首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Africanized honey bees entered California in 1994 but few accounts of their northward expansion or their frequency relative to European honey bees have been published. We used mitochondrial markers and morphometric analyses to determine the prevalence of Africanized honeybees in San Diego County and their current northward progress in California west of the Sierra Nevada crest. The northernmost African mitotypes detected were approximately 40 km south of Sacramento in California’s central valley. In San Diego County, 65% of foraging honey bee workers carry African mitochondria and the estimated percentage of Africanized workers using morphological measurements is similar (61%). There was no correlation between mitotype and morphology in San Diego County suggesting Africanized bees result from bidirectional hybridization. Seventy percent of feral hives, but only 13% of managed hives, sampled in San Diego County carried the African mitotype indicating that a large fraction of foraging workers in both urban and rural San Diego County are feral. We also found a single nucleotide polymorphism at the DNA barcode locus COI that distinguishes European and African mitotypes. The utility of this marker was confirmed using 401 georeferenced honey bee sequences from the worldwide Barcode of Life Database. Future censuses can determine whether the current range of the Africanized form is stable, patterns of introgression at nuclear loci, and the environmental factors that may limit the northern range of the Africanized honey bee.  相似文献   

2.
A highly polymorphic locus in the honey bee, Apis mellifera L., was detected with genomic probe pB178. Eighty-five alleles, consisting of Msp I and Dde I RFLPs, were found among the Old and New World bees tested. Forty-one Msp I and 43 Dde I restriction fragment patterns, or variants, were identified. Variants and alleles were discontinuously distributed in Old World European and African subspecies. Principal coordinate analysis of the genetic distances between the alleles resulted in the identification of three distinct groups corresponding to three groups of honey bee races with historically different geographical distributions: east European A. m. ligustica and A. m. caucasica ; west European A. m. mellifera ; and South African A. m. scutellata . The clustering of alleles into these groups is consistent with previous honey bee phylogeographic studies, employing other nuclear and mitochondrial DNA markers, which in part support the evolutionary history of the honey bee hypothesized by Ruttner based on morphometric and allozyme data. The majority of alleles in bees from the USA grouped with those found in east European bees, while other alleles grouped with alleles found in A. m. mellifera . While the majority of the alleles in neotropical bees grouped with or were identical to African alleles, other alleles grouped with alleles found in A. m. mellifera, A. m. ligustica , and A. m. caucasica . Clues to the ancestry of neotropical bees may be found in the identification of alleles that were identical or more similar to alleles found in South African and west European bees; evidence for west European ancestry has been suggested using other taxonomic characters that were not unique to west European bees. Both west European and African alleles were found in individual neotropical colonies, which may indicate that honey bee subspecies which evolved allopatrically have hybridized in the human-assisted extension of their original geographical ranges.  相似文献   

3.
Management increases genetic diversity of honey bees via admixture   总被引:1,自引:0,他引:1  
Harpur BA  Minaei S  Kent CF  Zayed A 《Molecular ecology》2012,21(18):4414-4421
The process of domestication often brings about profound changes in levels of genetic variation in animals and plants. The honey bee, Apis mellifera, has been managed by humans for centuries for both honey and wax production and crop pollination. Human management and selective breeding are believed to have caused reductions in genetic diversity in honey bee populations, thereby contributing to the global declines threatening this ecologically and economically important insect. However, previous studies supporting this claim mostly relied on population genetic comparisons of European and African (or Africanized) honey bee races; such conclusions require reassessment given recent evidence demonstrating that the honey bee originated in Africa and colonized Europe via two independent expansions. We sampled honey bee workers from two managed populations in North America and Europe as well as several old-world progenitor populations in Africa, East and West Europe. Managed bees had highly introgressed genomes representing admixture between East and West European progenitor populations. We found that managed honey bees actually have higher levels of genetic diversity compared with their progenitors in East and West Europe, providing an unusual example whereby human management increases genetic diversity by promoting admixture. The relationship between genetic diversity and honey bee declines is tenuous given that managed bees have more genetic diversity than their progenitors and many viable domesticated animals.  相似文献   

