首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lipoprotein[a] (Lp[a]) is assembled by a two-step process involving an initial lysine-dependent binding between apolipoprotein B-100 (apoB-100) and apolipoprotein[a] (apo[a]) that facilitates the formation of a disulphide bond between apoB-100Cys4,326 and apo[a]Cys4,057. Previous studies of transgenic mice expressing apoB-95 (4,330 amino acids) and apoB-97 (4,397 amino acids) have shown that apoB-100 amino acids 4,330-4,397 are important for the initial binding to apo[a]. Furthermore, a lysine-rich peptide spanning apoB-100 amino acids 4,372-4,392 has recently been shown to bind apo[a] and inhibit Lp[a] assembly in vitro. This suggests that a putative apo[a] binding site exists in the apoB-4,372-4,392 region. The aim of our study was to establish whether the apoB-4,372-4,392 sequence was important for Lp[a] assembly in the context of the full-length apoB-100. Transgenic mice were created that expressed a mutant human apoB-100, apoB-100K4-->S4, in which all four lysine residues in the 4,372-4,392 sequence were mutated to serines. The apoB-100K4-->S4 mutant showed a reduced capacity to form Lp[a] in vitro compared with wild-type human apoB-100. Double transgenic mice expressing both apoB-100K4-->S4 and apo[a] contained significant amounts of free apo[a] in the plasma, indicating a less-efficient assembly of Lp[a] in vivo. Taken together, these results clearly show that the apoB-4,372-4,392 sequence plays a role in Lp[a] assembly.  相似文献   

2.
Efforts to elucidate the role of lipoprotein [a] (Lp[a]) in atherogenesis have been hampered by the lack of an animal model with high plasma Lp[a] levels. We produced two lines of transgenic mice expressing apolipoprotein [a] (apo[a]) in the liver and crossed them with mice expressing human apolipoprotein B-100 (apoB-100), generating two lines of Lp[a] mice. One had Lp[a] levels of approximately 700 mg/dl, well above the 30 mg/dl threshold associated with increased risk of atherosclerosis in humans; the other had levels of approximately 35 mg/dl. Most of the LDL in mice with high-level apo[a] expression was covalently bound to apo[a], but most of the LDL in the low-expressing line was free. Using an enzyme-linked sandwich assay with monoclonal antibody EO6, we found high levels of oxidized phospholipids in Lp[a] from high-expressing mice but not in LDL from low-expressing mice or in LDL from human apoB-100 transgenic mice (P <0.00001), even though all mice had similar plasma levels of human apoB-100. The increase in oxidized lipids specific to Lp[a] in high-level apo[a]-expressing mice suggests a mechanism by which increased circulating levels of Lp[a] could contribute to atherogenesis.  相似文献   

3.
Monospecific polyclonal antibodies (MPAbs) to apoB-100 regions Cys3734 and Cys4190 were isolated by affinity chromatography using the synthetic polypeptides, Q3730VPSSKLDFREIQIYKK3746 and G4182IYTREELSTMFIREVG4198, respectively, coupled to a hydrophilic resin. Molecular modeling and fluroescence labeling studies have suggested that Cys67 located in kringle type 9 (LPaK9, located between residues 3991 and 4068 of the apo[a] sequence inferred by cDNA) of the apo[a] molecule is disulfide linked to Cys3734 of apoB-100 in human lipoprotein[a] (Lp[a]). This possibility has been further explored with MPAbs. Four species of MPAbs directed to a Cys3734 region of apoB-100 (3730–3746) were isolated from goat anti-human LDL serum by a combination of synthetic peptide (Q3730VPSSKLDFREIQIYKK3746) affinity chromatography and preparative electrophoresis (electrochromatography). MPAbs to the Cys4190 region of apoB-100, a second or alternative disulfide link-site between apo[a] and apoB-100, were also isolated using a synthetic peptide (G4182IYTREELSTMFIREVG4198) affinity resin. Results of immunoassays showed that binding of these four MPAbs to Lp[a] was significantly lower than to LDL. In contrast, MPAbs to the apoB-100 region 4182–4198 which contains Cys4190, a second or alternative disulfide link-site between apo[a] and apoB-100, displayed a less significant difference in binding to Lp[a] and LDL. These results provide additional evidence that the residues 3730–3746 of apoB-100 interact significantly with apo[a] in Lp[a], and that Cys3734 is a likely site for the disulfide bond connecting apo[a] and apoB-100.Abbreviations amino acids single letter, e.g., alanine, A, etc. - BSA bovine serum albumin - d density (g/ml) - aca -aminocaproic acid - ELISA enzyme-linked immunosorbant assay - DTT dithiothreitol - HRP horseradish peroxidase - MAb monoclonal antibody - MPAb monospecific polyclonal antibody - PAGE polyacrylamide gel electrophoresis - PMSF phenylmethylsulfonyl fluoride - SDS sodium dodecyl sulfate - Na2EDTA sodium ethylenediaminetetraacetate - NaN3 sodium azide - TRIS (hydroxymethyl)aminomethane  相似文献   

