首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The decrease in skeletal muscle mitochondrial oxidative capacity with age adversely affects muscle strength and physical performance. Factors that are associated with this decrease have not been well characterized. Low plasma lysophosphatidylcholines (LPC), a major class of systemic bioactive lipids, are predictive of aging phenotypes such as cognitive impairment and decline of gait speed in older adults. Therefore, we tested the hypothesis that low plasma LPC are associated with impaired skeletal muscle mitochondrial oxidative capacity. Skeletal muscle mitochondrial oxidative capacity was measured using in vivo phosphorus magnetic resonance spectroscopy (31P‐MRS) in 385 participants (256 women, 129 men), aged 24–97 years (mean 72.5) in the Baltimore Longitudinal Study of Aging. Postexercise recovery rate of phosphocreatine (PCr), kPCr, was used as a biomarker of mitochondrial oxidative capacity. Plasma LPC were measured using liquid chromatography–tandem mass spectrometry. Adults in the highest quartile of kPCr had higher plasma LPC 16:0 (p = 0.04), 16:1 (p = 0.004), 17:0 (p = 0.01), 18:1 (p = 0.0002), 18:2 (p = 0.002), and 20:3 (p = 0.0007), but not 18:0 (p = 0.07), 20:4 (p = 0.09) compared with those in the lower three quartiles in multivariable linear regression models adjusting for age, sex, and height. Multiple machine‐learning algorithms showed an area under the receiver operating characteristic curve of 0.638 (95% confidence interval, 0.554, 0.723) comparing six LPC in adults in the lower three quartiles of kPCr with the highest quartile. Low plasma LPC are associated with impaired mitochondrial oxidative capacity in adults.  相似文献   

2.
Recruitment for many arid‐zone plant species is expected to be impacted by the projected increase in soil temperature and prolonged droughts associated with global climate change. As seed dormancy is considered a strategy to avoid unfavorable conditions, understanding the mechanisms underpinning vulnerability to these factors is critical for plant recruitment in intact communities, as well as for restoration efforts in arid ecosystems. This study determined the effects of temperature and water stress on recruitment processes in six grass species in the genus Triodia R.Br. from the Australian arid zone. Experiments in controlled environments were conducted on dormant and less‐dormant seeds at constant temperatures of 25°C, 30°C, 35°C, and 40°C, under well‐watered (Ψsoil = −0.15 MPa) and water‐limited (Ψsoil = −0.35 MPa) conditions. Success at three key recruitment stages—seed germination, emergence, and survival—and final seed viability of ungerminated seeds was assessed. For all species, less‐dormant seeds germinated to higher proportions under all conditions; however, subsequent seedling emergence and survival were higher in the more dormant seed treatment. An increase in temperature (35–40°C) under water‐limited conditions caused 95%–100% recruitment failure, regardless of the dormancy state. Ungerminated seeds maintained viability in dry soil; however, when exposed to warm (30–40°C) and well‐watered conditions, loss of viability was greater from the less‐dormant seeds across all species. This work demonstrates that the transition from seed to established seedling is highly vulnerable to microclimatic constraints and represents a critical filter for plant recruitment in the arid zone. As we demonstrate temperature and water stress‐driven mortality between seeds and established seedlings, understanding how these factors influence recruitment in other arid‐zone species should be a high priority consideration for management actions to mitigate the impacts of global change on ecosystem resilience. The knowledge gained from these outcomes must be actively incorporated into restoration initiatives.  相似文献   

