首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Similar to many flavivirus types including Dengue and yellow fever viruses, the nonstructural NS3 multifunctional protein of West Nile virus (WNV) with an N-terminal serine proteinase domain and an RNA triphosphatase, an NTPase domain, and an RNA helicase in the C-terminal domain is implicated in both polyprotein processing and RNA replication and is therefore a promising drug target. To exhibit its proteolytic activity, NS3 proteinase requires the presence of the cofactor encoded by the upstream NS2B sequence. During our detailed investigation of the biology of the WNV helicase, we characterized the ATPase and RNA/DNA unwinding activities of the full-length NS2B-NS3 proteinase-helicase protein as well as the individual NS3 helicase domain lacking both the NS2B cofactor and the NS3 proteinase sequence and the individual NS3 proteinase-helicase lacking only the NS2B cofactor. We determined that both the NS3 helicase and NS3 proteinase-helicase constructs are capable of unwinding both the DNA and the RNA templates. In contrast, the full-length NS2B-NS3 proteinase-helicase unwinds only the RNA templates, whereas its DNA unwinding activity is severely repressed. Our data suggest that the productive, catalytically competent fold of the NS2B-NS3 proteinase moiety represents an essential component of the RNA-DNA substrate selectivity mechanism in WNV and, possibly, in other flaviviruses. Based on our data, we hypothesize that the mechanism we have identified plays a role yet to be determined in WNV replication occurring both within the virus-induced membrane-bound replication complexes in the host cytoplasm and in the nuclei of infected cells.  相似文献   

2.
West Nile virus (WNV) and Dengue virus (DENV) replication depends on the viral NS2B-NS3 protease and the host enzyme furin, which emerged as potential drug targets. Modification of our previously described WNV protease inhibitors by basic phenylalanine analogs provided compounds with reduced potency against the WNV and DENV protease. In a second series, their decarboxylated P1-trans-(4-guanidino)cyclohexylamide was replaced by an arginyl-amide moiety. Compound 4-(guanidinomethyl)-phenylacetyl-Lys-Lys-Arg-NH2 inhibits the NS2B-NS3 protease of WNV with an inhibition constant of 0.11?µM. Due to the similarity in substrate specificity, we have also tested the potency of our previously described multibasic furin inhibitors. Their further modification provided chimeric inhibitors with additional potency against the WNV and DENV proteases. A strong inhibition of WNV and DENV replication in cell culture was observed for the specific furin inhibitors, which reduced virus titers up to 10,000-fold. These studies reveal that potent inhibitors of furin can block the replication of DENV and WNV.  相似文献   

3.
Currently, more than 70 flaviviruses were identified and reported in the literature, whose Dengue (DENV), Zika (ZIKV), and West Nile (WNV) viruses have been responsible for millions of cases of infections worldwide, mainly in developing countries. These viruses are transmitted by the bite of mosquitoes from genus Aedes, or Culex and, in some cases, Stegomyia. Despite numerous efforts to identify a selective, safe, and effective antiviral agent, there is no currently approved drug for the treatment of flaviviral infections. Then, current pharmacological therapy has the objective to treat the clinical symptoms. Various peptidomimetics and peptide-derivatives have been synthesized and evaluated against several biological targets from flaviviruses with different applications, such as diagnosis, E protein inhibitors, entry inhibitors, virucidal inhibitors, and also viral replication inhibitors. Flaviviral replication depends on the NS3pro that is completely activated when it is complexed to its cofactor, NS2B; forming a viral enzymatic complex. The development of NS2B-NS3pro inhibitors is considered a challenging work due to its active site is shallow and open-pocket. In this work, we report all advances involving peptidomimetics, peptide-derived, and peptide-hybrids found in the literature. In sense, we discuss the influence of different functional groups in the activity and selectivity. Moreover, the first inhibitors reported in the literature as covalent ligands, comprising two basic residues followed by an electrophilic moiety that binds to the catalytic serine (Ser135–O?) are also discussed in details, such as trifluoromethyl ketones, aldehydes, and boronic acids. Furthermore, it is presented the influence of introducing transition metals, providing metallopeptide inhibitors; and cyclization of linear peptides, generating cyclic and macrocyclic peptide inhibitors. Finally, we provide the most accurate state of the art found in the literature, which can be utilized to design new and effective antiviral agents.  相似文献   