4.
Oxidized phospholipids (OxPLs) on apolipoprotein B-100 (apoB-100) particles are strongly associated with lipoprotein [a] (Lp[a]). In this study, we evaluated whether Lp[a] is preferentially the carrier of OxPL in human plasma. The content of OxPL on apoB-100 particles was measured with monoclonal antibody E06, which recognizes the phosphocholine (PC) headgroup of oxidized but not native phospholipids. To assess whether OxPLs were preferentially bound by Lp[a] as opposed to other lipoproteins, immunoprecipitation and ultracentrifugation experiments, in vitro transfer studies, and chemiluminescent ELISAs were performed. Immunoprecipitation of Lp[a] from human plasma with an apolipoprotein [a] (apo[a])-specific antibody demonstrated that more than 85% of E06 reactivity (i.e., OxPL) coimmunoprecipitated with Lp[a]. Ultracentrifugation experiments showed that nearly all OxPLs were found in fractions containing apo[a], as opposed to other apolipoproteins. In vitro transfer studies showed that oxidized LDL preferentially donates OxPLs to Lp[a], as opposed to LDL, in a time- and temperature-dependent manner, even in aqueous buffer. Approximately 50% of E06 immunoreactivity could be extracted from isolated Lp[a] following exposure of plasma to various lipid solvents. These data demonstrate that Lp[a] is the preferential carrier of PC-containing OxPL in human plasma. This unique property of Lp[a] suggests novel insights into its physiological function and mechanisms of atherogenicity.  相似文献   

5.
We have undertaken studies aimed at elucidating the interrelationships existing between the seasonal modifications in endocrine status (already demonstrated by Saboureau, M., and J. Boissin. 1978. C.R. Acad. Sci. (Paris) 286D: 1479-1482) and plasma lipoprotein metabolism in the male hedgehog. During the course of these studies, we discovered that a lipoprotein comparable to human Lp[a] was a prominent component of the plasma lipoprotein spectrum in the hedgehog. This lipoprotein was present in the 1.040-1.100 g/ml density range (approximately), exhibited pre beta mobility upon agarose gel electrophoresis, and its Stokes diameter was 275 A. Its apolipoprotein moiety consisted of two proteins with molecular weights and amino acid compositions similar to those of human apoB-100 and apo[a], respectively. These two apolipoproteins were present in hedgehog Lp[a] as a complex that could be dissociated using dithiothreitol and whose stoichiometry could be 1:1. Lp[a] polymorphism due to size heterogeneity of apo[a] appeared to be present in the hedgehog as in man. The chemical composition of hedgehog Lp[a], obtained from animals bled during spring and summer, differed from that of its human counterpart in that the proportion of triglycerides was approximately three times higher in the hedgehog particle (13% vs. 4%), to the detriment of cholesteryl esters. Dissociation of the apoB:apo[a] complex has allowed us to obtain Lp[a] devoid of its specific polypeptide (Lp[a-]), a particle that retained the characteristics of Lp[a] as regards its lipid composition but whose Stokes diameter decreased by 30 to 40 A. The plasma concentration of LDL particles, defined as lipoproteins containing apoB-100 as their sole apolipoprotein constituent, was considerably lower than that of Lp[a]. These findings suggest that the hedgehog could be a unique animal model for studies regarding Lp[a] metabolism.  相似文献   

