首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
SUMMARY. 1. Unionid clams from Narrow Lake, Alberta, were collected to quantify the natural variation in growth, to assess the natural variation in abundance, age and size distribution, and growth with water depth in the lake, and to conduct in situ experiments to directly test the effects of water depth (temperature) and clam abundance on clam growth. 2. The unionid clam, Anodonta grandis simpsoniana, showed wide variation in length at a given age. There were no significant differences in growth between clams collected at 1,3, 5, and 7m depths in the lake despite marked differences in water temperature. The wide variation in clam biomass within each depth zone may have masked possible effects of water depth. 3. The effect of water depth and variation in clam density on clam growth was tested directly by stocking clams into small enclosures at densities equivalent to 50, 150, 250, 350 and 450g m-2 (live weight) at each of 1, 3, 5 and 7 m depths in Narrow Lake (each depth and abundance treatment in triplicate). A uniform sandy substrate was used in all enclosures to eliminate any possible effect of substrate type on growth. 4. Mortality was negligible (0.9%) during the experiment. Clam density had no significant effect on clam growth which suggests that clam growth was not food limited in the lake. 5. Clams reared at 7 m grew more slowly than clams reared at 1, 3 and 5 m. Clams reared at 5 m grew more slowly than clams reared at 1 and 3m. Growth of clams reared at 1 and 3m did not differ. These differences in growth were strongly correlated with the measured differences in water temperature between depths. 6. Migration between depths probably accounts for the lack of a depth effect on clams growing in the natural habitat.  相似文献   

2.
The two species of Typha common in the southeastern United States, T. latifolia and T. domingensis differ substantially in their tolerance to deep water. The objective of this study was to examine the morphology and biomass allocation of these two species to determine if they have similar phenotypic responses to water depth. Replicate monocultures of the two species were established at a range of water depths in an artificial pond and allowed to grow for three growing seasons. At the end of the experiment, subsamples were harvested for determination of plant morphology as well as above- and belowground biomass. Both species of Typha showed increases in maximum height with increasing depth. The species less tolerant to deep water (T. latifolia) allocated more of its biomass to leaves with increasing water depth. In contrast, the deep water species (T. domingensis) showed increased total size of each ramet but a fixed percentage of biomass in leaves with increasing water depth. Both species had a decreasing incidence of flowering and decreasing shoot density with increasing water depth. In general, these species conform to expectations based on considerations of how their carbon budgets would be affected by water depth.  相似文献   

3.
李文  王鑫  潘艺雯  刘以珍  何亮  张欢  应智霞  刘颖  葛刚 《生态学报》2018,38(9):3014-3021
水淹深度是影响湿地植物生长和繁殖的关键因子,不同湿地植物对淹水深度存在着不同响应。然而,在水情不断变化的背景下,鄱阳湖洲滩湿地植物种群和群落如何变化还不清楚。为了探究淹水深度对湿地植物生长的影响,并预测鄱阳湖洲滩湿地植被分布的趋势,采用控制实验模拟了不同水淹深度(0、0.5、1 m和2 m)下鄱阳湖湿地3种优势植物(灰化薹草(Carex cinerascens)、南荻(Miscanthus lutarioriparius)和虉草(Phalaris arundinacea))的生长和繁殖情况。实验结果表明:1)水淹对灰化薹草总生物量的影响最显著。遭受水淹时,灰化薹草把大部分的生物量集中在地下部分;随着水淹深度逐渐增加,南荻的生物量逐渐减少;不同深度水淹对虉草生物量没有产生显著影响(P0.05)。就生物量而言,虉草对水淹的适应性强于其他两种植物。2)不同水淹深度下,灰化薹草的株高都显著降低;而南荻只在2 m水淹梯度下株高才显著降低。在枯水年时,下降的水位有利于南荻向较低高程迁移。3)不同深度水淹对灰化薹草的分株没有产生显著影响(P0.05);而虉草在经过2 m水淹后分株数显著高于其他水淹深度。在丰水年时,相比于灰化薹草和南荻,升高的水位对虉草的繁殖影响较小。在一个水位周期性变化的湿地生态系统中,不同深度的水淹对植物的生长及退水后的繁殖产生了严重影响,研究结果为预测水文变化对湿地植被的生存和分布提供了重要的依据。  相似文献   

