首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
《Genomics》2021,113(3):1366-1377
Oxford Nanopore sequencing has been widely used to achieve complete genomes of bacterial pathogens. However, the error rates of Oxford Nanopore long reads are high. Various polishing algorithms using Illumina short reads to correct the errors in Oxford Nanopore long-read assemblies have been developed. The impact of polishing the Oxford Nanopore long-read assemblies of bacterial pathogens with Illumina short reads on improving genomic analyses was evaluated using both simulated and real reads. Ten species (10 strains) were selected for simulated reads, while real reads were tested on 11 species (11 strains). Oxford Nanopore long reads were assembled with Unicycler to produce a draft assembly, followed by three rounds of polishing with Illumina short reads using two polishing tools, Pilon and NextPolish. One round of NextPolish polishing generated genome completeness and accuracy parameters similar to the reference genomes, whereas two or three rounds of Pilon polishing were needed, though contiguity remained unchanged after polishing. The polished assemblies of Escherichia coli O157:H7, Salmonella Typhimurium, and Cronobacter sakazakii with simulated reads did not provide accurate plasmid identifications. One round of NextPolish polishing was needed for accurately identifying plasmids in Staphylococcus aureus and E. coli O26:H11 with real reads, whereas one and two rounds of Pilon polishing were necessary for these two strains, respectively. Polishing failed to provide an accurate antimicrobial resistance (AMR) genotype for S. aureus with real reads. One round of polishing recovered an accurate AMR genotype for Klebsiella pneumoniae with real reads. The reference genome and draft assembly of Citrobacter braakii with real reads differed, which carried blaCMY-83 and fosA6, respectively, while both genes were present after one round of polishing. However, polishing did not improve the assembly of E. coli O26:H11 with real reads to achieve numbers of virulence genes similar to the reference genome. The draft and polished assemblies showed a phylogenetic tree topology comparable with the reference genomes. For multilocus sequence typing and pan-genome analyses, one round of NextPolish polishing was sufficient to obtain accurate results, while two or three rounds of Pilon polishing were needed. Overall, NextPolish outperformed Pilon for polishing the Oxford Nanopore long-read assemblies of bacterial pathogens, though both polishing strategies improved genomic analyses compared to the draft assemblies.  相似文献   

3.
Genome sequencing remains an inexact science, and genome sequences can contain significant errors if they are not carefully examined. Hawkeye is our new visual analytics tool for genome assemblies, designed to aid in identifying and correcting assembly errors. Users can analyze all levels of an assembly along with summary statistics and assembly metrics, and are guided by a ranking component towards likely mis-assemblies. Hawkeye is freely available and released as part of the open source AMOS project .  相似文献   

4.
《Genomics》2021,113(6):4173-4183
Cherries are stone fruits and belong to the economically important plant family of Rosaceae with worldwide cultivation of different species. The ground cherry, Prunus fruticosa Pall., is an ancestor of cultivated sour cherry, an important tetraploid cherry species. Here, we present a long read chromosome-level draft genome assembly and related plastid sequences using the Oxford Nanopore Technology PromethION platform and R10.3 pore type. We generated a final consensus genome sequence of 366 Mb comprising eight chromosomes. The N50 scaffold was ~44 Mb with the longest chromosome being 66.5 Mb. The chloroplast and mitochondrial genomes were 158,217 bp and 383,281 bp long, which is in accordance with previously published plastid sequences. This is the first report of the genome of ground cherry (P. fruticosa) sequenced by long read technology only. The datasets obtained from this study provide a foundation for future breeding, molecular and evolutionary analysis in Prunus studies.  相似文献   

5.
Researchers have assembled thousands of eukaryotic genomes using Illumina reads, but traditional mate‐pair libraries cannot span all repetitive elements, resulting in highly fragmented assemblies. However, both chromosome conformation capture techniques, such as Hi‐C and Dovetail Genomics Chicago libraries and long‐read sequencing, such as Pacific Biosciences and Oxford Nanopore, help span and resolve repetitive regions and therefore improve genome assemblies. One important livestock species of arid regions that does not have a high‐quality contiguous reference genome is the dromedary (Camelus dromedarius). Draft genomes exist but are highly fragmented, and a high‐quality reference genome is needed to understand adaptation to desert environments and artificial selection during domestication. Dromedaries are among the last livestock species to have been domesticated, and together with wild and domestic Bactrian camels, they are the only representatives of the Camelini tribe, which highlights their evolutionary significance. Here we describe our efforts to improve the North African dromedary genome. We used Chicago and Hi‐C sequencing libraries from Dovetail Genomics to resolve the order of previously assembled contigs, producing almost chromosome‐level scaffolds. Remaining gaps were filled with Pacific Biosciences long reads, and then scaffolds were comparatively mapped to chromosomes. Long reads added 99.32 Mbp to the total length of the new assembly. Dovetail Chicago and Hi‐C libraries increased the longest scaffold over 12‐fold, from 9.71 Mbp to 124.99 Mbp and the scaffold N50 over 50‐fold, from 1.48 Mbp to 75.02 Mbp. We demonstrate that Illumina de novo assemblies can be substantially upgraded by combining chromosome conformation capture and long‐read sequencing.  相似文献   