4.
Urban landscapes provide habitat for many species, including domesticated and feral honey bees, Apis mellifera L. (Hymenoptera: Apidae). With recent losses of managed honey bee colonies, there is increasing interest in feral honey bee colonies and their potential contribution to pollination services in agricultural, natural, and urban settings. However, in some regions the feral honey bee population consists primarily of Africanized honey bees. Africanized honey bees (AHB) are hybrids between European honey bees and the African honey bee, Apis mellifera scutellataLepeletier, and have generated economic, ecological, and human health concerns because of their aggressive behavior. In this study, we used two long‐term datasets (7–10 years) detailing the spatial and temporal distribution of AHB colonies in Tucson, AZ, USA, where feral colonies occupy a variety of cavities including water meter boxes. A stage‐structured matrix model was used to elucidate the implications of nest site selection and the effects of colony terminations on the structure and dynamics of the AHB population. Our results suggest that Tucson's AHB population is driven by a relatively small number of ‘source’ colonies that escape termination (ca. 0.165 colonies per km2 or 125 colonies in total), although immigrating swarms and absconding colonies from the surrounding area may have also contributed to the stability of the Tucson AHB population. Furthermore, the structure of the population has likely been impacted by the number and spatial distribution of water meter boxes across the city. The study provides an example of how urban wildlife populations are driven by interactions among landscape structure, human management, and behavioral traits conferred by an invasive genotype.  相似文献   

5.
Honey bees (Apis mellifera L.) are the primary commercial pollinators across the world. The subspecies A. m. scutellata originated in Africa and was introduced to the Americas in 1956. For the last 60 years, it hybridized successfully with European subspecies, previous residents in the area. The result of this hybridization was called Africanized honey bee (AHB). AHB has spread since then, arriving to Puerto Rico (PR) in 1994. The honey bee population on the island acquired a mosaic of features from AHB or the European honey bee (EHB). AHB in Puerto Rico shows a major distinctive characteristic, docile behavior, and is called gentle Africanized honey bees (gAHB). We used 917 SNPs to examine the population structure, genetic differentiation, origin, and history of range expansion and colonization of gAHB in PR. We compared gAHB to populations that span the current distribution of A. mellifera worldwide. The gAHB population is shown to be a single population that differs genetically from the examined populations of AHB. Texas and PR groups are the closest genetically. Our results support the hypothesis that the Texas AHB population is the source of gAHB in Puerto Rico.  相似文献   

6.
In recent years, studies based on isoenzymatic patterns of geographic variation have revealed that what is usually called the Africanized honey bee does not constitute a single population. Instead, several local populations exist with various degrees of admixture with European honey bees. In this paper, we evaluated new data on morphometric patterns of Africanized honey bees collected at 42 localities in Brazil, using univariate and multivariate (canonical) trend surface and spatial autocorrelation analyses. The clinal patterns of variation found for genetically independent characters (wing size characters and some wing venation angles) are concordant with previous studies of malate dehydrogenase (MDH) allelic frequencies and support the hypothesis that larger honey bees in southern and southeastern Brazil originated by racial admixture in the initial phases of African honey bee colonization. Geographic variation patterns of Africanized honey bee populations reflect a demic diffusion process in which European genes were gradually lost because of the higher fitness of the African gene pool in Neotropical environmental conditions.  相似文献   

7.
The processes of genetic admixture determine the haplotype structure and linkage disequilibrium patterns of the admixed population, which is important for medical and evolutionary studies. However, most previous studies do not consider the inherent complexity of admixture processes. Here we proposed two approaches to explore population admixture dynamics, and we demonstrated, by analyzing genome-wide empirical and simulated data, that the approach based on the distribution of chromosomal segments of distinct ancestry (CSDAs) was more powerful than that based on the distribution of individual ancestry proportions. Analysis of 1,890 African Americans showed that a continuous gene flow model, in which the African American population continuously received gene flow from European populations over about 14 generations, best explained the admixture dynamics of African Americans among several putative models. Interestingly, we observed that some African Americans had much more European ancestry than the simulated samples, indicating substructures of local ancestries in African Americans that could have been caused by individuals from some particular lineages having repeatedly admixed with people of European ancestry. In contrast, the admixture dynamics of Mexicans could be explained by a gradual admixture model in which the Mexican population continuously received gene flow from both European and Amerindian populations over about 24 generations. Our results also indicated that recent gene flows from Sub-Saharan Africans have contributed to the gene pool of Middle Eastern populations such as Mozabite, Bedouin, and Palestinian. In summary, this study not only provides approaches to explore population admixture dynamics, but also advances our understanding on population history of African Americans, Mexicans, and Middle Eastern populations.  相似文献   

