首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In exploring the roles of phenotypic plasticity in the establishment and early evolution of invading species, little empirical attention has been given to the importance of correlational selection acting upon suites of functionally related plastic traits in nature. We illustrate how this lack of attention has limited our ability to evaluate plasticity''s role during invasion and also, the costs and benefits of plasticity. We addressed these issues by transplanting clones of European‐derived Plantago lanceolata L. genotypes into two temporally variable habitats in the species'' introduced range in North America. Phenotypic selection analyses were performed for each habitat to estimate linear, quadratic, and correlational selection on phenotypic trait values and plasticities in the reproductive traits: flowering onset and spike and scape lengths. Also, we measured pairwise genetic correlations for our “colonists.” Results showed that (a) correlational selection acted on trait plasticity after transplantation, (b) selection favored certain combinations of genetically correlated and uncorrelated trait values and plasticities, and (c) using signed, instead of absolute, values of plasticity in analyses facilitated the detection of correlational selection on trait value‐plasticity combinations and their adaptive value. Based on our results, we urge future studies on species invasions to (a) measure correlational selection and (b) retain signed values of plasticity in order to better discriminate between adaptive and maladaptive plasticity.  相似文献   

2.
Many structural patterns have been found to be important for the stability and robustness of mutualistic plant–pollinator networks. These structural patterns are impacted by a suite of variables, including species traits, species abundances, their spatial configuration, and their phylogenetic history. Here, we consider a specific trait: phenology, or the timing of life history events. We expect that timing and duration of activity of pollinators, or of flowering in plants, could greatly affect the species'' roles within networks in which they are embedded. Using plant–pollinator networks from 33 sites in southern British Columbia, Canada, we asked (a) how phenological species traits, specifically timing of first appearance in the network and duration of activity in a network, were related to species'' roles within a network, and (b) how those traits affected network robustness to phenologically biased species loss. We found that long duration of activity increased connection within modules for both pollinators and plants and among modules for plants. We also found that date of first appearance was positively related to interaction strength asymmetry in plants but negatively related to pollinators. Networks were generally more robust to the loss of pollinators than plants, and robustness increased if the models allow new interactions to form when old ones are lost, constrained by overlapping phenology of plants and pollinators. Robustness declined with the loss of late‐flowering plants, which tended to have higher interaction strength asymmetry. In addition, robustness declined with loss of early‐flying or long‐duration pollinators. These pollinators tended to be among‐module connectors. Our results point to networks being limited by early‐flying pollinators. If plants flower earlier due to climate change, plant fitness may decline as they will depend on early emerging pollinators, unless pollinators also emerge earlier.  相似文献   

3.
Flowering and germination time are components of phenology, a complex phenotype that incorporates a number of traits. In natural populations, selection is likely to occur on multiple components of phenology at once. However, we have little knowledge of how joint selection on several phenological traits influences evolutionary response. We conducted one generation of artificial selection for all combinations of early and late germination and flowering on replicated lines within two independent base populations in the herb Campanula americana. We then measured response to selection and realized heritability for each trait. Response to selection and heritability were greater for flowering time than germination time, indicating greater evolutionary potential of this trait. Selection for earlier phenology, both flowering and germination, did not depend on the direction of selection on the other trait, whereas response to selection to delay germination and flowering was greater when selection on the other trait was in the opposite direction (e.g., early germination and late flowering), indicating a negative genetic correlation between the traits. Therefore, the extent to which correlations shaped response to selection depended on the direction of selection. Furthermore, the genetic correlation between timing of germination and flowering varies across the trait distributions. The negative correlation between germination and flowering time found when selecting for delayed phenology follows theoretical predictions of constraint for traits that jointly determine life history schedule. In contrast, the lack of constraint found when selecting for an accelerated phenology suggests a reduction of the covariance due to strong selection favoring earlier flowering and a shorter life cycle. This genetic architecture, in turn, will facilitate further evolution of the early phenology often favored in warm climates.  相似文献   