6.
7.
SUMMARY: We provide the graphical tool BACCardI for the construction of virtual clone maps from standard assembler output files or BLAST based sequence comparisons. This new tool has been applied to numerous genome projects to solve various problems including (a) validation of whole genome shotgun assemblies, (b) support for contig ordering in the finishing phase of a genome project, and (c) intergenome comparison between related strains when only one of the strains has been sequenced and a large insert library is available for the other. The BACCardI software can seamlessly interact with various sequence assembly packages. MOTIVATION: Genomic assemblies generated from sequence information need to be validated by independent methods such as physical maps. The time-consuming task of building physical maps can be circumvented by virtual clone maps derived from read pair information of large insert libraries.  相似文献   

8.
As sequencing technology improves, an increasing number of projects aim to generate full genome sequence, even for nonmodel taxa. These projects may be feasibly conducted at lower read depths if the alignment can be aided by previously developed genomic resources from a closely related species. We investigated the feasibility of constructing a complete mitochondrial (mt) genome without preamplification or other targeting of the sequence. Here we present a full mt genome sequence (16,463 nucleotides) for the bighorn sheep (Ovis canadensis) generated though alignment of SOLiD short-read sequences to a reference genome. Average read depth was 1240, and each base was covered by at least 36 reads. We then conducted a phylogenomic analysis with 27 other bovid mitogenomes, which placed bighorn sheep firmly in the Ovis clade. These results show that it is possible to generate a complete mitogenome by skimming a low-coverage genomic sequencing library. This technique will become increasingly applicable as the number of taxa with some level of genome sequence rises.  相似文献   

9.
Advances in sequencing technology allow genomes to be sequenced at vastly decreased costs. However, the assembled data frequently are highly fragmented with many gaps. We present a practical approach that uses Illumina sequences to improve draft genome assemblies by aligning sequences against contig ends and performing local assemblies to produce gap-spanning contigs. The continuity of a draft genome can thus be substantially improved, often without the need to generate new data.  相似文献   

10.
We describe a set of computational problems motivated by certain analysis tasks in genome resequencing. These are assembly problems for which multiple distinct sequences must be assembled, but where the relative positions of reads to be assembled are already known. This information is obtained from a common reference genome and is characteristic of resequencing experiments. The simplest variant of the problem aims at determining a minimum set of superstrings such that each sequenced read matches at least one superstring. We give an algorithm with time complexity O(N), where N is the sum of the lengths of reads, substantially improving on previous algorithms for solving the same problem. We also examine the problem of finding the smallest number of reads to remove such that the remaining reads are consistent with k superstrings. By exploiting a surprising relationship with the minimum cost flow problem, we show that this problem can be solved in polynomial time when nested reads are excluded. If nested reads are permitted, this problem of removing the minimum number of reads becomes NP-hard. We show that permitting mismatches between reads and their nearest superstrings generally renders these problems NP-hard.  相似文献   

11.
Anna Sharman 《Genome biology》2001,2(6):reports4013.1-reports40134
A report on the Keystone Symposium on 'Human Genetics and Genomics', Breckenridge, Colorado, USA, 31 March to 6 April, 2001.  相似文献   

12.
13.
14.
《Genomics》2020,112(3):2379-2384
Haploid cell lines are a valuable research tool with broad applicability for genetic assays. As such the fully haploid human cell line, eHAP1, has been used in a wide array of studies. However, the absence of a corresponding reference genome sequence for this cell line has limited the potential for more widespread applications to experiments dependent on available sequence, like capture-clone methodologies. We generated ~15× coverage Nanopore long reads from ten GridION flowcells and utilized this data to assemble a de novo draft genome using minimap and miniasm and subsequently polished using Racon. This assembly was further polished using previously generated, low-coverage, Illumina short reads with Pilon and ntEdit. This resulted in a hybrid eHAP1 assembly with >90% complete BUSCO scores. We further assessed the eHAP1 long read data for structural variants using Sniffles and identify a variety of rearrangements, including a previously established Philadelphia translocation. Finally, we demonstrate how some of these variants overlap open chromatin regions, potentially impacting regulatory regions. By integrating both long and short reads, we generated a high-quality reference assembly for eHAP1 cells. The union of long and short reads demonstrates the utility in combining sequencing platforms to generate a high-quality reference genome de novo solely from low coverage data. We expect the resulting eHAP1 genome assembly to provide a useful resource to enable novel experimental applications in this important model cell line.  相似文献   