4.
SUMMARY. 1. The biomass distribution of submerged vascular vegetation and benthic fauna were investigated by diving in Lake Kariba. The vegetation was well correlated with transparency of the water. Maximum biomass (1400 g dryweight m?2) and a depth penetration of 6 m were found in areas little influenced by river inflow, while these were only 110 g m?2 and 2 m, respectively, in the basin receiving water from the Zambezi river. 2. The lake is mesotrophic-oligotrophic. The total biomass for the lake was 101,000 tons dryweight of rooted vegetation composed of Lagarosiphon ilicifolius Oberm. (52%), Najas pectinata (Parl) Magnus (33%), Vatlisneria aethiopica Frenzl (11%), Ceratophyllum demersum L. (3%) and Potamogeton octandrus L. (0.5%). Average plant biomass for the potentially colonizable depth zone of 0-12 m and for the total lake amounted to 79.9 g m?2 and 18.8 g m?2, respectively. 3. The distribution of the benthic fauna generally followed that of the vegetation. The total animal biomass of 118,840 tons dryweight. including shells, consisted of mussels (95.8%), snails (4.1%) and insect larvae (0.1%). Four species of mussels were found: Caelatura mossambicensis (von Martens) (81% of mussel biomass), Corbicula africana (Krauss) (9%). Mutela dubia (Gmelin) (5%) and Aspatharia wahlbergii (Krauss) (5%). Among the snails Melnoides tuberculuta (Müller), Cleopatra spp. and Bellamya capillata (Frauenfeld) dominated. 4. The average animal biomass was high compared to most other lakes perhaps due to lack of predators. For the colonizable 0-12 m depth interval and the total lake it was 96.2 g m?2 including shells (15.0 g m?2 shell-free dryweight) and 22.6 g m?2 including shells (3.4 g m?2 shell-free dryweight). respectively. Biomass of plants and animals was even higher prior to the recent lowering of the water level by 7 m, which was estimated to have stranded 84,000 tons of mussels on the shore.  相似文献   

5.
为揭示丝栗栲(Castanopsis fargesii)细根功能性状对环境变化的适应机制,对郭岩山500、700、900 m海拔处丝栗栲细根功能性状及其与土壤因子的关系进行研究。结果表明,丝栗栲细根生物量与细根根长密度、表面积密度、组织密度及体积密度呈正相关,细根根长密度、体积密度、表面积密度和比根长4个性状间均呈极显著正相关关系,且均与细根组织密度呈显著负相关。根际土含水量、C和N含量与细根比根长、根长密度、体积密度、表面积密度均存在显著正相关关系,而土壤容重与细根组织密度呈正相关。海拔700 m的细根生物量、根长密度、表面积密度及体积密度显著大于海拔500和900 m的。500和900 m海拔的根长密度、表面积密度与土壤深度呈负相关,而500 m海拔细根的组织密度与土壤深度呈正相关。因此,郭岩山丝栗栲通过改变细根功能性状来适应海拔和土壤的变化。  相似文献   

6.
Three experiments on the effects of water depth and flooding onNelumbo nucifera Gaertn. were made in the artificial environment of concrete ponds. First, plants were harvested in autumn after growing under seven different water levels ranging from 0.2–3 m The number of floating leaves, the total number of leaves and the leaf area index of emergent leaves were greatest in the tanks at 0.5 m depth. The petiole dry weight per unit length of emergent leaves and the ratio of aboveground to belowground biomass rose with increasing water depth up to 2 m. In contrast, that of floating leaves was constant at about 10 mg dry weight cm−1. The proportion of biomass in tubers fell from 20% at 0.2 m to 6% at 2 m. Second, petiole elongation responses to the amplitude of flooding were investigated in early summer. The maximum rate of petiole elongation was 25 cm per day at 2.4 m water depth. This was the maximum depth at whichN. nucifera could grow. No petioles could elongate from 3 m to 5 m depth. Finally, the effects of timing of flooding on growth were investigated. At the end of growing season, the belowground biomass of plants in the flooding treatment in late summer was smallest among the flooding treatment plants (P<0.05), and was most severe when flooding occurred in this season. Based on the results of these experiments, the growth characteristics ofN. nucifera in relation to petiole elongation, biomass allocation, and flooding tolerance were discussed.  相似文献   