4.
Tomlinson SM  Watowich SJ 《Biochemistry》2008,47(45):11763-11770
West Nile virus (WNV) has recently emerged in North America as a significant disease threat to humans and animals. Unfortunately, no approved antiviral drugs exist to combat WNV or other members of the genus Flavivirus in humans. The WNV NS2B-NS3 protease has been one of the primary targets for anti-WNV drug discovery and design since it is required for virus replication. As part of our efforts to develop effective WNV inhibitors, we reexamined the reaction kinetics of the NS2B-NS3 protease and the inhibition mechanisms of newly discovered inhibitors. The WNV protease showed substrate inhibition in assays utilizing fluorophore-linked peptide substrates GRR, GKR, and DFASGKR. Moreover, a substrate inhibition reaction step was required to accurately model kinetic data generated from protease assays with a peptide inhibitor. The substrate inhibition model suggested that peptide substrates could bind to two binding sites on the protease. Reaction product analogues also showed inhibition of the protease, demonstrating product inhibition in addition to and distinct from substrate inhibition. We propose that small peptide substrates and inhibitors may interact with protease residues that form either the P3-P1 binding surface (i.e., the S3-S1 sites) or the P1'-P3' interaction surface (i.e., the S1'-S3' sites). Optimization of substrate analogue inhibitors that target these two independent sites may lead to novel anti-WNV drugs.  相似文献   

5.
The West Nile Virus (WNV) has been a worldwide epidemic since the early 1990s. Currently there are no therapeutic treatments for WNV infections. One particular avenue of treatment is inhibition of the NS2B-NS3 protease, an enzyme that is crucial for WNV replication. In our effort to increase the number of NS2B-NS3 protease inhibitors, we report a novel FRET-based high throughput assay for the discovery of WNV NS2B-NS3 protease inhibitors. For this assay, a FRET-based peptide substrate was synthesized and kinetically characterized with the NS2B-NS3 protease. The new substrate exhibits a Km of 3.35 ± 0.31 μM, a kcat of 0.0717 ± 0.0016 s?1 and a kcat/Km of 21,400 ± 2000 M?1 s?1.  相似文献   

6.

Background

The two-component NS2B-NS3 proteases of West Nile and dengue viruses are essential for viral replication and established targets for drug development. In all crystal structures of the proteases to date, the NS2B cofactor is located far from the substrate binding site (open conformation) in the absence of inhibitor and lining the substrate binding site (closed conformation) in the presence of an inhibitor.

Methods

In this work, nuclear magnetic resonance (NMR) spectroscopy of isotope and spin-labeled samples of the West Nile virus protease was used to investigate the occurrence of equilibria between open and closed conformations in solution.

Findings

In solution, the closed form of the West Nile virus protease is the predominant conformation irrespective of the presence or absence of inhibitors. Nonetheless, dissociation of the C-terminal part of the NS2B cofactor from the NS3 protease (open conformation) occurs in both the presence and the absence of inhibitors. Low-molecular-weight inhibitors can shift the conformational exchange equilibria so that over 90% of the West Nile virus protease molecules assume the closed conformation. The West Nile virus protease differs from the dengue virus protease, where the open conformation is the predominant form in the absence of inhibitors.