15.
DNA methylation is an important epigenetic modification involved in gene regulation, which can now be measured using whole-genome bisulfite sequencing. However, cost, complexity of the data, and lack of comprehensive analytical tools are major challenges that keep this technology from becoming widely applied. Here we present BSmooth, an alignment, quality control and analysis pipeline that provides accurate and precise results even with low coverage data, appropriately handling biological replicates. BSmooth is open source software, and can be downloaded from http://rafalab.jhsph.edu/bsmooth.  相似文献   

16.
MOTIVATION: While it is common to refer to 'the genome sequence' as if it were a single, complete and contiguous DNA string, it is in fact an assembly of millions of small, partially overlapping DNA fragments. Sophisticated computer algorithms (assemblers and scaffolders) merge these DNA fragments into contigs, and place these contigs into sequence scaffolds using the paired-end sequences derived from large-insert DNA libraries. Each step in this automated process is susceptible to producing errors; hence, the resulting draft assembly represents (in practice) only a likely assembly that requires further validation. Knowing which parts of the draft assembly are likely free of errors is critical if researchers are to draw reliable conclusions from the assembled sequence data. RESULTS: We develop a machine-learning method to detect assembly errors in sequence assemblies. Several in silico measures for assembly validation have been proposed by various researchers. Using three benchmarking Drosophila draft genomes, we evaluate these techniques along with some new measures that we propose, including the good-minus-bad coverage (GMB), the good-to-bad-ratio (RGB), the average Z-score (AZ) and the average absolute Z-score (ASZ). Our results show that the GMB measure performs better than the others in both its sensitivity and its specificity for assembly error detection. Nevertheless, no single method performs sufficiently well to reliably detect genomic regions requiring attention for further experimental verification. To utilize the advantages of all these measures, we develop a novel machine learning approach that combines these individual measures to achieve a higher prediction accuracy (i.e. greater than 90%). Our combined evidence approach avoids the difficult and often ad hoc selection of many parameters the individual measures require, and significantly improves the overall precisions on the benchmarking data sets.  相似文献   

17.
A streaming assembly pipeline utilising real-time Oxford Nanopore Technology (ONT) sequencing data is important for saving sequencing resources and reducing time-to-result. A previous approach implemented in npScarf provided an efficient streaming algorithm for hybrid assembly but was relatively prone to mis-assemblies compared to other graph-based methods. Here we present npGraph, a streaming hybrid assembly tool using the assembly graph instead of the separated pre-assembly contigs. It is able to produce more complete genome assembly by resolving the path finding problem on the assembly graph using long reads as the traversing guide. Application to synthetic and real data from bacterial isolate genomes show improved accuracy while still maintaining a low computational cost. npGraph also provides a graphical user interface (GUI) which provides a real-time visualisation of the progress of assembly. The tool and source code is available at https://github.com/hsnguyen/assembly.  相似文献   

18.
After almost a decade of work, the sequencing, assembly, and annotation of the genome of the fungal pathogen Candida albicans is finally close at hand. This review covers the early history of the C. albicans genome project, from the release of early assemblies that provided the impetus for an explosion in functional genomics research, to a community-based annotation and a preview of the work that was necessary for the production of a final genome assembly.  相似文献   

19.
Recent improvements in technology have made DNA sequencing dramatically faster and more efficient than ever before. The new technologies produce highly accurate sequences, but one drawback is that the most efficient technology produces the shortest read lengths. Short-read sequencing has been applied successfully to resequence the human genome and those of other species but not to whole-genome sequencing of novel organisms. Here we describe the sequencing and assembly of a novel clinical isolate of Pseudomonas aeruginosa, strain PAb1, using very short read technology. From 8,627,900 reads, each 33 nucleotides in length, we assembled the genome into one scaffold of 76 ordered contiguous sequences containing 6,290,005 nucleotides, including one contig spanning 512,638 nucleotides, plus an additional 436 unordered contigs containing 416,897 nucleotides. Our method includes a novel gene-boosting algorithm that uses amino acid sequences from predicted proteins to build a better assembly. This study demonstrates the feasibility of very short read sequencing for the sequencing of bacterial genomes, particularly those for which a related species has been sequenced previously, and expands the potential application of this new technology to most known prokaryotic species.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号