7.
The abundance, weight, and age structure of aggregations of the Far East trepang Apostichopus japonicuswere studied in Vostok Bay, Sea of Japan, during the first part of September 2000. The highest density of aggregations (8.3 ± 0.5 ind/m2) and biomass (131.88 ± 10.50 g/m2) of animals was characteristic for coastal sites at the depth 0.5–1.5 m. With anincrease in depth the biomass and density of A. japonicusreduced 1.5 and 3 (depth 5–6 m), 220 and 830 times (depth 8–15 m) respectively. The ratio of large animals concurrently increased in the aggregation structure. The specifics of the distribution and spatial variability of the aggregation structure are discussed in relation to uncontrolled fishing of holothurians of large sizes.  相似文献   

8.
The distributional abundance of three demersal fish species, Merluccius merluccius, Mullus barbatus and Lophius budegassa, was studied as a function of sampling season, bathymetry and geographic area. Data were collected during research trawl surveys in the Aegean and Ionian seas under the same sampling scheme, thereby allowing comparisons to be made on the mean regional densities in numbers and biomass of these three commercially important species in Greek waters. Results indicated that European hake, M. merluccius, demonstrated a wide bathymetric and geographic distribution, with specimens encountered in all regions between 20 and 500 m depth, although density was found to be highest usually between 101 and 200 m. The mean regional density of hake was observed to vary seasonally, being higher mainly in winter. Red mullet, M. barbatus, was distributed in shallow water depths (<100 m) throughout the Greek seas, particularly in the northern part of the Aegean Sea. Abundance of this species steadily decreased with increasing depth. The geographic distribution of anglerfish, L. budegassa, was found to be restricted to the central and northern part of the Aegean Sea, with the highest mean densities encountered in the Thermaikos Gulf and in intermediate water depths between 101 and 200 m. Spatial patterns of observed density are assumed to be attributed mainly to prevailing topographic and hydrographic conditions and related biological productivity levels.  相似文献   

9.
鄱阳湖四种水鸟的栖息地利用与水深和食物的关系   总被引:2,自引:0,他引:2  
为了了解水深和食物资源对水鸟栖息地利用的影响,2012 ~ 2013年越冬期,采用样方法,对鄱阳湖沙湖的白鹤 (Grus leucogeranus)、小天鹅 (Cygnus columbianus)、东方白鹳 (Ciconia boyciana) 和白琵鹭 (Platalea leucorodia) 4种水鸟的数量、觅食地和休息地的水深以及主要食物——沉水植物冬芽的密度和生物量进行了调查。每个样方为150 m? 150 m的栅格,全湖共设置152个样方。结果显示,10月份沉水植物冬芽的平均水深为 (124.2 ± 12.0) cm。4种水鸟觅食地的水深均显著高于其休息地的水深 (白鹤:Z = 11.96, 小天鹅:Z = 4.69, 东方白鹳:Z = 14.44, 白琵鹭:Z = 29.33, 所有P < 0.01);对于2种食冬芽的水鸟,白鹤觅食地的水深、冬芽生物量、取食深度以及休息地水深均显著低于小天鹅 (觅食地水深: Z = 8.56, 冬芽生物量: Z = 2.93, 取食深度: Z = 14.69, 休息地水深: Z = 4.34, 所有P < 0.05),但两者觅食地的冬芽密度差异不显著 (Z = 0.6, P = 0.55);对于2种食鱼性水鸟,东方白鹳觅食地水深、取食深度和休息地水深均显著大于白琵鹭 (觅食地水深: Z = 10.60; 取食深度: Z = 9.35; 休息地水深: Z = 8.47, 所有P < 0.01)。回归分析表明,白鹤、东方白鹳、白琵鹭的觅食个体数量均与水深呈二次项关系,个体数量最大的觅食地水深分别为23.9 cm,33.0 cm和22.6 cm;白鹤、小天鹅的觅食个体数量均与冬芽生物量呈线性关系。3种涉禽均只能分布在一定的水深范围内,且同种食性的水鸟利用不同的水深从而减少在空间生态位的重叠。  相似文献   