3.
ObjectivesOur aim was to investigate the prevalence and predictive variables of sarcopenia.MethodsWe recruited participants from the Peking Union Medical College Hospital Multicenter Prospective Longitudinal Sarcopenia Study (PPLSS). Muscle mass was quantified using bioimpedance, and muscle function was quantified using grip strength and gait speed. Logistic regression revealed the relationships between sarcopenia and nutritional, lifestyle, disease, psychosocial and physical variables.ResultsThe prevalence of sarcopenia and sarcopenic obesity was 9.2%‐16.2% and 0.26%‐9.1%, respectively. Old age, single status, undernourishment, higher income, smoking, low physical activity, poor appetite and low protein diets were significantly associated with sarcopenia. Multiple logistic regression analysis showed that age was a risk factor for all stages of sarcopenia, and participants above 80 years were greater than fivefold more susceptible to sarcopenia, while lower physical activity was an independent risk factor. The optimal cut‐off value for age was 71 years, which departs from the commonly accepted cut‐off of 60 years. Female participants were greater than twofold less susceptible to sarcopenia than male participants. The sterol derivative 25‐hydroxyvitamin D was associated with fourfold lower odds of sarcopenia in male participants. Several protein intake variables were also correlated with sarcopenia. Based on these parameters, we defined a highly predictive index for sarcopenia.ConclusionsOur findings support a predictive index of sarcopenia, which agglomerates the complex influences that sterol metabolism and nutrition exert on male vs female participants.  相似文献   

4.
ObjectivesIdiopathic pulmonary fibrosis (IPF) is marked by the excessive accumulation of extracellular matrix, which participates in a variety of chronic diseases or injuries and seriously threatens human health. Due to the side effects of clinical drugs, there is still a need to develop novel and less toxic drugs to treat pulmonary fibrosis.Materials and MethodsSKLB‐YTH‐60 was developed through computer‐aided drug design, de novo synthesis and high‐throughput screening. We employed the bleomycin (BLM)‐induced lung fibrosis animal models and used TGF‐β1 to induce the epithelial‐mesenchymal transition (EMT) of A549 cells in vitro. Meanwhile, the protein expression of collagen I and the α‐smooth muscle actin (α‐SMA), E‐cadherin, p‐FGFR1, p‐PLCγ, p‐Smad2/3 and p‐Erk1/2 was detected by western blot.ResultsYTH‐60 has obvious anti‐proliferative activity on fibroblasts and A549 cells. Moreover, YTH‐60 could impair the EMT of A549 cells and suppressed fibrosis by inhibiting FGFR and TGF‐β/Smad‐dependent pathways. Intraperitoneal administration of preventive YTH‐60 could significantly reduce the degree of fibrosis in mice and regulate the imbalance of the immune microenvironment. In addition, we observed that therapeutic YTH‐60 treatment attenuated fibrotic changes in mice during the period of fibrosis. Importantly, YTH‐60 has shown an acceptable oral bioavailability (F = 17.86%) and appropriate eliminated half‐life time (T 1/2 = 8.03 hours).ConclusionsTaken together, these preclinical evaluations suggested that YTH‐60 could be a promising drug candidate for treating IPF.  相似文献   

5.
Age‐related muscle atrophy and weakness, or sarcopenia, are significant contributors to compromised health and quality of life in the elderly. While the mechanisms driving this pathology are not fully defined, reactive oxygen species, neuromuscular junction (NMJ) disruption, and loss of innervation are important risk factors. The goal of this study is to determine the impact of mitochondrial hydrogen peroxide on neurogenic atrophy and contractile dysfunction. Mice with muscle‐specific overexpression of the mitochondrial H2O2 scavenger peroxiredoxin3 (mPRDX3) were crossed to Sod1KO mice, an established mouse model of sarcopenia, to determine whether reduced mitochondrial H2O2 can prevent or delay the redox‐dependent sarcopenia. Basal rates of H2O2 generation were elevated in isolated muscle mitochondria from Sod1KO, but normalized by mPRDX3 overexpression. The mPRDX3 overexpression prevented the declines in maximum mitochondrial oxygen consumption rate and calcium retention capacity in Sod1KO. Muscle atrophy in Sod1KO was mitigated by ~20% by mPRDX3 overexpression, which was associated with an increase in myofiber cross‐sectional area. With direct muscle stimulation, maximum isometric specific force was reduced by ~20% in Sod1KO mice, and mPRDX3 overexpression preserved specific force at wild‐type levels. The force deficit with nerve stimulation was exacerbated in Sod1KO compared to direct muscle stimulation, suggesting NMJ disruption in Sod1KO. Notably, this defect was not resolved by overexpression of mPRDX3. Our findings demonstrate that muscle‐specific PRDX3 overexpression reduces mitochondrial H2O2 generation, improves mitochondrial function, and mitigates loss of muscle quantity and quality, despite persisting NMJ impairment in a murine model of redox‐dependent sarcopenia.  相似文献   