6.
Plasma Lp[a] levels and apo[a] isoform distribution among lipoproteins isolated by density gradient ultracentrifugation were studied in subjects with one-band or two-band apo[a] phenotypes as assessed by gradient gel electrophoresis before and after an oral fat load. There were no significant differences in the ultracentrifugal profile between fasting plasma and postprandial plasma that was freed of triglyceride-rich particles (TRP). One-band phenotypes exhibited a single symmetrical peak in the density gradient, whereas two-band phenotypes exhibited a multi-modal distribution. Low molecular weight apo[a] isoforms were preferentially associated with low density Lp[a] whereas high molecular weight apo[a] isoforms were found with high density Lp[a] particles. Feeding a high fat meal caused no significant increase in the total plasma level of Lp[a]. However, the isolated TRP contained the apoB-100-apo[a] complex in a quantity that represented only about 1% of its total amount in the fasting plasma. In all cases the apo[a] isoforms present in TRP were also present in the fasting plasma; however, in the two-band apo[a] phenotypes the ratio of the slow over the fast migrating band was in all cases about eightfold higher in TRP than in the fasting plasma. These observations indicate that postprandially a small percentage of apoB-100-apo[a] associates with TRP and suggest that this complex may derive from de novo synthesis rather than from a pre-existing Lp[a] plasma pool. The liver would be the source of the complex due to the presence in the latter of apoB-100.  相似文献   

7.
Conventional risk factors for coronary heart disease (CHD) do not completely account for the observed increase in premature CHD in people from the Indian subcontinent or for Asian Indians who have immigrated to the USA. The objective of this study was to determine the effect of immigration to the USA on plasma levels of lipoprotein [a] (Lp[a]) and other independent risk factors for CHD in Asian Indians. Three subject groups were studied: group 1, 57 subjects living in India and diagnosed with CHD (CHD patients); group 2, 46 subjects living in India and showing no symptoms of CHD (control subjects); group 3, 206 Asian Indians living in the USA. Fasting blood samples were drawn to determine plasma levels of triglyceride (TG), total cholesterol (TC), low density lipoprotein [LDL cholesterol (LDL-Chol)], high density lipoprotein [HDL cholesterol (HDL-Chol)], apolipoprotein B-100 (apoB-100), and Lp[a]. Apolipoprotein [a] (apo[a]) size polymorphism was determined by immunoblotting. Plasma TG, apoB-100, and Lp[a] concentrations were higher in CHD patients than in control and USA groups. CHD patients had higher levels of TC and LDL-Chol and lower HDL-Chol than control subjects. However, the USA population had higher levels of TC, LDL-Chol, and apoB-100 and lower HDL-Chol than control subjects. Plasma Lp[a] levels were inversely correlated with the relative molecular weight of the more abundant of each subject's two apo[a] isoforms (MAI), and CHD patients showed higher frequencies of lower relative molecular weights among MAI. Our observed changes in lipid profiles suggest that immigrating to the USA may place Asian Indians at increased risk for CHD. This study suggests that elevated plasma Lp[a] confers genetic predisposition to CHD in Asian Indians, and nutritional and environmental factors further increase the risk of CHD. This is the first report implicating MAI size as a predictor for development of premature CHD in Asian Indians. Including plasma Lp[a] concentration and apo[a] phenotype in screening procedures may permit early detection and preventive treatment of CHD in this population.  相似文献   