4.
Premise of the studyAs global climate change alters drought regimes, rapid evolution of traits that facilitate adaptation to drought can rescue populations in decline. The evolution of phenological advancement can allow plant populations to escape drought, but evolutionary responses in phenology can vary across a species'' range due to differences in drought intensity and standing genetic variation.Methods Mimulus cardinalis, a perennial herb spanning a broad climatic gradient, recently experienced a period of record drought. Here, we used a resurrection study comparing flowering time and stem height at first flower of pre‐drought ancestors and post‐drought descendants from northern‐edge, central, and southern‐edge populations in a common environment to examine the evolution of drought escape across the latitudinal range.Key resultsContrary to the hypothesis of the evolution of advanced phenology in response to recent drought, flowering time did not advance between ancestors and descendants in any population, though storage condition and maternal effects could have impacted these results. Stem height was positively correlated with flowering time, such that plants that flowered earlier were shorter at first flower. This correlation could constrain the evolution of earlier flowering time if selection favors flowering early at a large size.ConclusionsThese findings suggest that rapid evolution of phenology will not rescue these populations from recent climate change. Future work is needed to examine the potential for the evolution of alternative drought strategies and phenotypic plasticity to buffer M. cardinalis populations from changing climate.  相似文献   

5.
Ollerton  Jeff  Lack  Andrew 《Plant Ecology》1998,139(1):35-47
Over three years the flowering phenology of individuals of Lotus corniculatus has been studied in relation to fruit set and seed predation to determine the relationships between four components of flowering time, plant size and reproductive success. Timings of first and peak flowering, and duration and synchrony of flowering differed between individuals in the same years. Between years, timing of first flowering was highly correlated for the same individuals, and was closely correlated with plant size and duration of flowering–larger plants flowered earlier and for a longer period. Peak flowering and synchrony were not correlated between-years for individuals.Fruit production and seed predation were correlated with some of the components of flowering phenology in some years, but not in others. The inconstancy of these relationships suggests that directional or stabilising selection is not acting consistently on the aspects of reproductive success studied in this work. The inconstancy of selection may result in the rather asynchronous flowering phenologies of individuals of L. corniculatus observed.We emphasize the importance of studying different components of flowering phenology in relation to individual plant size over several seasons. This work has shown that plant size not only has a direct effect on individual plant fecundity but also can influence flowering time and hence indirectly affect reproductive output.  相似文献   

6.
Under climate warming, plants will undergo novel selective pressures to adjust reproductive timing. Adjustment between reproductive phenology and environment is expected to be higher in arctic and alpine habitats because the growing season is considerably short. As early- and late-flowering species reproduce under very different environmental conditions, selective pressures on flowering phenology and potential effects of climate change are likely to differ between them. However, there is no agreement on the magnitude of the benefits and costs of early- vs. late-flowering species under a global warming scenario. In spite of its relevance, phenotypic selection on flowering phenology has rarely been explored in alpine plants and never in Mediterranean high mountain species, where selective pressures are very different due to the summer drought imposed over the short growth season. We hypothesized that late-flowering plants in Mediterranean mountains should present stronger selective pressures towards early onset of reproduction than early-flowering species, because less water is available in the soil as growing season progresses. We performed selection analyses on flowering onset and duration in two high mountain species of contrasting phenology. Since phenotypic selection can be highly context-dependent, we studied several populations of each species for 2 years, covering their local altitudinal ranges and their different microhabitats. Surrogates of biotic selective agents, like fruitset for pollinators and flower and fruit loss for flower and seed predators, were included in the analysis. Differences between the early- and the late-flowering species were less than expected. A consistent negative correlational selection of flowering onset and duration was found affecting plant fitness, i.e., plants that bloomed earlier flowered for longer periods improving plant fitness. Nevertheless, the late-flowering species may experience higher risks under climate warming because in extremely warm and dry years the earlier season does not bring about a longer flowering duration due to summer drought.  相似文献   

7.
To predict long‐term responses to climate change, we need to understand how changes in temperature and precipitation elicit both immediate phenotypic responses and changes in natural selection. We used 22 years of data for the perennial herb Lathyrus vernus to examine how climate influences flowering phenology and phenotypic selection on phenology. Plants flowered earlier in springs with higher temperatures and higher precipitation. Early flowering was associated with a higher fitness in nearly all years, but selection for early flowering was significantly stronger in springs with higher temperatures and lower precipitation. Climate influenced selection through trait distributions, mean fitness and trait?fitness relationships, the latter accounting for most of the among‐year variation in selection. Our results show that climate both induces phenotypic responses and alters natural selection, and that the change in the optimal phenotype might be either weaker, as for spring temperature, or stronger, as for precipitation, than the optimal response.  相似文献   