6.
Objectives:The study reports longitudinal changes in grip strength, muscle mass and muscle power of lower extremities. The aim is to identify early muscular changes to improve the diagnosis and treatment of sarcopenia.Methods:Grip strength was measured by hand dynamometer, muscle mass by dual-energy X-ray absorptiometry and muscle power by performing a chair rise test and two-leg jumps (2LJP) on the Leonardo Mechanograph®. Longitudinal changes were analysed using paired t-tests by age group and sex. Differences between groups in terms of the annual change were tested by Analysis of Variance and the Dunnett’s test. Comparisons between the variables were performed using one sample t-tests.Results:Six-year changes were determined in 318 randomly selected healthy participants aged 20-90 years from Berlin. 2LJP declined significantly earlier in 20-39 years old women (-3.70 W/kg) and men (-5.97 W/kg, both p<0.001). This is an absolute annual decline of -0.46 W/kg in females and -0.75 W/kg in males. In the oldest age group, 2LJP showed the highest absolute annual loss with -0.99 W/kg in women and -0.88 W/kg in men. 2LJP was significantly different compared to all variables of muscle mass and strength (p<0.01).Conclusions:The results underline the importance of assessing muscle power using 2LJP during aging.  相似文献   

7.
Satellite cell‐dependent skeletal muscle regeneration declines during aging. Disruptions within the satellite cells and their niche, together with alterations in the myofibrillar environment, contribute to age‐related dysfunction and defective muscle regeneration. In this study, we demonstrated an age‐related decline in satellite cell viability and myogenic potential and an increase in ROS and cellular senescence. We detected a transient upregulation of miR‐24 in regenerating muscle from adult mice and downregulation of miR‐24 during muscle regeneration in old mice. FACS‐sorted satellite cells were characterized by decreased levels of miR‐24 and a concomitant increase in expression of its target: Prdx6. Using GFP reporter constructs, we demonstrated that miR‐24 directly binds to its predicted site within Prdx6 mRNA. Subtle changes in Prdx6 levels following changes in miR‐24 expression indicate miR‐24 plays a role in fine‐tuning Prdx6 expression. Changes in miR‐24 and Prdx6 levels were associated with altered mitochondrial ROS generation, increase in the DNA damage marker: phosphorylated‐H2Ax and changes in viability, senescence, and myogenic potential of myogenic progenitors from mice and humans. The effects of miR‐24 were more pronounced in myogenic progenitors from old mice, suggesting a context‐dependent role of miR‐24 in these cells, with miR‐24 downregulation likely a part of a compensatory response to declining satellite cell function during aging. We propose that downregulation of miR‐24 and subsequent upregulation of Prdx6 in muscle of old mice following injury are an adaptive response to aging, to maintain satellite cell viability and myogenic potential through regulation of mitochondrial ROS and DNA damage pathways.  相似文献   