8.
Patients with autosomal recessive abetalipoproteinemia (ABL) lack in their plasma all lipoproteins containing apolipoprotein (apo)B-100 or B-48. Previous studies have suggested that this is due to the complete absence of apoB. We have investigated whether such patients (n = 10) are able to secrete the lipoprotein(a) (Lp(a] glycoprotein (apo(a] which, in normal plasma, exists as a complex with low density lipoproteins containing apoB-100 (Lp(a) lipoprotein). All 10 patients had reduced but detectable apo(a) levels in plasma (mean, 0.49 mg/dl; range, 0.2-2.03 mg/dl) but no Lp(a) lipoprotein. However, we also detected small amounts (0.2-2.8 mg/dl) of apoB in all patients with ABL. The apoB in the ABL patients had the size of apoB-100 and occurred as a lipid-poor complex with the Lp(a) glycoprotein in a fraction of density 1.22 g/ml. This material may represent partially assembled Lp(a) lipoprotein. There was also uncomplexed apo(a) and apoB-100 in the ABL plasma. The distribution and relative concentration of both proteins in the density fraction greater than 1.06 g/ml varied among patients. The data suggest that in ABL, the assembly of apoB-containing lipoproteins is defective and that apoB-100 may be secreted without its full lipid complement when complexed with apo(a).  相似文献   

9.
The present study was undertaken to elucidate the metabolic basis for the increased remnants and lipoprotein(a) [Lp(a)] and decreased LDL apolipoprotein B (apoB) levels in human apoE deficiency. A primed constant infusion of (13)C(6)-phenylalanine was administered to a homozygous apoE-deficient subject. apoB-100 and apoB-48 were isolated, and tracer enrichments were determined by gas chromatography-mass spectrometry, then kinetic parameters were calculated by multicompartmental modeling. In the apoE-deficient subject, fractional catabolic rates (FCRs) of apoB-100 in VLDL and intermediate density lipoprotein and apoB-48 in VLDL were 3x, 12x, and 12x slower than those of controls. On the other hand, the LDL apoB-100 FCR was increased by 2.6x. The production rate of VLDL apoB-100 was decreased by 45%. In the Lp(a) kinetic study, two types of Lp(a) were isolated from plasma with apoE deficiency: buoyant and normal Lp(a). (125)I-buoyant Lp(a) was catabolized at a slower rate in the patient. However, (125)I-buoyant Lp(a) was catabolized at twice as fast as (131)I-normal Lp(a) in the control subjects. In summary, apoE deficiency results in: 1) a markedly impaired catabolism of VLDL/chylomicron and their remnants due to lack of direct removal and impaired lipolysis; 2) an increased rate of catabolism of LDL apoB-100, likely due to upregulation of LDL receptor activity; 3) reduced VLDL apoB production; and 4) a delayed catabolism of a portion of Lp(a).  相似文献   

10.
Although elevated plasma concentrations of lipoprotein [a] (Lp[a]) are considered to be a risk factor for atherosclerosis, the mechanisms by which Lp[a] mediates its pathogenic effects have not been conclusively determined. The apolipoprotein [a] (apo[a]) component of Lp[a] confers unique structural properties to this lipoprotein, including the ability to bind to lysine residues in biological substrates. It has been shown, however, that only a fraction of plasma Lp[a] (Lp[a]-Lys(+)) binds to lysine-Sepharose in vitro. The nature of the non-lysine-binding Lp[a] fraction in plasma (Lp[a]-Lys(-)) is currently unknown. In the present study, the Lp[a]-Lys(+) fraction was determined in the plasma of six unrelated individuals; the Lp[a]-Lys(+) fraction in these plasma samples ranged from approximately 37 to approximately 48%. Interestingly, purification of the Lp[a] by density gradient ultracentrifugation followed by gel filtration and ion-exchange chromatography resulted in progressive increases in the Lp[a]-Lys(+) fraction. Addition of either purified low density lipoprotein (LDL) or fibronectin to the purified Lp[a] at a 1:1 molar ratio reduced the Lp[a]-Lys(+) fraction (maximal decrease of 34 and 20%, respectively) whereas addition of both fibronectin and LDL to the purified Lp[a] resulted in a further decrease (45% maximally) in this fraction. Similar results were obtained by using a recombinant expression system for apo[a]: addition of a 4-fold molar excess of either LDL or fibronectin to conditioned medium containing metabolically labeled recombinant apo[a] reduced the Lys(+) fraction by 49 and 23%, respectively.Taken together, our data suggest that the lysine-binding heterogeneity of plasma Lp[a] is not primarily an intrinsic property of the lipoprotein, but rather results in large part from its ability to noncovalently associate with abundant plasma components such as LDL and fibronectin. These interactions appear to mask the lysine-binding site in apo[a] kringle IV type 10, which mediates the interaction of Lp[a] with lysine-Sepharose. The contribution of these interactions to the function of Lp[a] in vivo remains to be investigated.  相似文献   

