chlorophyll a(CHLA) and their seasonal patterns did not change with destratification. Phosphorus loading was concentrated in heavy rain events during the summer monsoon, and TP and CHLA reached maximal concentrations in late summer after the monsoon. Because the hypolimnion was never anoxic prior to aeration, internal loading did not seem to be substantial. Cyanobacteria were the dominant phytoplankton in summer before aeration, but diatoms replaced them after operation of the aerator. Cyanobacteria blooms were eliminated. In contrast, total algal biomass in the water column (as CHLA integrated over depth) increased from 190 mg m–2 in 1995 to 1150, 300, 170, and 355 mg m–2 in 1997, 1998, 1999, and 2000, respectively. The increased ratio of mixing depth to euphotic depth to 2.5 may have resulted in a net reduction in the amount of underwater irradiance experienced by phytoplankton cells, and this may have favored the switch to diatom dominance. Furthermore, the mixing may have allowed diatoms to flourish in summer by lowering their settling loss that would be critical in stratified water columns. In conclusion, the destratification in this reservoir was effective in preventing cyanobacteria blooms, but not in reducing the total algal standing crop.  相似文献   

7.
Shifts in bacterioplankton community composition along the salinity gradient of the Parker River estuary and Plum Island Sound, in northeastern Massachusetts, were related to residence time and bacterial community doubling time in spring, summer, and fall seasons. Bacterial community composition was characterized with denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S ribosomal DNA. Average community doubling time was calculated from bacterial production ([(14)C]leucine incorporation) and bacterial abundance (direct counts). Freshwater and marine populations advected into the estuary represented a large fraction of the bacterioplankton community in all seasons. However, a unique estuarine community formed at intermediate salinities in summer and fall, when average doubling time was much shorter than water residence time, but not in spring, when doubling time was similar to residence time. Sequencing of DNA in DGGE bands demonstrated that most bands represented single phylotypes and that matching bands from different samples represented identical phylotypes. Most river and coastal ocean bacterioplankton were members of common freshwater and marine phylogenetic clusters within the phyla Proteobacteria, Bacteroidetes, and ACTINOBACTERIA: Estuarine bacterioplankton also belonged to these phyla but were related to clones and isolates from several different environments, including marine water columns, freshwater sediments, and soil.  相似文献   

8.
During the late winter and spring of 1994, the influence of sea ice on phytoplankton succession in the water was studied at a coastal station in the northern Baltic Sea. Ice cores were taken together with water samples from the underlying water and analysed for algal composition, chlorophyll a and nutrients. Sediment traps were placed under the ice and near the bottom, and the sedimented material was analysed for algal composition. The highest concentration of ice algae (4.1 mmol C m−2) was found shortly before ice break-up in the middle of April, coincidental with the onset of an under-ice phytoplankton bloom. The ice algae were dominated by the diatoms Chaetoceros wighamii Brightwell, Melosira arctica (Ehrenberg) Dickie and Nitzschia frigida Grunow. Under the ice the diatom Achnanthes taeniata Grunow and the dinoflagellate Peridiniella catenata (Levander) Balech were dominant. Calculations of sinking rates and residence times of the dominant ice algal species in the photic water column indicated that only one ice algal species (Chaetoceros wighamii) had a seeding effect on the water column: this diatom dominated the spring phytoplankton bloom in the water together with Achnanthes taeniata and Peridiniella catenata. Received: 9 May 1997 / Accepted: 15 February 1998  相似文献   

9.
Reservoirs typically exhibit a gradient along their longitudinal axis in turbidity, nutrient flux, and algal biomass. We utilized these characteristics to examine factors influencing temporal and spatial patterns in abundance, biomass, composition, and production of epilimnetic autotrophic picoplankton (APP) in Sardis Reservoir, Mississippi, USA. Over a 18-month period, APP abundance varied between about 15,000 and 700,000 cells ml−1. Both APP abundance and APP biomass were closely linked to APP production and temperature. On an annual basis, the contribution of APP to total algal biomass and light-standardized production ranged between 15–47%, and 5–40%, respectively. Prokaryotes comprised more than 95% of all APP in summer, but eukaryotes dominated the APP community in winter. During the nutrient-depleted summer period, APP decreased in number but tended to increase in the percentage of total algal biomass and production, from the uplake riverine zone to the downlake lacustrine zone. Only in the second year of the study, when reservoir water residence time was more than four times greater than in the first year, were there significant differences in biomass and productivity of APP between the uplake and downlake regions. We suggest that, particularly in years or at times of the year when water-flow through the reservoir is slow, the importance of APP in Sardis Reservoir reflects a spatial and temporal gradient in nutrient availability.  相似文献   