8.
Tryptophyllins constitute a heterogeneous group of peptides that are one of the first classes of peptides identified from amphibian’s skin secretions. Here, we report the structural characterization and antioxidant properties of a novel tryptophyllin‐like peptide, named PpT‐2, isolated from the Iberian green frog Pelophylax perezi. The skin secretion of P. perezi was obtained by electrical stimulation and fractionated using RP‐HPLC. De novo peptide sequencing was conducted using MALDI MS/MS. The primary structure of PpT‐2 (FPWLLS‐NH2) was confirmed by Edman degradation and subsequently investigated using in silico tools. PpT‐2 shared physicochemical properties with other well‐known antioxidants. To test PpT‐2 for antioxidant activity in vitro, the peptide was synthesized by solid phase and assessed in the chemical‐based ABTS and DPPH scavenging assays. Then, a flow cytometry experiment was conducted to assess PpT‐2 antioxidant activity in oxidatively challenged murine microglial cells. As predicted by the in silico analyses, PpT‐2 scavenged free radicals in vitro and suppressed the generation of reactive species in PMA‐stimulated BV‐2 microglia cells. We further explored possible bioactivities of PpT‐2 against prostate cancer cells and bacteria, against which the peptide exerted a moderate antiproliferative effect and negligible antimicrobial activity. The biocompatibility of PpT‐2 was evaluated in cytotoxicity assays and in vivo toxicity with Galleria mellonella. No toxicity was detected in cells treated with up to 512 µg/ml and in G. mellonella treated with up to 40 mg/kg PpT‐2. This novel peptide, PpT‐2, stands as a promising peptide with potential therapeutic and biotechnological applications, mainly for the treatment/prevention of neurodegenerative disorders.  相似文献   

9.
The causes of the decline in skeletal muscle mass and function with age, known as sarcopenia, are poorly understood. Nutrition (calorie restriction) interventions impact many cellular processes and increase lifespan and preserve muscle mass and function with age. As we previously observed an increase in life span and muscle function in aging mice on a ketogenic diet (KD), we aimed to investigate the effect of a KD on the maintenance of skeletal muscle mass with age and the potential molecular mechanisms of this action. Twelve‐month‐old mice were assigned to an isocaloric control or KD until 16 or 26 months of age, at which time skeletal muscle was collected for evaluating mass, morphology, and biochemical properties. Skeletal muscle mass was significantly greater at 26 months in the gastrocnemius of mice on the KD. This result in KD mice was associated with a shift in fiber type from type IIb to IIa fibers and a range of molecular parameters including increased markers of NMJ remodeling, mitochondrial biogenesis, oxidative metabolism, and antioxidant capacity, while decreasing endoplasmic reticulum (ER) stress, protein synthesis, and proteasome activity. Overall, this study shows the effectiveness of a long‐term KD in mitigating sarcopenia. The diet preferentially preserved oxidative muscle fibers and improved mitochondrial and antioxidant capacity. These adaptations may result in a healthier cellular environment, decreasing oxidative and ER stress resulting in less protein turnover. These shifts allow mice to better maintain muscle mass and function with age.  相似文献   

10.
Population connectivity resulting from larval dispersal is essential for the maintenance or recovery of populations in marine ecosystems, including coral reefs. Studies of species diversity and genetic connectivity within species are essential for the conservation of corals and coral reef ecosystems. We analyzed mitochondrial DNA sequence types and microsatellite genotypes of the broadcast‐spawning coral, Galaxea fascicularis, from four regions in the subtropical Nansei Islands in the northwestern Pacific Ocean. Two types (soft and hard types) of nematocyst morphology are known in G. fascicularis and are significantly correlated with the length of a mitochondrial DNA noncoding sequence (soft type: mt‐L; hard type: mt‐S type). Using microsatellites, significant genetic differentiation was detected between the mitochondrial DNA sequence types in all regions. We also found a third genetic cluster (mt‐L+), and this unexpected type may be a cryptic species of Galaxea. High clonal diversity was detected in both mt‐L and mt‐S types. Significant genetic differentiation, which was found among regions within a given type (F ST = 0.009–0.024, all Ps ≤ 0.005 in mt‐L; 0.009–0.032, all Ps ≤ 0.01 in mt‐S), may result from the shorter larval development than in other broadcast‐spawning corals, such as the genus Acropora. Nevertheless, intraspecific genetic diversity and connectivity have been maintained, and with both sexual and asexual reproduction, this species appears to have a potential for the recovery of populations after disturbance.  相似文献   