11.
Increasing evidence suggests that the assembly of lipoprotein[a] (Lp[a]) proceeds in two steps. In the first step, non-covalent interactions between apolipoprotein[a] (apo[a]) and apolipoprotein B (apoB) of low density lipoprotein (LDL) form a dissociable apo[a]:LDL complex. In the second step, a covalent disulfide linkage forms the stable Lp[a] particle. Several methods are currently used to study the assembly of Lp[a], however, these methods are laborious, time-consuming, and not suitable for a high throughput screening. We report here the development of a rapid and simple assay based on the binding of labeled LDL to a Lp[a]/apo[a] substrate which is immobilized on the surface of a microtiter plate. Quantification of bound LDL provides a measure of the extent of complex formation. Labeled LDL bound to both Lp[a] and apo[a] substrates with similar affinity. Plasma lipoproteins containing apoB as well as free apo[a] were capable of competing with LDL binding. The binding of LDL to Lp[a]/apo[a] was inhibited by L-proline and lysine analogs, which are known to inhibit the non-covalent association between apo[a] and apoB. Using this method we have found that nicotinic acid and captopril are able to inhibit the association of apo[a] with apoB. This method is compatible with automation and can be applied to a high throughput screening of inhibitors of Lp[a] formation.  相似文献   

12.
Quantification of apo[a] and apoB in human atherosclerotic lesions.   总被引:6,自引:0,他引:6  
Lipoprotein[a] or Lp[a] is a cholesterol-rich plasma lipoprotein that is associated with increased risk for cardiovascular disease. To better understand this association we determined the amount of apo[a] and apoB as possible estimates for Lp[a] and low density lipoprotein (LDL) accumulation in atherosclerotic lesions and in plasma, from patients undergoing vascular surgery, using specific radioimmunoassays for apolipoprotein[a] and apolipoprotein B. Apo[a] and apoB were operationally divided into a loosely bound fraction obtained by extracting minced samples of plaque with phosphate-buffered saline (PBS), and a tightly bound fraction obtained by extracting the residual tissue with 6 M guanidine-HCl (GuHCl). We found that 83% of all apo[a] but only 32% of all apoB in lesions was in the tightly bound fraction. When normalized for corresponding plasma levels, apo[a] accumulation in plaques was more than twice that of apoB. All fractions of tissue apo[a], loosely bound, tightly bound, and total, correlated significantly with plasma apo[a]. However, no significant correlations were found between any of the tissue fractions and plasma apoB. If all apo[a] and apoB had been associated with intact Lp[a] or LDL particles, the calculated mass of tightly bound Lp[a] would actually have exceeded that of tightly bound LDL in five cases with plasma Lp[a] levels above 5 mg apo[a] protein/dl. When PBS and GuHCl extracts of lesions were subjected to one-dimensional electrophoresis, the major band stained for lipid and immunoblotted positively for apo[a] and apoB, suggesting the presence of some intact Lp[a] in these extracts. These results suggest that Lp[a] accumulates preferentially to LDL in plaques, and that plaque apo[a] is directly associated with plasma apo[a] levels and is in a form that is less easily removable than most of the apoB. This preferential accumulation of apo[a] as a tightly bound fraction in lesions, could be responsible for the independent association of Lp[a] with cardiovascular disease in humans.  相似文献   

