首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP) is a key component in endoplasmic reticulum (ER) stress-mediated apoptosis. The goal of the study was to investigate the role of CHOP in cholestatic liver injury. Acute liver injury and liver fibrosis were assessed in wild-type (WT) and CHOP-deficient mice following bile duct ligation (BDL). In WT livers, BDL induced overexpression of CHOP and Bax, a downstream target in the CHOP-mediated ER stress pathway. Liver fibrosis was attenuated in CHOP-knockout mice. Expression levels of alpha-smooth muscle actin and transforming growth factor-beta1 were reduced, and apoptotic and necrotic hepatocyte death were both attenuated in CHOP-deficient mice. Hepatocytes were isolated from WT and CHOP-deficient mice and treated with 400 microM glycochenodeoxycholic acid (GCDCA) for 8 h to examine bile acid-induced apoptosis and necrosis. GCDCA induced overexpression of CHOP and Bax in isolated WT hepatocytes, whereas CHOP-deficient hepatocytes had reduced cleaved caspase-3 expression and a lower propidium iodide index after GCDCA treatment. In conclusion, cholestasis induces CHOP-mediated ER stress and triggers hepatocyte cell death, and CHOP deficiency attenuates this cell death and subsequent liver fibrosis. The results demonstrate an essential role of CHOP in development of liver fibrosis due to cholestatic liver damage.  相似文献   

2.
The role of nerve growth factor (NGF) in liver injury induced by bile duct ligation (BDL) remains elusive. This study aimed to investigate the relationship between inflammation and hepatic NGF expression, to explore the possible upstream molecules up-regulating NGF, and to determine whether NGF could protect hepatocytes from oxidative liver injury. Biochemical and molecular detection showed that NGF was up-regulated in cholestatic livers and plasma, and well correlated with systemic and hepatic inflammation. Conversely, systemic immunosuppression reduced serum NGF levels and resulted in higher mortality in BDL-treated mice. Immunohistochemistry showed that the up-regulated NGF was mainly localized in parenchymal hepatocytes. In vitro mechanistic study further demonstrated that TGF-β1 up-regulated NGF expression in clone-9 and primary rat hepatocytes. Exogenous NGF supplementation and endogenous NGF overexpression effectively protected hepatocytes against TGF-β1- and oxidative stress-induced cell death in vitro, along with reduced formation of oxidative adducted proteins modified by 4-HNE and 8-OHdG. TUNEL staining confirmed the involvement of anti-apoptosis in the NGF-exhibited hepatoprotection. Moreover, NGF potently induced Akt phosphorylation and increased Bcl-2 to Bax ratios, whereas these molecular alterations by NGF were only seen in the H2O2-, but not TGF-β1-treated hepatocytes. In conclusion, NGF exhibits anti-oxidative and hepatoprotective effects and is suggested to be therapeutically applicable in treating cholestatic liver diseases.  相似文献   

3.
Reactive oxygen species (ROS) play a key role in chronic liver injury and fibrosis. Homologs of NADPH oxidases (NOXs) are major sources of ROS, but the exact role of the individual homologs in liver disease is unknown. Our goal was to determine the role of NOX4 in liver fibrosis induced by bile duct ligation (BDL) with the aid of the pharmacological inhibitor GKT137831, and genetic deletion of NOX4 in mice. GKT137831 was either applied for the full term of BDL (preventive arm) or started at 10 day postoperatively (therapeutic arm). Primary hepatic stellate cells (HSC) from control mice with and without BDL were analyzed and the effect of NOX4 inhibition on HSC activation was also studied. FasL or TNFα/actinomycin D-induced apoptosis was studied in wild-type and NOX4(-/-) hepatocytes. NOX4 was upregulated by a TGF-β/Smad3-dependent mechanism in HSC. Downregulation of NOX4 decreased ROS production and the activation of NOX4(-/-) HSC was attenuated. NOX4(-/-) hepatocytes were more resistant to FasL or TNFα/actinomycin D-induced apoptosis. Similarly, after pharmacological NOX4 inhibition, ROS production, the expression of fibrogenic markers, and hepatocyte apoptosis were reduced. NOX4 was expressed in human livers with stage 2-3 autoimmune hepatitis. Fibrosis was attenuated by the genetic deletion of NOX4. BDL mice gavaged with GKT137831 in the preventive or the therapeutic arm displayed less ROS production, significantly attenuated fibrosis, and decreased hepatocyte apoptosis. In conclusion, NOX4 plays a key role in liver fibrosis. GKT137831 is a potent inhibitor of fibrosis and hepatocyte apoptosis; therefore, it is a promising therapeutic agent for future translational studies.  相似文献   