8.
The evolution of floral display and flowering time in animal-pollinated plants is commonly attributed to pollinator-mediated selection. Yet, the causes of selection on flowering phenology and traits contributing to floral display have rarely been tested experimentally in natural populations. We quantified phenotypic selection on morphological and phenological characters in the perennial, outcrossing herb Arabidopsis lyrata in two years using female reproductive success as a proxy of fitness. To determine whether selection on floral display and flowering phenology can be attributed to interactions with pollinators, selection was quantified both for open-pollinated controls and for plants receiving supplemental hand-pollination. We documented directional selection for many flowers, large petals, late start of flowering, and early end of flowering. Seed output was pollen-limited in both years and supplemental hand-pollination reduced the magnitude of selection on number of flowers, and reversed the direction of selection on end of flowering. The results demonstrate that interactions with pollinators may affect the strength of selection on floral display and the direction of selection on phenology of flowering in natural plant populations. They thus support the contention that pollinators can drive the evolution of both floral display and flowering time.  相似文献   

9.
Under global warming, the survival of many populations of sedentary organisms in seasonal environments will largely depend on their ability to cope with warming in situ by means of phenotypic plasticity or adaptive evolution. This is particularly true in high‐latitude environments, where current growing seasons are short, and expected temperature increases large. In such short‐growing season environments, the timing of growth and reproduction is critical to survival. Here, we use the unique setting provided by a natural geothermal soil warming gradient (Hengill geothermal area, Iceland) to study the response of Cerastium fontanum flowering phenology to temperature. We hypothesized that trait expression and phenotypic selection on flowering phenology are related to soil temperature, and tested the hypothesis that temperature‐driven differences in selection on phenology have resulted in genetic differentiation using a common garden experiment. In the field, phenology was related to soil temperature, with plants in warmer microsites flowering earlier than plants at colder microsites. In the common garden, plants responded to spring warming in a counter‐gradient fashion; plants originating from warmer microsites flowered relatively later than those originating from colder microsites. A likely explanation for this pattern is that plants from colder microsites have been selected to compensate for the shorter growing season by starting development at lower temperatures. However, in our study we did not find evidence of variation in phenotypic selection on phenology in relation to temperature, but selection consistently favoured early flowering. Our results show that soil temperature influences trait expression and suggest the existence of genetically based variation in flowering phenology leading to counter‐gradient local adaptation along a gradient of soil temperatures. An important implication of our results is that observed phenotypic responses of phenology to global warming might often be a combination of short‐term plastic responses and long‐term evolutionary responses, acting in different directions.  相似文献   

10.
Closely related species often differ in traits that influence reproductive success, suggesting that divergent selection on such traits contribute to the maintenance of species boundaries. Gymnadenia conopsea ss. and Gymnadenia densiflora are two closely related, perennial orchid species that differ in (a) floral traits important for pollination, including flowering phenology, floral display, and spur length, and (b) dominant pollinators. If plant–pollinator interactions contribute to the maintenance of trait differences between these two taxa, we expect current divergent selection on flowering phenology and floral morphology between the two species. We quantified phenotypic selection via female fitness in one year on flowering start, three floral display traits (plant height, number of flowers, and corolla size) and spur length, in six populations of G. conopsea s.s. and in four populations of G. densiflora. There was indication of divergent selection on flowering start in the expected direction, with selection for earlier flowering in two populations of the early‐flowering G. conopsea s.s. and for later flowering in one population of the late‐flowering G. densiflora. No divergent selection on floral morphology was detected, and there was no significant stabilizing selection on any trait in the two species. The results suggest ongoing adaptive differentiation of flowering phenology, strengthening this premating reproductive barrier between the two species. Synthesis: This study is among the first to test whether divergent selection on floral traits contribute to the maintenance of species differences between closely related plants. Phenological isolation confers a substantial potential for reproductive isolation, and divergent selection on flowering time can thus greatly influence reproductive isolation and adaptive differentiation.  相似文献   