10.
Planktonic food chains of a highly humic lake   总被引:4,自引:4,他引:0  
The development and metabolism of the plankton of a highly humic lake were followed over the vernal primary production maximum. The study was made in a mesocosm in which large filter feeders, typical of this lake in summer, were absent. During the rising phase of phytoplankton, the community was predominantly autotrophic. The most important constituents in the algal biomass were a dinoflagellate, Gymnodinium sp. (40–50%), and a prasinophycean, Scourfieldia cordiformis (7%). The biomasses of Chlamydomonas spp. and Chrysococcus spp. reached their maxima a few days later and Cryptomonas sp. became most abundant at the end of the experiment. After the phytoplankton maximum, about one week from the beginning ofthe experiment, grazing of algae by phagotrophic protozoans and phosphate depletion led to a rapid decrease of algal biomass and the community became predominantly heterotrophic. In spite of a large variation in algal biomass and primary production, the biomass of bacteria remained of the same order of magnitude as in algae both before and after the algal maximum. Bacteria were mostly responsible for the plankton respiration, which also showed no dependence on primary production. Since exudation by phytoplankton was also low, the nutrition of bacterioplankton was probably mainly based on allochthonous dissolved organic matter rather than or primary production. Thus the production of bacteria was an additional food source for higher trophic levels along with phytoplankton. Because filter feeding zooplankton was absent in the experiment, protozoans were the only grazers utilizing algae and bacteria. Essentially all growth of bacteria was used by bacterivores.  相似文献   

11.
We assessed if the qualitative and quantitative aspects of plankton composition in reservoirs of the middle Missouri River were influenced by hydrologic variability. Phytoplankton and zooplankton communities in six reservoirs of this highly regulated system were sampled between 2004 and 2011 during historic drought, subsequent recovery, and a 100-year flood event. The reservoir system encompasses a broad latitudinal gradient of decreasing depth, decreasing water residence time and increasing trophic state. Phytoplankton communities of the upper three reservoirs were co-dominated by planktonic and meroplanktonic diatoms during the drought, recovery, and flood periods, but the proportion of more silicified meroplanktonic diatoms increased in the lower three reservoirs as water residence time decreased. Peak phytoplankton biovolume usually occurred during spring/early summer and was associated with increased hydrologic inflows and outflows. Zooplankton biomass of the reservoir system was dominated by Daphnia spp., but all zooplankton groups decreased as inflows and outflows accelerated during the recovery and flood periods. Rotifer abundances were higher under turbulent conditions associated with dam operations. Canonical correlation analyses suggested that temperature, water residence time, station depth, and water clarity explained more variance in the structures of phytoplankton and zooplankton communities than bioavailable nutrient parameters.  相似文献   

12.
Holopainen  A-L.  Huttunen  P. 《Hydrobiologia》1992,(1):457-464
As a part of the larger Nurmes research project, we studied the effects of clear-cutting and soil disturbance (ditching, ploughing, mounding) on the biology of small forest brooks. After these forestry activities, incoming light, temperature, and nutrient content of the water increased significantly. Mean algal biomass peaked during the first summer after clear-cutting. During the first year following soil disturbance, algal biomass initially decreased because of turbidity, but began to rise again as suspended solids in the water decreased in the summer months. Species composition changed, too; after clear-cutting, Cryptomonas and Chlamydomonas species increased their densities (48% of the algal biomass) and following soil disturbance, the species numbers and densities of Conjugatophyceae (52% of the algal biomass) were higher than before. Canonical correspondence analysis suggested that increased nutrient levels and acidity were the main factors behind the changes in the flora following clear-cutting. The most important effect of soil disturbance was the increased water temperature. Effects of forest clear-cutting on algal productivity in the brooks remain evident at least for three years and those of soil disturbance for an even longer period. Restricted clear-cutting, with a protective zone left uncut around the brooks, appears to reduce the effects.  相似文献   