10.
Hayashida  Fumio 《Hydrobiologia》2000,421(1):179-185
The vertical distribution and population structure of eelgrass beds were surveyed in Iwachi Bay, along the Pacific coast of central Japan. Samplings were conducted from May through November 1977 by SCUBA. Eelgrass was distributed between 3 and 11 m in depth. The relative light intensity at 12 m depth was 11% at the lower range. The highest population density was 290 shoots/m2 in September and the fresh weight of biomass was 888 g/m2 in July at 7 m depth. The maximum mean leaf area index was about 3 at 10 m depth in July. The ratio of reproductive shoots to the total shoots was about 36% at 7 m depth in June. Eelgrass showed good growth at 7–10 m depth, which is comparatively deeper than other eelgrass habitations. The high values of water transparency and sunshine duration, as well as solar radiation compared with other localities was believed to contribute to the growth of eelgrass in deeper waters in Iwachi Bay.  相似文献   

11.
樊燕  郭春兰  方楷  黎祖尧  施建敏 《广西植物》2016,36(10):1172-1178
该研究在江西省瑞昌市设置9个淡竹林样地,调查和测定了淡竹林密度、淡竹各构件的生物量和总生物量,以及土壤含水率、土层厚度、林下裸岩率、pH、电导率、全氮和全磷等7个土壤环境因子,并对竹林密度、土壤环境因子和淡竹生物量分配指标进行了相关分析和回归分析。结果表明:(1)密度与淡竹蔸比重相关系数r达0.66( P=0.02<0.05),而与叶比重、枝比重、秆比重、鞭比重、根比重及根冠比均无显著相关关系;土壤环境因子与生物量分配指标有密切相关,环境主成分Z1与叶比重、秆比重及蔸比重均显著相关(P<0.05),Z2与鞭比重显著相关(P=0.034<0.05)。(2)密度与土壤环境因子密切相关(P<0.05),控制土壤环境因子的偏相关分析显示密度与淡竹生物量分配不显著相关( P>0.05),而控制密度时,土壤环境因子与淡竹生物量分配仍有显著相关关系(P<0.05);逐步回归分析也验证了偏相关分析的结果,密度被排除出回归方程。分析认为,土壤含水率、土层厚度及土壤养分等环境因子是影响石灰岩山地优势种淡竹生物量分配的主因,密度对生物量分配的影响实为土壤环境因子的间接作用。该研究结果为石灰岩地区植被恢复提供了理论支撑。  相似文献   

12.
  • 1 Lac ?Ifni (surface area 30 ha, zmax 60 m, altitude 2300 m) lies in a catchment comprised of Precambrian igneous rocks in the High Atlas Mountains of Morocco. Previously described as a typical ohgotrophic lake, it was also reported to have a warm layer at the base of the hypolimnion which was ascribed to phreatic water supply and drainage.
  • 2 Visits to the lake made in May/June and September 1990 showed strong thermal stratification but no hypolimnial warm layer. Drainage from the lake is subterranean, through a natural rubble dam, and the water level dropped by at least 7m through the summer. The flushing rate is about 0.6 year?1.
  • 3 The upper part of the metalimnion and the lower epilimnion were strongly supersaturated with oxygen in June, and there was a pH gradient from 7 to 10.5 between the hypolimnion and the epilimnion. These features were less marked in September when planktonic gross primary productivity was estimated to be about 145mgCm?2 h?1. In September the hypolimnion was 38% saturated with oxygen; the areal hypolimnetic oxygen deficit between June and September was 0.073mg O2 cm?2 day?1. Total dissolved phosphate concentrations were 7–14 μgl?1.
  • 4 The open water faunal assemblage consisted of Brachionus calyciflorus and Filinia lotigiseta (Rotifera), Cyclops abyssorum (Copepoda), and stunted Salmo trutta (Pisces). Trout diets were comprised principally of adult copepods and copepodites, which showed diurnal vertical migration, and of algal material apparently scraped from rock surfaces. The dry biomass density of Cyclops was at least 2gm?2 in June and at least 4.1 gm ?2 in September.
  • 5 Tubifex tubifex (Oligochaeta) dominated the benthos below depths of 40m. Mean dry biomass density was 2.8gm?2, but ranged from 0.6–8.1 gm?2 between samples. About 50% of the lake bottom is below 40m depth.
  • 6 The persistent oxygen supersaruration of the euphoric zone, the field estimate of primary productivity, the hypolimnetic oxygen deficit, the biomass of zooplankton and the benthic biomass together indicate that Lac ?Ifni is an unusually productive mountain lake. This high level of productivity may be sustained by nutrient addition through contamination by dust originating outside the catchment, aided by efficient nutrient recycling in the euphoric zone.
  相似文献   