11.
Floral traits have largely been attributed to phenotypic selection in plant–pollinator interactions. However, the strength of this link has rarely been ascertained with real pollinators. We conducted pollinator observations and estimated selection through female fitness on flowering phenology and floral traits between two Primula secundiflora populations. We quantified pollinator‐mediated selection by subtracting estimates of selection gradients of plants receiving supplemental hand pollination from those of plants receiving open pollination. There was net directional selection for an earlier flowering start date at populations where the dominant pollinators were syrphid flies, and flowering phenology was also subjected to stabilized quadratic selection. However, a later flowering start date was significantly selected at populations where the dominant pollinators were legitimate (normal pollination through the corolla tube entrance) and illegitimate bumblebees (abnormal pollination through nectar robbing hole which located at the corolla tube), and flowering phenology was subjected to disruptive quadratic selection. Wider corolla tube entrance diameter was selected at both populations. Furthermore, the strength of net directional selection on flowering start date and corolla tube entrance diameter was stronger at the population where the dominant pollinators were syrphid flies. Pollinator‐mediated selection explained most of the between‐population variations in the net directional selection on flowering phenology and corolla tube entrance diameter. Our results suggested the important influence of pollinator‐mediated selection on floral evolution. Variations in pollinator assemblages not only resulted in variation in the direction of selection but also the strength of selection on floral traits.  相似文献   

12.
Anthropogenic climate change has already altered the timing of major life-history transitions, such as the initiation of reproduction. Both phenotypic plasticity and adaptive evolution can underlie rapid phenological shifts in response to climate change, but their relative contributions are poorly understood. Here, we combine a continuous 38 year field survey with quantitative genetic field experiments to assess adaptation in the context of climate change. We focused on Boechera stricta (Brassicaeae), a mustard native to the US Rocky Mountains. Flowering phenology advanced significantly from 1973 to 2011, and was strongly associated with warmer temperatures and earlier snowmelt dates. Strong directional selection favoured earlier flowering in contemporary environments (2010-2011). Climate change could drive this directional selection, and promote even earlier flowering as temperatures continue to increase. Our quantitative genetic analyses predict a response to selection of 0.2 to 0.5 days acceleration in flowering per generation, which could account for more than 20 per cent of the phenological change observed in the long-term dataset. However, the strength of directional selection and the predicted evolutionary response are likely much greater now than even 30 years ago because of rapidly changing climatic conditions. We predict that adaptation will likely be necessary for long-term in situ persistence in the context of climate change.  相似文献   

13.
The phenology and morphology of Mediterranean plants are constrained by drought in summer and cold temperatures in winter. In this study we examine how climatic factors and phylogenetic constraints have shaped variation in the phenology and morphology of 17 species of the genus Cyclamen cultivated in uniform garden conditions. We quantify the extent to which traits differ among subgenera and thus represent conserved traits within evolutionary lineages. We also explore whether leaf, flowering and seed-release phenology are correlated among species, and thus whether variation in flowering phenology results from selection on dispersal phenology. Our results show a significant influence of subgenus membership on leaf and flowering phenology but not on morphological traits or the timing of seed release. Among-species variation in foliage height, leaf size and seed mass (but not in floral traits) is correlated with chromosome number. Leaf traits show that species with a shorter vegetative period have a higher capacity for resource acquisition. Major phenological shifts, i.e. spring vs. autumn flowering and a decoupling of leaf and flower phenology in autumnal flowering species, thus occurred prior to the diversification of species in each subgenus and not as a response to selection on dispersal timing. Leaf and flowering phenology illustrate a gradient of strategies from autumn flowering in the absence of leaves (hysteranthous species) to spring flowering with fully developed foliage (synanthous species). In the former, flowering is uncoupled from resource acquisition by simultaneous photosynthesis, indicative that hysteranthy is a response to temporal unpredictability in the onset of rain after the summer drought. Our results support the idea that whereas leaf development is controlled primarily by moisture availability and secondarily by temperature, flowering is temperature dependent, above a minimum moisture threshold. © 2004 The Linnean Society of London, Botanical Journal of the Linnean Society, 2004, 145 , 469–484.  相似文献   