Conclusion

Partial dissociation of NS2B from NS3 has implications for the way in which the NS3 protease can be positioned with respect to the host cell membrane when NS2B is membrane associated via N- and C-terminal segments present in the polyprotein. In the case of the West Nile virus protease, discovery of low-molecular-weight inhibitors that act by breaking the association of the NS2B cofactor with the NS3 protease is impeded by the natural affinity of the cofactor to the NS3 protease. The same strategy can be more successful in the case of the dengue virus NS2B-NS3 protease.  相似文献   

7.
The flavivirus NS2B-NS3(pro)teinase is an essential element in the proteolytic processing of the viral precursor polyprotein and therefore a potential drug target. Recently, crystal structures and substrate preferences of NS2B-NS3pro from Dengue and West Nile viruses (DV and WNV) were determined. We established that the presence of Gly-Gly at the P1'-P2' positions is optimal for cleavage by WNV NS3pro, whereas DV NS3pro tolerates well the presence of bulky residues at either P1' or P2'. Structure-based modeling suggests that Arg(76) and Pro(131)-Thr(132) limit the P1'-P2' subsites and restrict the cleavage preferences of the WNV enzyme. In turn, Leu(76) and Lys(131)-Pro(132) widen the specificity of DV NS3pro. Guided by these structural models, we expressed and purified mutant WNV NS2B-NS3pro and evaluated cleavage preferences by using positional scanning of the substrate peptides in which the P4-P1 and the P3'-P4' positions were fixed and the P1' and P2' positions were each randomized. We established that WNV R76L and P131K-T132P mutants acquired DV-like cleavage preferences, whereas T52V had no significant effect. Our work is the first instance of engineering a viral proteinase with switched cleavage preferences and should provide valuable data for the design of optimized substrates and substrate-based selective inhibitors of flaviviral proteinases.  相似文献   

8.

Background  

The dengue virus two-component protease NS2B/NS3 mediates processing of the viral polyprotein precursor and is therefore an important determinant of virus replication. The enzyme is now intensively studied with a view to the structure-based development of antiviral inhibitors. Although 3-dimensional structures have now been elucidated for a number of flaviviral proteases, enzyme-substrate interactions are characterized only to a limited extend. The high selectivity of the dengue virus protease for the polyprotein precursor offers the distinct advantage of designing inhibitors with exquisite specificity for the viral enzyme. To identify important determinants of substrate binding and catalysis in the active site of the dengue virus NS3 protease, nine residues, L115, D129, G133, T134, Y150, G151, N152, S163 and I165, located within the S1 and S2 pockets of the enzyme were targeted by alanine substitution mutagenesis and effects on enzyme activity were fluorometrically assayed.  相似文献   

9.
Dengue virus belongs to the virus family Flaviviridae. Dengue hemorrhagic disease caused by dengue virus is a public health problem worldwide. The viral non structural 2B and 3 (NS2B-NS3) protease complex is crucial for virus replication and hence, it is considered to be a good anti-viral target. Leaf extracts from Carica papaya is generally prescribed for patients with dengue fever, but there are no scientific evidences for its anti-dengue activity; hence we intended to investigate the anti-viral activity of compounds present in the leaves of Carica papaya against dengue 2 virus (DENV-2). We analysed the anti-dengue activities of the extracts from Carica papaya by using bioinformatics tools. Interestingly, we find the flavonoid quercetin with highest binding energy against NS2B-NS3 protease which is evident by the formation of six hydrogen bonds with the amino acid residues at the binding site of the receptor. Our results suggest that the flavonoids from Carica papaya have significant anti-dengue activities.

Abbreviations

ADME - Absorption, distribution, metabolism and excretion, BBB - Blood brain barrier, CYP - Cytochrome P450, DENV - – Dengue virus, DHF - Dengue hemorrhagic fever, DSS - Dengue shock syndrome, GCMS - – Gas chromatography- Mass spectrometry, MOLCAD - Molecular Computer Aided Design, NS - Non structural, PDB - Protein data bank, PMF - Potential Mean Force.  相似文献   