13.
细根是植物吸收水分和养分的主要器官。全球变暖背景下,研究森林细根生物量及其环境因子的变化对生态系统碳平衡、碳收支及其贡献率具有重要意义。采用土钻法和室内分析法对青海省森林6个海拔梯度上5种林分类型的细根生物量和土壤理化性质进行测定,并分析了与环境因子之间的相互关系。结果表明:(1)青海省森林0—40 cm土层总细根生物量平均为8.50 t/hm~2,随着海拔梯度的增加先降低后升高,不同海拔梯度细根生物量差异显著(P0.05),最大值出现在2100—2400 m处。(2)5种林分0—40 cm土层总细根生物量为:白桦白杨云杉圆柏山杨,不同林分间细根生物量差异不显著。(3)细根垂直分布随土层深度增加而减少,且70%的细根集中在表层(0—20 cm)。(4)土壤容重深层(20—40 cm)显著大于表层(P0.05),并随海拔梯度逐步增加,且林分间差异较大。(5)全碳(Total carbon, TC)、全氮(Total nitrogen, TN)、全磷(Total phosphorus, TP)含量表层显著高于深层。TC、TN随海拔升高先增后降低,TP则随海拔逐步降低。不同林分间土壤养分差异较明显。(6)结构方程模型分析得到海拔、土层、容重直接影响细根生物量,细根生物量直接影响土壤养分。林分类型通过土壤容重间接影响细根生物量。因此,林分和海拔通过影响土壤微环境而影响到细根生物量及其空间分布格局。  相似文献   

14.
The distribution, abundance and standing crop biomass of chironomid larvae were determined at one-meter depth intervals along three radial transects. Samples were collected by coring soft sediments while diving. Three genera were found in the lake: Chironomus sp. (collector-filtering larvae), Ablabesmyia sp. (predatory larvae) and Goeldichironomus sp. (collector-filtering larvae). Standing crop densities of chironomids, averaged over the entire lake, varied from 30,594 larvae/m2 to 11,428 larvae/m2 at different depths. No statistically significant zonation in density was found for the two most common taxa, Chironomus sp. (87.8% of specimens) and Ablabesmyia sp. (9.0%), however the deepest zones (>4 m) had the lowest estimated densities. Significant differences in standing crop biomass were detected, with the 6 m depth having greatest biomass. The increase in standing crop biomass was a function of (1) lower frequency of first instars of Chironomus sp. and Ablabesmyia sp. at 6 m (2) higher average larval biomass of both species at 6 m and (3) very significant increase in average biomass of fourth instars of Chironomus sp. at 6 m compared to fourth instars at shallower depths. These results indicate that the lentic chironomids of this isolated oceanic habitat consist of a small number of species that are ecological generalists and tolerant of low oxygen concentrations.  相似文献   