11.
Skeletal muscle mitochondrial oxidative capacity declines with age and negatively affects walking performance, but the mechanism for this association is not fully clear. We tested the hypothesis that impaired oxidative capacity affects muscle performance and, through this mechanism, has a negative effect on walking speed. Muscle mitochondrial oxidative capacity was measured by in vivo phosphorus magnetic resonance spectroscopy as the postexercise phosphocreatine resynthesis rate, kPCr, in 326 participants (154 men), aged 24–97 years (mean 71), in the Baltimore Longitudinal Study of Aging. Muscle strength and quality were determined by knee extension isokinetic strength, and the ratio of knee extension strength to thigh muscle cross‐sectional area derived from computed topography, respectively. Four walking tasks were evaluated: a usual pace over 6 m and for 150 s, and a rapid pace over 6 m and 400 m. In multivariate linear regression analyses, kPCr was associated with muscle strength (β = 0.140, = 0.007) and muscle quality (β = 0.127, = 0.022), independent of age, sex, height, and weight; muscle strength was also a significant independent correlate of walking speed (< 0.02 for all tasks) and in a formal mediation analysis significantly attenuated the association between kPCr and three of four walking tasks (18–29% reduction in β for kPCr). This is the first demonstration in human adults that mitochondrial function affects muscle strength and that inefficiency in muscle bioenergetics partially accounts for differences in mobility through this mechanism.  相似文献   

12.
Adequate support of energy for biological activities and during fluctuation of energetic demand is crucial for healthy aging; however, mechanisms for energy decline as well as compensatory mechanisms that counteract such decline remain unclear. We conducted a discovery proteomic study of skeletal muscle in 57 healthy adults (22 women and 35 men; aged 23–87 years) to identify proteins overrepresented and underrepresented with better muscle oxidative capacity, a robust measure of in vivo mitochondrial function, independent of age, sex, and physical activity. Muscle oxidative capacity was assessed by 31P magnetic resonance spectroscopy postexercise phosphocreatine (PCr) recovery time (τPCr) in the vastus lateralis muscle, with smaller τPCr values reflecting better oxidative capacity. Of the 4,300 proteins quantified by LC‐MS in muscle biopsies, 253 were significantly overrepresented with better muscle oxidative capacity. Enrichment analysis revealed three major protein clusters: (a) proteins involved in key energetic mitochondrial functions especially complex I of the electron transport chain, tricarboxylic acid (TCA) cycle, fatty acid oxidation, and mitochondrial ABC transporters; (b) spliceosome proteins that regulate mRNA alternative splicing machinery, and (c) proteins involved in translation within mitochondria. Our findings suggest that alternative splicing and mechanisms that modulate mitochondrial protein synthesis are central features of the molecular mechanisms aimed at maintaining mitochondrial function in the face of impairment. Whether these mechanisms are compensatory attempt to counteract the effect of aging on mitochondrial function should be further tested in longitudinal studies.  相似文献   

13.
14.
  1. Arctic animals inhabit some of the coldest environments on the planet and have evolved physiological mechanisms for minimizing heat loss under extreme cold. However, the Arctic is warming faster than the global average and how well Arctic animals tolerate even moderately high air temperatures (T a) is unknown.
  2. Using flow‐through respirometry, we investigated the heat tolerance and evaporative cooling capacity of snow buntings (Plectrophenax nivalis; ≈31 g, N = 42), a cold specialist, Arctic songbird. We exposed buntings to increasing T a and measured body temperature (T b), resting metabolic rate (RMR), rates of evaporative water loss (EWL), and evaporative cooling efficiency (the ratio of evaporative heat loss to metabolic heat production).
  3. Buntings had an average (±SD) T b of 41.3 ± 0.2°C at thermoneutral T a and increased T b to a maximum of 43.5 ± 0.3°C. Buntings started panting at T a of 33.2 ± 1.7°C, with rapid increases in EWL starting at T a = 34.6°C, meaning they experienced heat stress when air temperatures were well below their body temperature. Maximum rates of EWL were only 2.9× baseline rates at thermoneutral T a, a markedly lower increase than seen in more heat‐tolerant arid‐zone species (e.g., ≥4.7× baseline rates). Heat‐stressed buntings also had low evaporative cooling efficiencies, with 95% of individuals unable to evaporatively dissipate an amount of heat equivalent to their own metabolic heat production.
  4. Our results suggest that buntings’ well‐developed cold tolerance may come at the cost of reduced heat tolerance. As the Arctic warms, and this and other species experience increased periods of heat stress, a limited capacity for evaporative cooling may force birds to increasingly rely on behavioral thermoregulation, such as minimizing activity, at the expense of diminished performance or reproductive investment.
  相似文献   