10.
Flaviviral NS2B is a required cofactor for NS3 serine protease activity and plays an important role in promoting functional NS2B-NS3 protease configuration and maintaining critical interactions with protease catalysis substrates. The residues D80DDG in West Nile virus (WNV) NS2B are important for protease activity. To investigate the effects of D80DDG in NS2B on protease activity and viral replication, the negatively charged region D80DD and the conserved residue G83 of NS2B were mutated (D80DD/E80EE, D80DD/K80KK, D80DD/A80AA, G83F, G83S, G83D, G83K, and G83A), and NS3 D75A was designated as the negative control. The effects of the mutations on NS2B-NS3 activity, viral translation, and viral RNA replication were analyzed using kinetic analysis of site-directed enzymes and a transient replicon assay. All substitutions resulted in significantly decreased enzyme activity and blocked RNA replication. The negative charge of D80DD is not important for maintaining NS2B function, but side chain changes in G83 have dramatic effects on protease activity and RNA replication. These results demonstrate that NS2B is important for viral replication and that D80DD and G83 substitutions prevent replication; they will be useful for understanding the relationship between NS2B and NS3.  相似文献   

11.
West Nile virus (WNV) is a member of the flavivirus genus belonging to the Flaviviridae family. The viral serine protease NS2B/NS3 has been considered an attractive target for the development of anti-WNV agents. Although several NS2B/NS3 protease inhibitors have been described so far, most of them are reversible inhibitors. Herein, we present a series of α-aminoalkylphosphonate diphenyl esters and their peptidyl derivatives as potent inhibitors of the NS2B/NS3 protease. The most potent inhibitor identified was Cbz-Lys-Arg-(4-GuPhe)P(OPh)2 displaying Ki and k2/Ki values of 0.4 µM and 28 265 M?1s?1, respectively, with no significant inhibition of trypsin, cathepsin G, and HAT protease.  相似文献   

12.
Regulated proteolysis of the polyprotein precursor of West Nile virus (WNV) by the essential NS2B–NS3(pro)tease, a promising drug target for WNV inhibitors, is required for the propagation of infectious virions. Structural and drug design studies, however, require pilot-scale quantities of a pure and catalytically active WNV protease that is resistant to self-proteolysis. Autolytic cleavage at the NS2B–NS3 boundary leads to individual, non-covalently associated, NS2B and NS3 domains, together with residual amounts of the intact NS2B–NS3, in the NS2B–NS3pro samples. We modified the cleavage site sequence of the NS2B–NS3 junction region and then developed expression and purification procedures to prepare a covalently linked, single-chain, NS2B–NS3pro K48A mutant construct. This construct exhibits high stability and functional activity and is thus well suited for the follow-up purification and structural and drug design studies.  相似文献   

13.
In recent years, the Zika virus has emerged from a neglected flavivirus to a health-threatening pathogen that causes epidemic outbreaks associated with neurological disorders and congenital malformations. In addition to vaccine development, the discovery of specific antiviral agents has been pursued intensely. The Zika virus protease NS2B-NS3 catalyses the processing of the viral precursor polyprotein as an essential step during viral replication. Since the epidemic Zika virus outbreak in the Americas, several inhibitors of this protease have been reported. Substrate-derived peptides revealed important structural information about the active site, whilst more drug-like small molecules have been discovered as allosteric inhibitors.  相似文献   

14.
West Nile Virus (WNV) is a potentially deadly mosquito-borne flavivirus which has spread rapidly throughout the world. Currently there is no effective vaccine against flaviviral infections. We previously reported the identification of pyrazole ester derivatives as allosteric inhibitors of WNV NS2B-NS3 proteinase. These compounds degrade rapidly in pH 8 buffer with a half life of 1–2 h. We now report the design, synthesis and in vitro evaluation of pyrazole derivatives that are inhibitors of WNV NS2B-NS3 proteinase with greatly improved stability in the assay medium.  相似文献   

15.
L Zhang  P M Mohan    R Padmanabhan 《Journal of virology》1992,66(12):7549-7554
Processing of dengue virus type 2 polyprotein precursor NS3-NS4A-NS4B-NS5 could be mediated by the catalytically active NS3 protease domain and NS2B in trans at the dibasic sites NS3-NS4A and NS4B-NS5. Subcellular localization of the unprocessed precursor NS3-NS4A-NS4B-NS5 showed that it was confined to a distinct subcellular organelle in the cytoplasm, which was distinct from the distribution of the mature NS5.  相似文献   