15.
Two water bodies, which are quite different with respect to nutrient load and hydrophysical conditions, are used to perform long-term experiments in the whole water on the manipulation of the pelagic food web. Experimental water 1: Bautzen Reservoir (Dresden County, GDR); hypereutrophic, mean depth=7.4 m; extremely exposed to wind. Experimental water 2: Small pond in a former quarry (Dresden County); mesotrophic; mean depth=7.0 m; extremely protected against wind. Only the results of Experiment 2 are given in detail. Experiment 1 is not yet finished. Experimental water 2 was investigated in 1979 and 1980 when no predatory fish species were present, and in 1981 after introduction of predators (mainly Salmo gairdneri). The response of the ecosystem can be summarized as follows: (1) The biomass of the zooplankton-eating fish (mainly Leucaspius delineatus) decreases rapidly. (2) The biomass of the herbivorous zooplankton increases to nearly 400%. (3) This finding reveals that the dense population of an invertebrate predator (Chaoborus flavicans) is not able to compensate for the feeding pressure of the small fish. But the intensive feeding activity of the young larvae of Chaoborus leads to a strong increase (200 to 300%) in the mean individual body size of the crustaceans during late summer and autumn, which supports the “balanced predation hypothesis”. (4) The remarkable enhanced grazing pressure of the herbivorous zooplankton on the phytoplankton does not exert any effect on the total phytoplankton biomass. This result is interpreted as a consequence of growth limitation of the algae due to low nutrient (Fe, P) supply in that mesotrophic water body. But the phytoplankton composition does reveal a strong response to the enhanced grazing pressure. The Secchi depth increases as a consequence of this change in the phytoplankton composition. The conclusion is drawn that, when using biomanipulation as a means of water quality management, it is obviously necessary to take into account the complex interrelationships between fish stocks, predacious invertebrates, herbivorous zooplankton, phytoplankton as well as nutrient load and hydrophysical processes in the particular water.  相似文献   

16.
The diurnal vertical migrations of smelt (Osmerus eperlanus), larvae of phantom midge (Chaoborus flavicans) and cladoceran zooplankton in eutrophic Lake Hiidenvesi were studied in order to clarify the factors behind the low zooplankton biomass. In the study area, an oxygen minimum occurred in the metalimnion in the 10–15 m depth. No diurnal fluctuations in the position of the minimum were observed. Cladocerans inhabited the epilimnion throughout the study period and their vertical movements were restricted to above the thermocline and above the oxygen minimum. C. flavicansconducted a diurnal migration. During the day, the majority of the population inhabited the 12 – 15 m depth just in the oxygen minimum, while during darkness they were found in the uppermost 8 m. Smelts started ascending towards the water surface before sunset and reached the uppermost 3 m around 23:00. During daytime, the majority of smelts inhabited the depth of 7–9 m, where the water temperature was unfavourably high for them (18 °C). Smelts thus probably avoided the steep oxygen gradient in the metalimnion, whereas Chaoborusused the oxygen minimum as a refuge against predation. Those smelts that were found in the same water layers as Chaoborusused the larvae as their main prey. The metalimnetic oxygen minimum thus seemed to favour the coexistence of vertebrate and invertebrate predators, leading to a depression of cladoceran zooplankton.  相似文献   

17.
Cui B S  He Q  Zhao X S 《农业工程》2008,28(4):1408-1418
The responses of Suaeda salsa to the environmental gradients of water table depth and soil salinity in the Yellow River Delta, China were analyzed from the aspect of ecological thresholds which were developed from the Gaussian model. Based on the correlation analysis of population biomass, density, height, coverage and abundance of Suaeda salsa, population biomass was selected as the population index for further analysis. The results indicated that the optimum water table depth for the growth of Suaeda salsa was about −0.42 m, the ecological thresholds were from −0.92 m to 0.08 m, and the optimum ecological thresholds were from −0.67 m to −0.17 m. To the soil salinity gradient, the optimum was about 12.71 g/kg, the ecological thresholds were from 5.17 g/kg to 20.25 g/kg, and the optimum ecological thresholds were from 8.94 g/kg to 16.48 g/kg. However, the effect of water-salinity interaction seemed to be important to the growth of Suaeda salsa, which was discussed through analyzing the water table depth-soil salinity relationship and their interactions. By using Ward cluster analysis and Gamma distances, 69 sampling sites were classified into 7 kinds of Suaeda salsa communities. It was found that there was a remarkable response of the community structure of Suaeda salsa to the water table depth and soil salinity gradients, which can be a switchover from xeromorphic and saline-alkali plants to limnophytes, and vice versa.  相似文献   