8.
Hybridisation and introgression can have negative impacts on regional biodiversity through the potential erosion of locally adapted lineages. The honey bee (Apis mellifera L.) occurs in twenty-seven subspecies across Europe, is an extremely economically important insect, yet threatened by multifarious impacts. Transhumance of the most commercially appealing varieties threatens native honey bee diversity by introgression and subsequent loss of locally adapted traits, or even by complete removal of some subspecies from parts of the range. Here levels of admixture and introgression are examined in UK honey bees suspected to be from hives of the dark European honey bee (Apis mellifera mellifera). Microsatellite DNA and STRUCTURE analyses reveal that the studied populations are generally admixed, and discriminant analysis of principal components shows them to be intermediate between A. m. mellifera and Apis mellifera carnica populations. However, examining mitochondrial haplotype data (COI-COII intergenic spacer region) and nuclear DNA reveal that some hives are relatively pure (from 4 to 15 hives, depending on the Q-value threshold). Genetic diversity is relatively high in comparison with other European populations. Implications for conservation and management are discussed.  相似文献   

9.
Mitochondrial DNA variation in Moroccan and Spanish honey bee populations   总被引:4,自引:0,他引:4  
The mitochondrial DNAs of 192 Moroccan and 173 Spanish honey bee colonies were characterized by a rapid test involving the restriction by DraI of a PCR-fragment of the COI-COII region. In Morocco, we found eight haplotypes, all characteristic of the African (A) lineage, suggesting that most if not all the maternal lineages of the colonies repeatedly imported from Europe over the last 150 years have not contributed mitochondrial genomes to the local population. Using two new genetic distances analogous to the shared allele distance defined for nuclear genes, we showed that Morocco was most probably colonized by two sublineages, one from the north-east and the other one from the south of the country and that the contact zone between them extends along both sides of the Atlas range. In Spain, we found eight haplotypes characteristic of lineage A (six in common with Morocco) and four of lineage M (the West European lineage). The distribution of haplotypes of both lineages forms a gradient with c. 10% of lineage M in the south of Spain (Seville) and up to 100% in the north (San Sebastian). Three hypotheses are presented to explain the large differences of haplotype frequencies between Moroccan and lineage A Spanish colonies: a non-Moroccan origin of lineage A in Spain, an ancient Moroccan origin or a recent Moroccan origin with a rapid shift of haplotype frequencies due to a founder effect.  相似文献   

10.
Bacteria that engage in long‐standing associations with particular hosts are expected to evolve host‐specific adaptations that limit their capacity to thrive in other environments. Consistent with this, many gut symbionts seem to have a limited host range, based on community profiling and phylogenomics. However, few studies have experimentally investigated host specialization of gut symbionts and the underlying mechanisms have largely remained elusive. Here, we studied host specialization of a dominant gut symbiont of social bees, Lactobacillus Firm5. We show that Firm5 strains isolated from honey bees and bumble bees separate into deep‐branching host‐specific phylogenetic lineages. Despite their divergent evolution, colonization experiments show that bumble bee strains are capable of colonizing the honey bee gut. However, they were less successful than honey bee strains, and competition with honey bee strains completely abolished their colonization. In contrast, honey bee strains of divergent phylogenetic lineages were able to coexist within individual bees. This suggests that both host selection and interbacterial competition play important roles in host specialization. Using comparative genomics of 27 Firm5 isolates, we found that the genomes of honey bee strains harbour more carbohydrate‐related functions than bumble bee strains, possibly providing a competitive advantage in the honey bee gut. Remarkably, most of the genes encoding carbohydrate‐related functions were not conserved among the honey bee strains, which suggests that honey bees can support a metabolically more diverse community of Firm5 strains than bumble bees. These findings advance our understanding of the genomic changes underlying host specialization.  相似文献   