15.
SARS‐CoV‐2 vaccines are highly efficient against severe forms of the disease, hospitalization and death. Nevertheless, insufficient protection against several circulating viral variants might suggest waning immunity and the need for an additional vaccine dose. We conducted a longitudinal study on the kinetics and persistence of immune responses in healthcare workers vaccinated with two doses of BNT162b2 mRNA vaccine with or without prior SARS‐CoV‐2 infection. No new infections were diagnosed during follow‐up. At 6 months, post‐vaccination or post‐infection, despite a downward trend in the level of anti‐S IgG antibodies, the neutralizing activity does not decrease significantly, remaining higher than 75% (85.14% for subjects with natural infection, 88.82% for vaccinated after prior infection and 78.37% for vaccinated only). In a live‐virus neutralization assay, the highest neutralization titres were present at baseline and at 6 months follow‐up in persons vaccinated after prior infection. Anti‐S IgA levels showed a significant descending trend in vaccinated subjects (p < 0.05) after 14 weeks. Cellular immune responses are present even in vaccinated participants with declining antibody levels (index ratio 1.1–3) or low neutralizing activity (30%–40%) at 6 months, although with lower T‐cell stimulation index (p = 0.046) and IFN‐γ secretion (p = 0.0007) compared to those with preserved humoral responses.  相似文献   

16.
Specialized pro‐resolving mediators actively limit inflammation and support tissue regeneration, but their role in age‐related muscle dysfunction has not been explored. We profiled the mediator lipidome of aging muscle via liquid chromatography‐tandem mass spectrometry and tested whether treatment with the pro‐resolving mediator resolvin D1 (RvD1) could rejuvenate the regenerative ability of aged muscle. Aged mice displayed chronic muscle inflammation and this was associated with a basal deficiency of pro‐resolving mediators 8‐oxo‐RvD1, resolvin E3, and maresin 1, as well as many anti‐inflammatory cytochrome P450‐derived lipid epoxides. Following muscle injury, young and aged mice produced similar amounts of most pro‐inflammatory eicosanoid metabolites of cyclooxygenase (e.g., prostaglandin E2) and 12‐lipoxygenase (e.g., 12‐hydroxy‐eicosatetraenoic acid), but aged mice produced fewer markers of pro‐resolving mediators including the lipoxins (15‐hydroxy‐eicosatetraenoic acid), D‐resolvins/protectins (17‐hydroxy‐docosahexaenoic acid), E‐resolvins (18‐hydroxy‐eicosapentaenoic acid), and maresins (14‐hydroxy‐docosahexaenoic acid). Similar absences of downstream pro‐resolving mediators including lipoxin A4, resolvin D6, protectin D1/DX, and maresin 1 in aged muscle were associated with greater inflammation, impaired myofiber regeneration, and delayed recovery of strength. Daily intraperitoneal injection of RvD1 had minimal impact on intramuscular leukocyte infiltration and myofiber regeneration but suppressed inflammatory cytokine expression, limited fibrosis, and improved recovery of muscle function. We conclude that aging results in deficient local biosynthesis of specialized pro‐resolving mediators in muscle and that immunoresolvents may be attractive novel therapeutics for the treatment of muscular injuries and associated pain in the elderly, due to positive effects on recovery of muscle function without the negative side effects on tissue regeneration of non‐steroidal anti‐inflammatory drugs.  相似文献   