13.
The ability of different lipoprotein Lp[a] preparations to compete with LDL-binding to the B/E-receptor was investigated by ligand blot and filter assays. Lp[a] was purified from donors with various genetic polymorphic forms by affinity chromatography using lysine-Sepharose or specific immunoadsorbers. These preparations were free of "LDL-like" material. Part of Lp[a] was reduced and freed from specific apo[a] antigen yielding "Lpa-." 125I-labeled low density lipoproteins (LDL) were incubated with B/E-receptor preparations from bovine adrenal cortex or from human skin fibroblasts, and the competition with unlabeled LDL, Lp[a], Lpa-, apo[a], and apoE-free HDL was studied by a ligand blot or filter assay technique. The following results were obtained. 1) LDL and Lpa- were equally potent in displacing 125I-labeled from B/E-receptor in the ligand blot and the filter assay. Lpa + ( = Lp[a]) also displaced LDL but to a much lesser degree: 50% displacement was observed with LDL and Lpa- at a 1-fold excess, whereas a 7.5-fold excess was required of Lpa +. 2) Apo[a], as well as apoE-free HDL, did not compete with LDL binding. 3) Competition experiments using B/E-receptors from bovine adrenal cortex or from human skin fibroblasts were comparable. 4) There was no difference in the behavior of Lp[a] isolated from the two affinity chromatography methods. 5) Lp[a] of different genetic variants behaved virtually identically. The results are discussed from the point of view of the in vivo metabolism of Lp[a].  相似文献   

14.
Lipoprotein [a] (Lp[a]) is a cholesterol-rich lipoprotein resembling LDL to which a large polymorphic glycoprotein, apolipoprotein [a] (apo[a]), is covalently coupled. Lp[a] usually exists as a free-standing particle in normolipidemic subjects; however, it can associate noncovalently with triglyceride-rich lipoproteins in hypertriglyceridemic (HTG) subjects. In this study, 10-78% of the Lp[a] present in five HTG subjects was found in the triglyceride-rich lipoprotein (TRL) fraction. The Lp[a]-TRL complex was resistant to dissociation by ultracentrifugation (UCF) alone, but was quantitatively dissociated by UCF in the presence of 100 mM proline. Of this dissociated Lp[a], 70-88% was in the form of a lipoprotein resembling conventional Lp[a]. Incubation of Lp[a]-depleted TRL with native Lp[a] resulted in a reconstituted Lp[a]-TRL complex that closely resembled the native isolates in all examined properties. Complex formation was inhibited by several compounds in the order proline > tranexamate > epsilon-aminocaproate > arginine > lysine. Neither plasminogen nor LDL inhibited binding of Lp[a] to TRL. We observed the preferential binding of Lp[a] containing higher apparent molecular weight apo[a] polymorphs to TRL both in native and reconstituted Lp[a]-TRL complexes. A disproportionate amount of Lp[a] was bound to the larger TRL particles. Although most apo[a] bound to TRL was in the form of conventional Lp[a] particles, lipid-free recombinant apo[a] was observed to bind TRL.These results provide unequivocal evidence of the existence of an Lp[a]-TRL complex under pathophysiologic conditions. The metabolic fate of the Lp[a]-TRL complex, which is more abundant in hypertriglyceridemia, may be different from that of conventional Lp[a], and may contribute uniquely to the progression or severity of cardiovascular disease.  相似文献   

15.
Uremic patients have increased plasma lipoprotein(a) [Lp(a)] levels and elevated risk of cardiovascular disease. Lp(a) is a subfraction of LDL, where apolipoprotein(a) [apo(a)] is disulfide bound to apolipoprotein B-100 (apoB). Lp(a) binds oxidized phospholipids (OxPL), and uremia increases lipoprotein-associated OxPL. Thus, Lp(a) may be particularly atherogenic in a uremic setting. We therefore investigated whether transgenic (Tg) expression of human Lp(a) increases atherosclerosis in uremic mice. Moderate uremia was induced by 5/6 nephrectomy (NX) in Tg mice with expression of human apo(a) (n = 19), human apoB-100 (n = 20), or human apo(a) + human apoB [Lp(a)] (n = 15), and in wild-type (WT) controls (n = 21). The uremic mice received a high-fat diet, and aortic atherosclerosis was examined 35 weeks later. LDL-cholesterol was increased in apoB-Tg and Lp(a)-Tg mice, but it was normal in apo(a)-Tg and WT mice. Uremia did not result in increased plasma apo(a) or Lp(a). Mean atherosclerotic plaque area in the aortic root was increased 1.8-fold in apo(a)-Tg (P = 0.025) and 3.3-fold (P = 0.0001) in Lp(a)-Tg mice compared with WT mice. Plasma OxPL, as detected with the E06 antibody, was associated with both apo(a) and Lp(a). In conclusion, expression of apo(a) or Lp(a) increased uremia-induced atherosclerosis. Binding of OxPL on apo(a) and Lp(a) may contribute to the atherogenicity of Lp(a) in uremia.  相似文献   