11.
To study the genetic diversity of honey bees (Apis mellifera L.) from unmanaged colonies in the United States, we sequenced a portion of the mitochondrial DNA COI–COII region. From the 530 to 1,230 bp amplicon, we observed 23 haplotypes from 247 samples collected from 12 states, representing three of the four A. mellifera lineages known to have been imported into the United States (C, M, and O). Six of the 13 C lineage haplotypes were not found in previous queen breeder studies in the United States. The O lineage accounted for 9% of unmanaged colonies which have not yet been reported in queen breeder studies. The M lineage accounted for a larger portion of unmanaged samples (7%) than queen breeder samples (3%). Based on our mitochondrial DNA data, the genetic diversity of unmanaged honey bees in the United States differs significantly from that of queen breeder populations (p < 0.00001). The detection of genetically distinct maternal lineages of unmanaged honey bees suggests that these haplotypes may have existed outside the managed honey bee population for a long period.  相似文献   

12.
De la Rúa et al. (2013) express some concerns about the conclusions of our recent study showing that management increases genetic diversity of honey bees (Apis mellifera) by promoting admixture (Harpur et al. 2012). We provide a brief review of the literature on the population genetics of A. mellifera and show that we utilized appropriate sampling methods to estimate genetic diversity in the focal populations. Our finding of higher genetic diversity in two managed A. mellifera populations on two different continents is expected to be the norm given the large number of studies documenting admixture in honey bees. Our study focused on elucidating how management affects genetic diversity in honey bees, not on how to best manage bee colonies. We do not endorse the intentional admixture of honey bee populations, and we agree with De la Rúa et al. (2013) that native honey bee subspecies should be conserved.  相似文献   

13.
The aim of this study was to investigate an underlying mechanism of the apparent tolerance of Africanized honey bees (AHB) to Varroa jacobsoni mites in Mexico. This was achieved by conducting the first detailed study into the mites' reproductive biology in AHB worker cells. The data was then compared directly with a similar study previously carried out on European honey bees (EHB) in the UK. A total of 1071 singly infested AHB worker cells were analyzed and compared with the data from 908 singly infested EHB worker cells. There was no significant difference between the number of mother mites dying in the cells (AHB = 2.0%, EHB = 1.8%); the mean number of eggs laid per mite (AHB = 4.86, EHB = 4.93); the number of mites producing no offspring (AHB = 12%, EHB = 9%); and developmental times of the offspring in worker cells of AHB and EHB. However, there was a major difference between the percentage of mother mites producing viable adult female offspring (AHB = 40%, EHB = 75%). This was caused by the increased rate of mite offspring mortality suffered by the first (male) and second (female) offspring in AHB worker cells. Therefore, only an average of 0.7 viable adult female offspring are produced per mite in AHB, compared to 1.0 in EHB.  相似文献   

14.
Intensive beekeeping to mitigate crop pollination deficits and habitat loss may cause interspecific competition between bees. Studies show negative correlations between flower visitation of honey bees (Apis mellifera) and wild bees, but effects on the reproduction of wild bees were not proven. Likely reasons are that honey bees can hardly be excluded from controls and wild bee nests are generally difficult to detect in field experiments. The goal of this study was to investigate whether red mason bees (Osmia bicornis) compete with honey bees in cages in order to compare the reproduction of red mason bees under different honey bee densities. Three treatments were applied, each replicated in four cages of 18 m³ with 38 red mason bees in all treatments and 0, 100, and 300 honey bees per treatment with 10–20% being foragers. Within the cages, the flower visitation and interspecific displacements from flowers were observed. Niche breadths and resource overlaps of both bee species were calculated, and the reproduction of red mason bees was measured. Red mason bees visited fewer flowers when honey bees were present. Niche breadth of red mason bees decreased with increasing honey bee density while resource overlaps remained constant. The reproduction of red mason bees decreased in cages with honey bees. In conclusion, our experimental results show that in small and isolated flower patches, wild bees can temporarily suffer from competition with honey bees. Further research should aim to test for competition on small and isolated flower patches in real landscapes.  相似文献   