13.
Physical, chemical, and biological characteristics of the Kentucky River and its tributaries were assessed for one year to compare effects of seasonal, spatial, and human environmental factors on phytoplankton. Phytoplankton cell densities were highest in the fall and summer and lowest in the winter. Cell densities averaged 1162 (± 289 SE) cells m1–1. Cell densities were positively correlated to water temperature and negatively correlated to dissolved oxygen concentration and to factors associated with high-flow conditions (such as, suspended sediment concentrations). Chrysophytes, diatoms, and blue-green algae dominated winter, spring, and summer assemblages, respectively. Ordination analyses (DCCA) indicated that variation in taxonomic composition of assemblages was associated with stream size as well as season.Spatial variation in phytoplankton assemblages and effects of humans was investigated by sampling 55 sites in low flow conditions during August. Phytoplankton density increased with stream size. Assemblages shifted in composition from those dominated by benthic diatoms upstream to downstream communities dominated by blue-green algae and small flagellates. Human impacts were assumed to cause higher algal densities in stream basins with high proportions of agricultural or urban land use than in basins with forested/mined land use. While density and composition of phytoplankton were positively correlated to agricultural land use, they were poorly correlated to nutrient concentrations. Phytoplankton diversity changed with water quality: decreasing with nutrient enrichment and increasing with conditions that probably changed species composition or inhibited algal growth. Human impacts on phytoplankton in running water ecosystems were as great or greater than effects by natural seasonal and spatial factors. Our results indicated that phytoplankton could be useful indicators of water quality and ecosystem integrity in large river systems.  相似文献   

14.
Factors which influence the attachment of bacterioplankton to particles (including phytoplankton) were investigated by using (i) water samples removed from a coastal temperate fjord over an annual cycle and (ii) unialgal cultures of Prorocentrum minimum, Dunaliella tertiolecta, and Skeletonema costatum. Silt and salinity levels in this fjord seawater did not appear to influence bacterial attachment, but the percent attached bacteria was inversely related to both chlorophyll a concentrations and primary productivities. During periods of high primary productivities the percent attached bacteria was low, whereas during periods of low, increasing, and declining primary productivities the percent attached bacteria was high. A similar pattern of bacterial attachment was observed when the three phytoplankton were grown as batch cultures. The percent attached bacterial numbers increased upon the initiation of algal growth and after these cells stopped growing, but not while the algae were growing. We suggest that a major factor influencing the attachment of bacterioplankton is the physiological condition of their major nutrient source, the phytoplankton; mainly free-living bacteria are associated with growing phytoplankton, whereas a much greater proportion of the bacteria are attached among senescent phytoplankton populations.  相似文献   

15.
Vrede K 《Microbial ecology》2005,49(2):245-256
Limitation of bacterioplankton production by nutrients and temperature was investigated in eight temperate lakes in summer. Six of the lakes were resampled in autumn. The lakes differ in nutrient content, water color, and concentration of dissolved organic carbon. Nutrients (phosphorus, nitrogen, and organic carbon) were added alone and in all possible combinations to filtered lake water inoculated with bacteria from the lake. After incubation for 36–40 h at in situ temperatures (ranging from 7 to 20°C), the response in bacterioplankton production was determined. The effect of increased temperature on bacterioplankton growth was also tested. Bacterioplankton production was often limited by phosphorus alone, organic carbon alone, or the two in combination. Phosphorus limitation of bacterioplankton production was more common in the summer, whereas limitation by organic carbon was more frequently observed in the autumn. There was a close balance between limitation by phosphorus and organic carbon in the epilimnion in the summer. In the hypolimnion in the summer, bacterioplankton growth was primarily phosphorus-limited. The effect of phosphorus additions decreased with increasing phosphorus concentrations in the lakes. However, there were no correlations between the effect of added organic carbon and water color, dissolved organic carbon concentration, or phosphorus concentration. When temperature was low (in the hypolimnion in the summer, and throughout the water column in the autumn) temperature also limited bacterioplankton production. Thus, temperature and inorganic nutrients or organic compounds can limit bacterioplankton growth both alone and simultaneously. However, at low temperatures, temperature is the most important factor influencing bacterioplankton growth.  相似文献   

16.
Otero Lake is the main water body of Cierva Point, Danco Coast (SSSI No. 15). During the 1992/1993 and 1994/1995 seasons, abiotic parameters and the structure and dynamics of the phytoplankton were studied. Algal assemblages from the phytoplankton, from algal clumps encased in the lake ice and from the benthic algal felt were compared. Low Jaccard similarity indices between these three assemblages suggest different survival strategies. The higher species richness of phytoplankton when studied during the whole summer also suggests that external propagule inputs can heavily influence the structure of this community. High levels of phosphate, nitrate and ammonium throughout the study periods indicate that they do not limit summer growth of the phytoplankton community. Blooms of Chlamydomonas subcaudata Wille are apparently characteristic. This group of features define Otero Lake as a highly eutrophic water body, in which outflow seems to be the main cause of phytoplankton loss during summer. Received: 23 December 1996 / Accepted: 29 August 1997  相似文献   