17.
We aim to assess the influence of phylogenetic scale on the relationships of taxonomic and phylogenetic turnovers with environment for angiosperms in China. Specifically, we quantify the effects of contemporary climate on β‐diversity at different phylogenetic scales representing different evolutionary depths of angiosperms. We sampled a latitudinal gradient and a longitudinal gradient of angiosperm assemblages across China (each ≥3400 km). Species composition in each assemblage was documented. Three metrics of β‐diversity (βsim.tax measuring taxonomic β‐diversity; βsim.phy and Dpw measuring tip‐ and basal‐weighted phylogenetic β‐diversity, respectively) were quantified among assemblages at sequential depths in the evolutionary history of angiosperms from the tips to deeper branches. This was done by slicing the angiosperm phylogenetic tree at six evolutionary depths (0, 15, 30, 45, 60, and 75 million years ago). β‐diversity at each evolutionary depth was related to geographic and climatic distances between assemblages. In general, the relationship between β‐diversity and climatic distance decreased from shallow to deep evolutionary time slice for all the three metrics. The slopes of the decreasing trends for βsim.tax and βsim.phy were much steeper for the latitudinal gradient than for the longitudinal gradient. The decreasing trend of the strength of the relationship was monotonic in all cases except for Dpw across the longitudinal gradient. Geographic distance between assemblages explained little variation in β‐diversity that was not explained by climatic distance. Our study shows that the strength of the relationship between β‐diversity and climatic distance decreases conspicuously from shallow to deep evolutionary depth for the latitudinal gradient, but this decreasing trend is less steep for the longitudinal gradient than for the latitudinal gradient, which likely reflects the influence of historical processes (e.g., the collision of the Indian plate with the Eurasian plate) on β‐diversity.  相似文献   

18.
ObjectivesHigh‐mobility group box‐1 (HMGB1) and aberrant mitochondrial fission mediated by excessive activation of GTPase dynamin‐related protein 1 (Drp1) have been found to be elevated in patients with pulmonary arterial hypertension (PAH) and critically implicated in PAH pathogenesis. However, it remains unknown whether Drp1‐mediated mitochondrial fission and which downstream targets of mitochondrial fission mediate HMGB1‐induced pulmonary arterial smooth muscle cells (PASMCs) proliferation and migration leading to vascular remodelling in PAH. This study aims to address these issues.MethodsPrimary cultured PASMCs were obtained from male Sprague‐Dawley (SD) rats. We detected RNA levels by qRT‐PCR, protein levels by Western blotting, cell proliferation by Cell Counting Kit‐8 (CCK‐8) and EdU incorporation assays, migration by wound healing and transwell assays. SD rats were injected with monocrotaline (MCT) to establish PAH. Hemodynamic parameters were measured by closed‐chest right heart catheterization.ResultsHMGB1 increased Drp1 phosphorylation and Drp1‐dependent mitochondrial fragmentation through extracellular signal‐regulated kinases 1/2 (ERK1/2) signalling activation, and subsequently triggered autophagy activation, which further led to bone morphogenetic protein receptor 2 (BMPR2) lysosomal degradation and inhibitor of DNA binding 1 (Id1) downregulation, and eventually promoted PASMCs proliferation/migration. Inhibition of ERK1/2 cascade, knockdown of Drp1 or suppression of autophagy restored HMGB1‐induced reductions of BMPR2 and Id1, and diminished HMGB1‐induced PASMCs proliferation/migration. In addition, pharmacological inhibition of HMGB1 by glycyrrhizin, suppression of mitochondrial fission by Mdivi‐1 or blockage of autophagy by chloroquine prevented PAH development in MCT‐induced rats PAH model.ConclusionsHMGB1 promotes PASMCs proliferation/migration and pulmonary vascular remodelling by activating ERK1/2/Drp1/Autophagy/BMPR2/Id1 axis, suggesting that this cascade might be a potential novel target for management of PAH.  相似文献   