14.
As the environment changes, so too must plant communities and populations if they are to persist. Life‐history transitions and their timing are often the traits that are most responsive to changing environmental conditions. To compare the contributions of plasticity and natural selective response to variation in germination and flowering phenology, we performed a quantitative genetic study of phenotypic selection on Chamaecrista fasciculata (Fabaceae) across two consecutive years in a restored tallgrass prairie. The earliest dates of germination and flowering were recorded for two parental cohorts and one progeny cohort in an experimental garden. Environmental differences between years were the largest contributors to phenological variation in this population. In addition, there was substantial heritability for flowering time and statistically significant selection for advancement of flowering. Comparison between a progeny cohort and its preselection parental cohort indicated a change in mean flowering time consistent with the direction of selection. Selection on germination time was weaker than that on flowering time, while environmental effects on germination time were stronger. The response to selection on flowering time was detectable when accounting for the effect of the environment on phenotypic differences, highlighting the importance of controlling for year‐to‐year environmental variation in quantitative genetic studies.  相似文献   

15.
The phenotypic space encompasses the assemblage of trait combinations yielding well‐suited integrated phenotypes. At the population level, understanding the phenotypic space structure requires the quantification of among‐ and within‐population variations in traits and the correlation pattern among them. Here, we studied the phenotypic space of the annual plant Diplotaxis acris occurring in hyperarid deserts. Given the advance of warming and aridity in vast regions occupied by drylands, D. acris can indicate the successful evolutionary trajectory that many other annual plant species may follow in expanding drylands. To this end, we conducted a greenhouse experiment with 176 D. acris individuals from five Saudi populations to quantify the genetic component of variation in architectural and life history traits. We found low among‐population divergence but high among‐individual variation in all traits. In addition, all traits showed a high degree of genetic determination in our study experimental conditions. We did not find significant effects of recruitment and fecundity on fitness. Finally, all architectural traits exhibited a strong correlation pattern among them, whereas for life history traits, only higher seed germination implied earlier flowering. Seed weight appeared to be an important trait in D. acris as individuals with heavier seeds tended to advance flowering and have a more vigorous branching pattern, which led to higher fecundity. Population divergence in D. acris might be constrained by the severity of the hyperarid environment, but populations maintain high among‐individual genetic variation in all traits. Furthermore, D. acris showed phenotypic integration for architectural traits and, to a lesser extent, for life history traits. Overall, we hypothesize that D. acris may be fine‐tuned to its demanding extreme environments. Evolutionary speaking, annual plants facing increasing warming, aridity, and environmental seasonality might modify their phenotypic spaces toward new phenotypic configurations strongly dominated by correlated architectural traits enhancing fecundity and seed‐related traits advancing flowering time.  相似文献   

16.
Reproductive timing is a key life‐history trait that impacts the pool of available mates, the environment experienced during flowering, and the expression of other traits through genetic covariation. Selection on phenology, and its consequences on other life‐history traits, has considerable implications in the context of ongoing climate change and shifting growing seasons. To test this, we grew field‐collected seed from the wildflower Mimulus guttatus in a greenhouse to assess the standing genetic variation for flowering time and covariation with other traits. We then created full‐sib families through phenological assortative mating and grew offspring in three photoperiod treatments representing seasonal variation in daylength. We find substantial quantitative genetic variation for the onset of flowering time, which covaried with vegetative traits. The assortatively‐mated offspring varied in their critical photoperiod by over two hours, so that families differed in their probability of flowering across treatments Allocation to flowering and vegetative growth changed across the daylength treatments, with consistent direction and magnitude of covariation among flowering time and other traits. Our results suggest that future studies of flowering time evolution should consider the joint evolution of correlated traits and shifting seasonal selection to understand how environmental variation influences life histories.  相似文献   

17.
Flowering times of plants are important life-history components and it has previously been hypothesized that flowering phenologies may be currently subject to natural selection or be selectively neutral. In this study we reviewed the evidence for phenotypic selection acting on flowering phenology using ordinary and phylogenetic meta-analysis. Phenotypic selection exists when a phenotypic trait co-varies with fitness; therefore, we looked for studies reporting an association between two components of flowering phenology (flowering time or flowering synchrony) with fitness. Data sets comprising 87 and 18 plant species were then used to assess the incidence and strength of phenotypic selection on flowering time and flowering synchrony, respectively. The influence of dependence on pollinators, the duration of the reproductive event, latitude and plant longevity as moderators of selection were also explored. Our results suggest that selection favours early flowering plants, but the strength of selection is influenced by latitude, with selection being stronger in temperate environments. However, there is no consistent pattern of selection on flowering synchrony. Our study demonstrates that phenotypic selection on flowering time is consistent and relatively strong, in contrast to previous hypotheses of selective neutrality, and has implications for the evolution of temperate floras under global climate change.  相似文献   

18.
Ivey CT  Carr DE 《Annals of botany》2012,109(3):583-598

Background and Aims

Self-fertilizing taxa are often found at the range margins of their progenitors, where sub-optimal habitats may select for alternative physiological strategies. The extent to which self-fertilization is favoured directly vs. arising indirectly through correlations with other adaptive life history traits is unclear. Trait responses to selection depend on genetic variation and covariation, as well as phenotypic and genetic responses to altered environmental conditions. We tested predictions of the hypothesis that self-fertilization in Mimulus arises through direct selection on physiological and developmental traits that allow seasonal drought escape.