17.
The variation in numbers of the major planktonic algae in the surface waters of the Blue Nile and White Nile were followed for 29 months (August 1968–December 1970). In terms of biomass, the phytoplankton was dominated by diatoms and blue-green algae; other groups were of minor importance. High phytoplankton densities occurred during winter in both rivers, and during summer in the Blue Nile, with values in the latter river greater than in the former. Melosira granulata and its variety angustissima and Anabaena flos-aquae var. intermedia f. spiroides were the most important taxa in the two Niles. Melosira distans and Attheya zachariasi, which are reported for the first time in the present study, preponderated at certain times in the Blue Nile. Microcystisflos-aqua which had been a minor component of the phytoplankton in both rivers during the early 1950s, showed a profuse growth in the Blue Nile. Lyngbya limnetica, Anabaenopsis cunningtonii and A. tanganyikae, which constituted important components of the phytoplankton in the early 1950s, either disappeared or maintained themselves in reduced numbers during the present study. This change in the algal flora of the two Niles may be attributed to the construction of the Roseres dam across the Blue Nile in 1966 and to the invasion of the White Nile by Eichhornia crassipes in 1957.  相似文献   

18.
Although temperature is a key driver of bacterioplankton metabolism, the effect of ocean warming on different bacterial phylogenetic groups remains unclear. Here, we conducted monthly short‐term incubations with natural coastal bacterial communities over an annual cycle to test the effect of experimental temperature on the growth rates and carrying capacities of four phylogenetic groups: SAR11, Rhodobacteraceae, Gammaproteobacteria and Bacteroidetes. SAR11 was the most abundant group year‐round as analysed by CARD‐FISH, with maximum abundances in summer, while the other taxa peaked in spring. All groups, including SAR11, showed high temperature‐sensitivity of growth rates and/or carrying capacities in spring, under phytoplankton bloom or post‐bloom conditions. In that season, Rhodobacteraceae showed the strongest temperature response in growth rates, estimated here as activation energy (E, 1.43 eV), suggesting an advantage to outcompete other groups under warmer conditions. In summer E values were in general lower than 0.65 eV, the value predicted by the Metabolic Theory of Ecology (MTE). Contrary to MTE predictions, carrying capacity tended to increase with warming for all bacterial groups. Our analysis confirms that resource availability is key when addressing the temperature response of heterotrophic bacterioplankton. We further show that even under nutrient‐sufficient conditions, warming differentially affected distinct bacterioplankton taxa.  相似文献   

19.
The primary goal of this study was to assess the importance of food in regulating densities of zooplankton in 3 northern Canadian lakes, where algal availability was low compared to temperate zone water bodies. Collections were made every 2 weeks during the summer and monthly during the winter from April 1978 to April 1979. Since the lakes were similar in most respects, including nannoplankton density, net phytoplankton density, temperature, depth, oxygen concentration and phosphorus levels, the seasonal cycles of the main species (Keratella cochlearis, Kellicottia longispina, Polyarthra remata, Polyarthra vulgaris, Cyclops spp., Diaptomus spp.) were generally similar throughout the study area. Changes in the densities of herbivorous species were poorly correlated with fluctuations in nannoplankton and net plankton availability, implying that food did not limit development. Although predatory copepods, particularly Cyclops spp., were abundant, they also had no measurable impact on the main species. It was therefore concluded that temperature controlled the seasonal cycles and the ultimate population size of most zooplankters.  相似文献   

20.
Primary productivity, community respiration, chlorophyll a concentration, phytoplankton species composition, and environmental factors were compared in the Yolo Bypass floodplain and adjacent Sacramento River in order to determine if passage of Sacramento River through floodplain habitat enhanced the quantity and quality of phytoplankton carbon available to the aquatic food web and how primary productivity and phytoplankton species composition in these habitats were affected by environmental conditions during the flood season. Greater net primary productivity of Sacramento River water in the floodplain than the main river channel was associated with more frequent autotrophy and a higher P:R ratio, chlorophyll a concentration, and phytoplankton growth efficiency (αB). Total irradiance and water temperature in the euphotic zone were positively correlated with net primary productivity in winter and early spring but negatively correlated with net primary productivity in the late spring and early summer in the floodplain. In contrast, net primary productivity was correlated with chlorophyll a concentration and streamflow in the Sacramento River. The flood pulse cycle was important for floodplain production because it facilitated the accumulation of chlorophyll a and wide diameter diatom and green algal cells during the drain phase. High chlorophyll a concentration and diatom and green algal biomass enabled the floodplain to export 14–37% of the combined floodplain plus river load of total, diatom and green algal biomass and wide diameter cells to the estuary downstream, even though it had only 3% of the river streamflow. The study suggested the quantity and quality of riverine phytoplankton biomass available to the aquatic food web could be enhanced by passing river water through a floodplain during the flood season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号