16.
Elevated levels of lipoprotein(a) [Lp(a)] are associated with an increased risk of atherothrombotic disease, but the mechanism(s) by which Lp(a) potentiates atherogenesis is unknown. The extensive homology of apolipoprotein(a) [apo(a)] to plasminogen has led us and others to postulate that Lp(a) may impair fibrinolysis. We have previously shown that Lp(a) inhibits fibrin stimulation of plasminogen activation by tissue-type plasminogen activator (t-PA); however, we and other investigators have been unable to demonstrate direct inhibition of t-PA by Lp(a) in solution. We now report that t-PA binds reversibly and saturably to surface-bound Lp(a) and to low-density lipoprotein (LDL) and that as a result of this binding activation of plasminogen by t-PA is inhibited. The catalytic efficiency (kcat/Km) of t-PA when bound to polystyrene surface-bound fibrinogen increased 2.9-fold compared to t-PA bound to control wells. When bound to surface-bound Lp(a), however, the catalytic efficiency of t-PA was reduced 9.5-fold compared to t-PA bound to control wells; likewise, by binding to surface-bound LDL, the catalytic efficiency of t-PA was reduced 16-fold compared to the control. Studies with defined monoclonal antibodies suggest that major determinants of t-PA binding are its active site, the LDL receptor binding domain of apolipoprotein B-100 (apoB-100), and apo(a). These data suggest a unique mechanism by which Lp(a) and LDL incorporated in an atheroma can inhibit endogenous fibrinolysis and thereby contribute to the genesis of atherothrombotic disease.  相似文献   

17.
Lipoprotein (a) [Lp(a)] is a heterodimer of apolipoprotein (a) [apo(a)] and apolipoprotein B-100 (apoB-100) of low density lipoprotein linked by a disulfide bond. Apo(a) and apoB-100 are synthesized by the liver and covalently associate or couple to form Lp(a) extracellularly. Elevated plasma Lp(a) is an independent risk factor for vascular injury disorders such as restenosis after balloon angioplasty and accelerated graft atherosclerosis following heart transplantation. Lp(a) is not expressed in laboratory animals making studies of its pathophysiology difficult. To overcome this problem, we explored the possibility of generating Lp(a) in rabbit plasma using replication-deficient adenovirus vector mediated gene delivery. Rabbits were chosen because of their large vessels and unlike mouse or rat, rabbit apoB-100 could interact with apo(a) to generate Lp(a). The recombinant (r) adenovirus vector construct used encoded a 200 kDa apo(a) [Ad-apo(a)]. Ad-apo(a) injection into the rabbit marginal vein caused the appearance of plasma rLp(a). Injection of a r adenovirus vector expressing the bacterial LacZ gene (Ad-LacZ) or PBS (vehicle) did not result in detectable plasma rLp(a). These are the first results to demonstrate plasma expression of rLp(a) in rabbits using adenovirus vector mediated gene transfer. Therefore, this system may be suitable for investigating Lp(a)'s role in the development of vascular injury diseases in a rabbit model.  相似文献   