15.
The population genetic structure of Native Hawaiians has yet to be comprehensively studied, and the ancestral origins of Polynesians remain in question. In this study, we utilized high-resolution genome-wide SNP data and mitochondrial genomes of 148 and 160 Native Hawaiians, respectively, to characterize their population structure of the nuclear and mitochondrial genomes, ancestral origins, and population expansion. Native Hawaiians, who self-reported full Native Hawaiian heritage, demonstrated 78% Native Hawaiian, 11.5% European, and 7.8% Asian ancestry with 99% belonging to the B4 mitochondrial haplogroup. The estimated proportions of Native Hawaiian ancestry for those who reported mixed ancestry (i.e. 75% and 50% Native Hawaiian heritage) were found to be consistent with their self-reported heritage. A significant proportion of Melanesian ancestry (mean = 32%) was estimated in 100% self-reported Native Hawaiians in an ADMIXTURE analysis of Asian, Melanesian, and Native Hawaiian populations of K = 2, where K denotes the number of ancestral populations. This notable proportion of Melanesian admixture supports the “Slow-Boat” model of migration of ancestral Polynesian populations from East Asia to the Pacific Islands. In addition, approximately 1,300 years ago a single, strong expansion of the Native Hawaiian population was estimated. By providing important insight into the underlying population structure of Native Hawaiians, this study lays the foundation for future genetic association studies of this U.S. minority population.  相似文献   

16.
Honeybees (Apis mellifera L.) sampled at sites in Europe, Africa and South America were analysed using a mitochondrial DNA restriction fragment length polymorphism (RFLP) marker. These samples were used to provide baseline information for a detailed analysis of the process of Africanization of bees from the neotropical Yucatan peninsula of Mexico. Radical changes in mitochondrial haplotype (mitotype) frequencies were found to have occurred in the 13-year period studied. Prior to the arrival of Africanized bees (1986) the original inhabitants of the Yucatan peninsula appear to have been essentially of southeastern European origin with a smaller proportion having northwestern European ancestry. Three years after the migration of Africanized bees into the area (1989), only very low levels of maternal gene flow from Africanized populations into the resident European populations had occurred. By 1998, however, there was a sizeable increase in the proportion of African mitotypes in domestic populations (61%) with feral populations having 87% of mitotypes classified as African derived. The results suggest that the early stages of Africanization did not involve a rapid replacement of European with African mitotypes and that earlier studies probably overestimated the prevalence of African mitotypes.  相似文献   

17.
The honeybee, Apis mellifera, is the world's most important pollinator and is ubiquitous in most agricultural ecosystems. Four major evolutionary lineages and at least 24 subspecies are recognized. Commercial populations are mainly derived from subspecies originating in Europe (75–95%). The Africanized honeybee is a New World hybrid of A. m. scutellata from Africa and European subspecies, with the African component making up 50–90% of the genome. Africanized honeybees are considered undesirable for bee‐keeping in most countries, due to their extreme defensiveness and poor honey production. The international trade in honeybees is restricted, due in part to bans on the importation of queens (and semen) from countries where Africanized honeybees are extant. Some desirable strains from the United States of America that have been bred for traits such as resistance to the mite Varroa destructor are unfortunately excluded from export to countries such as Australia due to the presence of Africanized honeybees in the USA. This study shows that a panel of 95 single nucleotide polymorphisms, chosen to differentiate between the African, Eastern European and Western European lineages, can detect Africanized honeybees with a high degree of confidence via ancestry assignment. Our panel therefore offers a valuable tool to mitigate the risks of spreading Africanized honeybees across the globe and may enable the resumption of queen and bee semen imports from the Americas.  相似文献   