19.
ObjectiveAcute liver failure is usually associated with inflammation and oxidation of hepatocytes and has high mortality and resource costs. Mesenchymal stem cell (MSCs) has occasionally been reported to have no beneficial effect due to poor transplantation and the survival of implanted cells. Recent studies showed that embryonic stem cell (ESC)‐derived MSCs are an alternative for regenerative medicine. On the other hand, graphene‐based nanostructures have proven useful in biomedicine. In this study, we investigated whether magnetic graphene oxide (MGO) improved the effects of ESC‐MSC conditioned medium (CM) on protecting hepatocytes and stimulating the regeneration of damaged liver cells.Materials and methodsTo provide a rat model of acute liver failure, male rats were injected intraperitoneally with carbon tetrachloride (CCl4). The rats were randomly divided into six groups, namely control, sham, CCl4, ESC‐MSC‐CM, MGO and ESC‐MSC‐CM + MGO. In the experimental groups, the rats received, depending on the group, 2 ml/kg body weight CCl4 and either ESC‐MSC‐CM with 5 × 106 MSCs or 300 μg/kg body weight MGO or both. Symptoms of acute liver failure appeared 4 days after the injection. All groups were compared and analysed both histologically and biochemically 4 days after the injection. Finally, the results of ESC‐MSC‐CM and MSC‐CM were compared.ResultsThe results indicated that the use of MGO enhanced the effect of ESC‐MSC‐CM on reducing necrosis, inflammation, aspartate transaminase, alanine aminotransferase and alkaline phosphatase in the CCl4‐induced liver failure of the rat model. Also, the expression of vascular endothelial growth factor and matrix metalloproteinase‐9 (MMP‐9) was significantly upregulated after treatment with MGO. Also, the results showed that the ESC‐MSC‐CM has more efficient effective compared to MSC‐CM.ConclusionMagnetic graphene oxide improved the hepatoprotective effects of ESC‐MSC‐CM on acute liver damage, probably by suppressing necrosis, apoptosis and inflammation of hepatocytes.  相似文献   

20.
IntroductionSkin is susceptible to senescence‐associated secretory phenotype (SASP) and inflamm‐ageing partly owing to the degeneration of mitochondria. AdipoRon (AR) has protective effects on mitochondria in metabolic diseases such as diabetes. We explored the role of AR on mitochondria damage induced by skin inflamm‐ageing and its underlying mechanism.MethodsWestern blot, immunofluorescence and TUNEL staining were used to detect inflammatory factors and apoptosis during skin ageing. Transmission electron microscopy, ATP determination kit, CellLight Mitochondria GFP (Mito‐GFP), mitochondrial stress test, MitoSOX and JC‐1 staining were used to detect mitochondrial changes. Western blot was applied to explore the underlying mechanism. Flow cytometry, scratch test, Sulforhodamine B assay and wound healing test were used to detect the effects of AR on cell apoptosis, migration and proliferation.ResultsAR attenuated inflammatory factors and apoptosis that increased in aged skin, and improved mitochondrial morphology and function. This process at least partly depended on the suppression of dynamin‐related protein 1 (Drp1)‐mediated excessive mitochondrial division. More specifically, AR up‐regulated the phosphorylation of Drp1 at Serine 637 by activating AMP‐activated protein kinase (AMPK), thereby inhibiting the mitochondrial translocation of Drp1. Moreover, AR reduced mitochondrial fragmentation and the production of superoxide, preserved the membrane potential and permeability of mitochondria and accelerated wound healing in aged skin.ConclusionAR rescues the mitochondria in aged skin by suppressing its excessive division mediated by Drp1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号