18.
Lipoprotein(a) [Lp(a)] entrapment by vascular extracellular matrix may be important in atherogenesis. We sought to determine whether laminin, a major component of the basal membrane, may contribute to Lp(a) retention in the arterial wall. First, immunohistochemistry experiments were performed to examine the relative distribution of Lp(a) and laminin in human carotid artery specimens. There was a high degree of co-localization of Lp(a) and laminin in atherosclerotic specimens, but not in non-atherosclerotic sections. We then studied the binding interaction between Lp(a) and laminin in vitro. ELISA experiments showed that native Lp(a) particles and 17K and 12K recombinant apolipoprotein(a) [r-apo(a)] variants interacted strongly with laminin whereas LDL, apoB-100, and the truncated KIV(6-P), KIV(8-P), and KIV(9-P) r-apo(a) variants did not. Overall, the ELISA data demonstrated that Lp(a) binding to laminin is mediated by apo(a) and a combination of the lysine analogue epsilon-aminocaproic acid and salt effectively decreases apo(a) binding to laminin. Secondary binding analyses with 125I-labeled r-apo(a) revealed equilibrium dissociation constants (K(d)) of 180 and 360 nM for the 17K and 12K variants binding to laminin, respectively. Such similar K(d) values between these two r-apo(a) variants suggest that isoform size does not appear to influence apo(a) binding to laminin. In summary, our data suggest that laminin may bind to apo(a) in the atherosclerotic intima, thus contributing to the selective retention of Lp(a) in this milieu.  相似文献   

19.
The assembly of lipoprotein(a) (Lp(a)) particles occurs via a two-step mechanism in which noncovalent interactions between apolipoprotein(a) (apo(a)) and the apolipoproteinB-100 component of low density lipoprotein precede the formation of a single disulfide bond. Although we have previously demonstrated that the rate constant for the covalent step of Lp(a) assembly can be enhanced by altering the conformational status of apo(a), the resultant rates of covalent Lp(a) particle formation measured in vitro are relatively slow. The large excess of Lp(a) (over apo(a)) observed in vivo can be accounted for by a preferential clearance of apo(a) over Lp(a) and/or a sufficiently high rate of covalent Lp(a) assembly. In the present study, we report that cultured human hepatoma cells secrete an oxidase activity that dramatically enhances the rate of covalent Lp(a) assembly. This activity is likely possessed by a protein because it is heat-sensitive and is retained in the concentrate following ultrafiltration through a 5 kDa cutoff filter. However, a small molecule cofactor for the activity is suggested by the observation that the activity is lost upon dialysis. Plots of Lp(a) assembly rate versus input apo(a) concentration gave rectangular hyperbolae; the reaction displayed an unusual dependence on the concentration of apoB-100, with increasing concentrations of apoB-100 resulting in slower rates of Lp(a) assembly at low concentrations of apo(a), an effect that was alleviated by higher apo(a) concentrations. Interestingly, V(max(app))/K(m(app)) ratios were insensitive to apoB-100 concentration, which is diagnostic of a ping-pong reaction mechanism. In this way, the putative Lp(a) oxidase may be functionally analogous to protein disulfide isomerase, which exhibits a similar mechanism during the catalysis of disulfide bond formation during protein folding, although we have ruled out a role for this enzyme in Lp(a) assembly.  相似文献   

20.
Lipoprotein(a) [Lp(a)] is a low density lipoprotein (LDL), in which apolipoprotein B-100 (apo B-100) is attached to apolipoprotein(a) [apo(a)], a glycoprotein of variable size. Lp(a) may be as atherogenic as LDL. In normal populations, Lp(a) concentrations in plasma are largely determined by the apo(a) gene locus on chromosome 6, but regulation of synthesis and catabolism of Lp(a) is poorly understood. In some studies, a PvuII restriction fragment length polymorphism (RFLP) in the LDL receptor gene seems to affect concentrations of LDL in plasma, and other studies have indicated that Lp(a) catabolism could be mediated by the LDL receptor. We therefore expected that the PvuII polymorphism in the LDL receptor gene might be associated with Lp(a) levels in 170 Caucasian men aged 40 years, selected to have a high representation of low molecular weight apo(a) phenotypes. However, plasma concentrations of cholesterol, LDL-cholesterol, HDL-cholesterol, triglycerides and Lp(a) were all unrelated to the LDL receptor gene PvuII polymorphism both in the group as a whole and when it was subgrouped by apo(a) phenotype. Therefore our data do not support the concept that this particular LDL receptor gene polymorphism is associated with LDL receptor function, and our data therefore neither support nor rule out a role for the LDL receptor in Lp(a) catabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号