18.
The arrival to the United States of the Africanized honey bee, a hybrid between European subspecies and the African subspecies Apis mellifera scutellata, is a remarkable model for the study of biological invasions. This immigration has created an opportunity to study the dynamics of secondary contact of honey bee subspecies from African and European lineages in a feral population in South Texas. An 11‐year survey of this population (1991–2001) showed that mitochondrial haplotype frequencies changed drastically over time from a resident population of eastern and western European maternal ancestry, to a population dominated by the African haplotype. A subsequent study of the nuclear genome showed that the Africanization process included bidirectional gene flow between European and Africanized honey bees, giving rise to a new panmictic mixture of A. m. scutellata‐ and European‐derived genes. In this study, we examined gene flow patterns in the same population 23 years after the first hybridization event occurred. We found 28 active colonies inhabiting 92 tree cavities surveyed in a 5.14 km2 area, resulting in a colony density of 5.4 colonies/km2. Of these 28 colonies, 25 were of A. m. scutellata maternal ancestry, and three were of western European maternal ancestry. No colonies of eastern European maternal ancestry were detected, although they were present in the earlier samples. Nuclear DNA revealed little change in the introgression of A. m. scutellata‐derived genes into the population compared to previous surveys. Our results suggest this feral population remains an admixed swarm with continued low levels of European ancestry and a greater presence of African‐derived mitochondrial genetic composition.  相似文献   

19.

Background

Population history can be reflected in group genetic ancestry, where genomic variation captured by the mitochondrial DNA (mtDNA) and non-recombining portion of the Y chromosome (NRY) can separate female- and male-specific admixture processes. Genetic ancestry may influence genetic association studies due to differences in individual admixture within recently admixed populations like African Americans.

Principal Findings

We evaluated the genetic ancestry of Senegalese as well as European Americans and African Americans from Philadelphia. Senegalese mtDNA consisted of ∼12% U haplotypes (U6 and U5b1b haplotypes, common in North Africa) while the NRY haplotypes belonged solely to haplogroup E. In Philadelphia, we observed varying degrees of admixture. While African Americans have 9–10% mtDNAs and ∼31% NRYs of European origin, these results are not mirrored in the mtDNA/NRY pools of European Americans: they have less than 7% mtDNAs and less than 2% NRYs from non-European sources. Additionally, there is <2% Native American contribution to Philadelphian African American ancestry and the admixture from combined mtDNA/NRY estimates is consistent with the admixture derived from autosomal genetic data. To further dissect these estimates, we have analyzed our samples in the context of different demographic groups in the Americas.

Conclusions

We found that sex-biased admixture in African-derived populations is present throughout the Americas, with continual influence of European males, while Native American females contribute mainly to populations of the Caribbean and South America. The high non-European female contribution to the pool of European-derived populations is consistently characteristic of Iberian colonization. These data suggest that genomic data correlate well with historical records of colonization in the Americas.  相似文献   

20.
The Asian honey bee species i.e., Apis cerana (the eastern honey bee), A. dorsata (the giant honey bee), and the western or European honey bee (A. mellifera) collected from Pakistan were studied using partial sequences from two mitochondrial genes (i) the Cytochrome c oxidase I (COI) and (ii) the mitochondrially encoded NADH dehydrogenase 5 (ND5) and then compared with other honey bees sequences (already submitted from different countries around the globe) obtained after the national center for biotechnology information (NCBI). DNA sequences were analyzed employing molecular evolutionary genetics analysis and Kimura 2-parameter model, neighbor-joining method was applied to investigate phylogenetic relationships, and DNA sequence polymorphism was applied to measure the genetic diversity within the genus Apis. The phylogenetic analyses yielded consistent results. Based on COI gene fragment in two Asian and European honey bee species from Pakistan and from other countries showed considerable genetic diversity levels and deviation among the species. While in contrast the phylogenetic analyses based on ND5 gene fragment in Asian and European honey bee species from Pakistan and other countries showed comparatively higher genetic diversity indices and variations than the COI gene. So, in the genus Apis, the mitochondrial ND5 region has shown the possibility to answer the interactions among species. A further detailed work (by linking the analysis of other genomic and mitochondrial genes) is required for good quality solution to establish the concise genetic diversity and interaction among the Apis species. The objective of this study was to explore the extent of genetic differences and phylogenetic links among the three kinds of honey bee species from Pakistan and comparing them with other bee species around the globe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号