16.
17.
蜱传脑炎病毒是引起严重的中枢神经系统疾病蜱传脑炎的病原体,每年在欧洲、俄罗斯远东地区、日本和中国北部报道的蜱传脑炎病例数约为10000-12000例,且在我国和多个欧洲国家的发病率逐渐增高,正成为人类健康的潜在危害。主动免疫是预防蜱传脑炎的有效措施,包括我国在内的多个国家已研制出安全性较高的疫苗,但在我国流行省份的疫苗接种较为有限,特异性抗病毒药物的研发或许是治疗蜱传脑炎病毒感染的研究方向之一。蜱传脑炎病毒非结构蛋白NS2B-NS3与NS5因为在病毒基因组复制、加帽和宿主免疫调节中的重要作用,成为关键的抗病毒药物研发靶点。本文综述了蜱传脑炎病毒非结构蛋白NS2B-NS3与NS5的三维结构和抑制剂研发工作,为深入探究该病毒感染的分子机制和抗病毒药物研发提供参考。  相似文献   

18.
黄病毒能引起严重的人类疾病,但是并无特定药物来治疗病毒感染。黄病毒非结构蛋白NS3的N端区域及其辅因子NS2B构成蛋白酶,该酶切割病毒的多聚蛋白形成成熟的结构蛋白和非结构蛋白来帮助病毒完成增殖过程。NS2B-NS3pro蛋白酶在黄病毒生命周期中起关键的作用,使之成为抗病毒药物研发的重要靶标。本文综述了黄病毒属中寨卡病毒、登革热病毒、西尼罗病毒的NS2B-NS3pro蛋白酶结构的研究进展,并介绍了相关抑制剂与蛋白酶形成的复合物结构,以期为研发抗黄病毒药物提供必要的参考。  相似文献   

19.
The endoplasmic reticulum (ER) is exploited by several diverse viruses during their infectious life cycles. Flaviviruses, including dengue virus (DENV) and Zika virus (ZIKV), utilize the ER as a source of membranes to establish their replication organelles and to facilitate their assembly and eventual maturation along the secretory pathway. To maintain normal homeostasis, host cells have evolved highly efficient processes to dynamically regulate the ER, such as through reticulophagy, a selective form of autophagy that leads to ER degradation. Here, we identify the ER-localized reticulophagy receptor FAM134B as a host cell restriction factor for both DENV and ZIKV. We show that RNAi-mediated depletion of FAM134B significantly enhances both DENV and ZIKV replication at an early stage of the viral life cycle. Consistent with its role as an antiviral host factor, we found that several flaviviruses including DENV, ZIKV, and West Nile virus (WNV), utilize their NS3 virally-encoded proteases to directly cleave FAM134B at a single site within its reticulon homology domain (RHD). Mechanistically, we show that NS3-mediated cleavage of FAM134B blocks the formation of ER and viral protein-enriched autophagosomes, suggesting that the cleavage of FAM134B serves to specifically suppress the reticulophagy pathway. These findings thus point to an important role for FAM134B and reticulophagy in the regulation of flavivirus infection and suggest that these viruses specifically target these pathways to promote viral replication.  相似文献   

20.
1,2-Benzisothiazol-3(2H)-ones and 1,3,4-oxadiazoles individually have recently attracted considerable interest in drug discovery, including as antibacterial and antifungal agents. In this study, a series of functionalized 1,2-benzisothiazol-3(2H)-one—1,3,4-oxadiazole hybrid derivatives were synthesized and subsequently screened against Dengue and West Nile virus proteases. Ten out of twenty-four compounds showed greater than 50% inhibition against DENV2 and WNV proteases ([I] = 10 μM). The IC50 values of compound 7n against DENV2 and WNV NS2B/NS3 were found to be 3.75 ± 0.06 and 4.22 ± 0.07 μM, respectively. The kinetics data support a competitive mode of inhibition by compound 7n. Molecular modeling studies were performed to delineate the putative binding mode of this series of compounds. This study reveals that the hybrid series arising from the linking of the two scaffolds provides a suitable platform for conducting a hit-to-lead optimization campaign via iterative structure–activity relationship studies, in vitro screening and X-ray crystallography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号