18.
Meijer  M. L.  van Nes  E. H.  Lammens  E. H. R. R.  Gulati  R. D.  Grimm  M. P.  Backx  J.  Hollebeek  P.  Blaauw  E. M.  Breukelaar  A. W. 《Hydrobiologia》1994,(1):31-42
In 1990 an experiment started in the large and shallow lake Wolderwijd (2700 ha, mean depth 1.5 m) to improve the water quality. About 75% of the fish stock was removed (425 000 kg fish). The fish was mainly composed of bream and roach. In May 600000 young pikes (3–4 cm) were introduced.In May 1991 the water became very clear (Secchi depth 1.8 m) during a spring bloom of large Daphnia. Then the grazing by zooplankton was eight times higher than the primary production of algae and the total suspended matter concentration became very low. Compared to the situation before the fish reduction, the grazing had increased only slightly, while the primary production had decreased significantly in early spring. The fish stock reduction might have contributed to the reduction in primary production by a reduced internal nutrient load. The clear water period lasted six weeks. Daphnia disappeared in July due to food limitation, the algal biomass increased and the Secchi depth became 50 cm. Daphnia did not recover during summer, due to predation that was not caused by 0 + fish but by the mysid shrimp Neomysis integer. Neomysis could develop abundantly, because of the reduced biomass of the predator perch. The production of young fish had been low because of the cold spring weather. The cold weather was probably also responsible for the slow increase in density of macrophytes. After 1991, perch probably can control Neomysis. Due to lack of spawning places and shelter for 0 + pike, pike was probably not able to control the production of 0 + fish. In a lake of this scale, it will not be easy to get more than 50% coverage of macrophytes, which seems necessary to keep the algal biomass low by nutrient competition. Therefore, we expect also in the future a decrease in transparency in the summer. Locally, especially near Characeae, the water might stay clear.  相似文献   

19.
Macrozoobenthos of Lake Verevi   总被引:1,自引:1,他引:0  
An overview on studies of macrozoobenthos in the small, hard-water, stratified and hypertrophic Lake Verevi (South-Eastern Estonia) is given. The list of macroinvertebrates comprises at least 105 taxa. In the open water habitats, the biomass and abundance of macrozoobenthos (except the phantom midge Chaoborus flavicans) was rather constant beginning from the epilimnion up to the upper hypolimnion (depth 2–4 m), but very low in the lower hypolimnion (depth 6 m), which was inhabited mainly by Chaoborus. Comparison with long-term reference data from other Estonian lakes, belonging to similar limnological types, indicated that the total biomass and abundance (without Chaoborus) in the profundal of Verevi were very low.  相似文献   

20.
The role played by heterotrophic microplankton in the synthesis and flux of organic matter was studied in the Punta San Juan Coastal upwelling region off Peru in April and May 1977. The data from a drogue study show that the main component of the planktonic community in the freshly upwelled water is the microheterotroph component. The biomass of bacteria (49 mg C/ m3) in the newly upwelled water exceeded by two orders of magnitude the biomass of phytoplankton. Total respiration of the microheterotrophs (3.35 g C/ m2/ day) exceeded by three-fold the primary production, indicating that the heterotrophic respiration was dependent on the content of organic matter preexisting in the upwelling waters. In the upwelling at Punta San Juan the biomass of protozoa was 1 g/ m3 (wet weight) at the depth of the maximum concentration; this concentration is the highest ever observed in sea water. During transects on a section normal to the coastline an abundant population of dinoflagellates (5 to 40 × 103 /1) of the genera Gymnodinium and Prorocentrum were found in anoxic waters at 50 to 100 m. Strong red tide water coloration was observed as a result of a bloom of the autotrophic ciliate Mesodinium rubrum; the biomass of the ciliate at the surface in calm weather reached 50 to 70 g/ m3 (wet weight) and the cell density was 2 to 4 × 106/l.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号