首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
Simulated enzymic debranching of a β-limit dextrin model, prepared from a computed construct made by random extension and branching, and given the CCL value of w-maize amylopectin (and equal amounts of external chains with ECL values of 2 and 3) has been related to experimental chromatograms of the debranched β-limit dextrin of the amylopectin. The profile was similar to those from gel chromatograms and IEC-PAD chromatography.The equivalent lengths in glucosyl units of grid-links (g-links) of internal and external chains in constructs were calculated from the ICL and ECL values of amylopectin and models produced from the constructs with the appropriate lengths for internal and external chains. These derived models were subjected to simulated hydrolysis by Pseudomonas stutzeri amylase and the products compared with those of the experimental distribution from w-maize amylopectin. With the model the amounts of maltotetraose and maltodextrins released were similar to the experimental values but the distribution of branched maltodextrins was quite different. Unlike w-maize amylopectin – a polymer with the cluster structure – which has given a profile of molecular sizes of maltodextrins with low amounts of single and small numbers of internal chains and with a peak at a MW of about 14,000 (13 chains), in the model the proportion of maltodextrin with one internal chain was high and as d.p. increased the amounts decreased exponentially. This would be expected if the distribution of internal chains in the core was random. It is suggested that in the core of a model prepared from a construct made with alternating probabilities of extension – one in which this probability is high relative to branching, and a second in which it is low – may give clusters of branched maltodextrins with short internal chains which are joined by longer chains; more closely approximating the distribution of internal chains of different lengths in amylopectin.An arrangement for amylopectin molecules in the starch granule has been proposed. In this, they have a wafer-like, discoidal shape, composed of the amorphous zone overlain with the double helical, crystalline region. The flat macromolecules are concentrically layered with the former on the inside and the latter oriented to the outside of the granule.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
The identification of immunogenic regions on the surface of antigens, which are able to stimulate an immune response, is a major challenge for the design of new vaccines. Computational immunology aims at predicting such regions—in particular B‐cell epitopes—but is far from being reliably applicable on a large scale. To gain understanding into the factors that contribute to the antigen–antibody affinity and specificity, we perform a detailed analysis of the amino acid composition and secondary structure of antigen and antibody surfaces, and of the interactions that stabilize the complexes, in comparison with the composition and interactions observed in other heterodimeric protein interfaces. We make a distinction between linear and conformational B‐cell epitopes, according to whether they consist of successive residues along the polypeptide chain or not. The antigen–antibody interfaces were shown to differ from other protein–protein interfaces by their smaller size, their secondary structure with less helices and more loops, and the interactions that stabilize them: more H‐bond, cation–π, amino–π, and π–π interactions, and less hydrophobic packing; linear and conformational epitopes can clearly be distinguished. Often, chains of successive interactions, called cation/amino–π and π–π chains, are formed. The amino acid composition differs significantly between the interfaces: antigen–antibody interfaces are less aliphatic and more charged, polar and aromatic than other heterodimeric protein interfaces. Moreover, paratopes and epitopes—albeit to a lesser extent—have amino acid compositions that are distinct from general protein surfaces. This specificity holds promise for improving B‐cell epitope prediction. Proteins 2014; 82:1734–1746. © 2014 Wiley Periodicals, Inc.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号