Methods

Phenotypic selection on mating system and drought escape traits was estimated in field populations of M. guttatus. In addition, trait phenotype and phenotypic selection were compared between experimental wet and dry soil in two greenhouse populations each of M. guttatus and M. nasutus. Finally, genetic variation and covariation for traits were compared between wet and dry soil treatments in a greenhouse population of M. guttatus.

Key Results

Consistent with predictions, selection for early flowering was generally stronger than for mating system traits, and selection for early flowering was stronger in dry soil. Inconsistent with predictions, selection for water-use efficiency was largely absent; selection for large flowers was stronger than for drought escape in the field; and most drought escape and mating system traits were not genetically correlated. A positive genetic correlation between flowering time and flower size, which opposed the adaptive contour, emerged only in wet soil, suggesting that variation in water availability may maintain variation in these traits. Plastic responses to soil moisture treatments supported the idea that taxonomic divergence could have been facilitated by plasticity in flowering time and selfing.

Conclusions

The hypothesis that plant mating systems may evolve indirectly via selection on correlated life history characteristics is plausible and warrants increased attention.  相似文献   

19.
1 Males and females of dioecious plant species often differ in a variety of secondary characteristics, such as size, flower number and flowering time, suggesting that dioecious species have sex-specific selection histories. However, a potential source of these dimorphic traits is age differences between males and females. By sowing 3000 seeds of the dioecious perennial, Silene latifolia (Caryophyllaceae), on a single day, we were able to assess the contribution of sex differences in emergence time to the development of sexually dimorphic adult traits.
2 Females emerged before males in our experimental field population, but on average males flowered first. Age differences between males and females did not therefore cause the earlier flowering of males.
3 The consequence of the detected differences in emergence and phenology between males and females was explored by path analysis. Emergence time had a strong direct effect on flower production as well as an indirect effect through flowering time. The regression coefficient of flowering time on emergence time was significantly larger for male plants.
4 A phenotypic selection analysis revealed that seedlings emerging early suffered greater mortality than those emerging later. Seedlings emerging early, however, developed into plants with more flowers, indicating that there was a trade-off between survivorship and reproductive performance. Seeds with intermediate emergence times had the highest total fitness, indicating the presence of stabilizing selection. Despite the strong mortality selection against early emergers, we detected no shift in the sex ratio compared with the sex ratio of seeds matured under low-mortality greenhouse conditions.  相似文献   

20.
Color patterns are often linked to the behavioral and morphological characteristics of an animal, contributing to the effectiveness of such patterns as antipredatory strategies. Species‐rich adaptive radiations, such as the freshwater fish family Cichlidae, provide an exciting opportunity to study trait correlations at a macroevolutionary scale. Cichlids are also well known for their diversity and repeated evolution of color patterns and body morphology. To study the evolutionary dynamics between color patterns and body morphology, we used an extensive dataset of 461 species. A phylogenetic supertree of these species shows that stripe patterns evolved ~70 times independently and were lost again ~30 times. Moreover, stripe patterns show strong signs of correlated evolution with body elongation, suggesting that the stripes’ effectiveness as antipredatory strategy might differ depending on the body shape. Using pedigree‐based analyses, we show that stripes and body elongation segregate independently, indicating that the two traits are not genetically linked. Their correlation in nature is therefore likely maintained by correlational selection. Lastly, by performing a mate preference assay using a striped CRISPR‐Cas9 mutant of a nonstriped species, we show that females do not differentiate between striped CRISPR mutant males and nonstriped wild‐type males, suggesting that these patterns might be less important for species recognition and mate choice. In summary, our study suggests that the massive rates of repeated evolution of stripe patterns are shaped by correlational selection with body elongation, but not by sexual selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号