4.
Proteasome inhibition has recently been demonstrated to inhibit hepatic fibrogenesis in the bile duct-ligated (BDL) mouse by blocking stellate cell NF-kappaB activation. The effect of proteasome inhibition on liver injury, however, is unclear. Our aims were to assess the effect of the proteasome inhibitor bortezomib on liver injury in the BDL mouse. Liver injury was assessed in 7-day BDL mice treated with a single dose of bortezomib on day 4 after bile duct ligation. Despite NF-kappaB inhibition by bortezomib, liver injury and hepatocyte apoptosis were reduced in treated BDL mice. The antiapoptotic effect of bortezomib was likely mediated by an increase in hepatic cellular FLICE inhibitory protein (c-FLIP) levels, a potent antiapoptotic protein. Unexpectedly, numerous mitotic hepatocytes were observed in the bortezomib-treated BDL mice liver specimens. Consistent with this observation, PCNA immunoreactivity and cyclin A protein expression were also increased with bortezomib treatment. Bortezomib therapy was also associated with a decrease in numbers and activation of Kupffer cells/macrophages. In conclusion, these data suggest that the proteasome inhibitor bortezomib reduces hepatocyte injury in the BDL mouse by mechanisms associated with a reduction in hepatocyte apoptosis, a decrease in Kupffer cell/macrophage number and activation, and increased hepatocyte proliferation.  相似文献   

5.
Cholestasis-induced liver injury during bile duct obstruction causes an acute inflammatory response. To further characterize the mechanisms underlying the neutrophil-induced cell damage in the bile duct ligation (BDL) model, we performed experiments using wild-type (WT) and ICAM-1-deficient mice. After BDL for 3 days, increased ICAM-1 expression was observed along sinusoids, along portal veins, and on hepatocytes in livers of WT animals. Neutrophils accumulated in sinusoids [358 +/- 44 neutrophils/20 high-power fields (HPF)] and >50% extravasated into the parenchymal tissue. Plasma alanine transaminase (ALT) levels increased by 23-fold, and severe liver cell necrosis (47 +/- 11% of total cells) was observed. Chlorotyrosine-protein adducts (a marker for neutrophil-derived hypochlorous acid) and 4-hydroxynonenal adducts (a lipid peroxidation product) were detected in these livers. Neutrophils also accumulated in the portal venules and extravasated into the portal tracts. However, no evidence for chlorotyrosine or 4-hydroxynonenal protein adducts was detected in portal tracts. ICAM-1-deficient mice showed 67% reduction in plasma ALT levels and 83% reduction in necrosis after BDL compared with WT animals. The total number of neutrophils in the liver was reduced (126 +/- 25/20 HPF), and 85% of these leukocytes remained in sinusoids. Moreover, these livers showed minimal staining for chlorotyrosine and 4-hydroxynonenal adducts, indicating a substantially reduced oxidant stress and a diminished cytokine response. Thus neutrophils relevant for the aggravation of acute cholestatic liver injury in BDL mice accumulate in hepatic sinusoids, extravasate into the tissue dependent on ICAM-1, and cause cell damage involving reactive oxygen formation.  相似文献   

6.
Mitochondria are known to be involved in cholestatic liver injury. The potential protective effect of resveratrol in cholestatic liver injury and the possible roles of autophagy and apoptosis induction in this process are not yet clear. The aim of this study is to determine whether resveratrol administration after bile duct ligation can reduce cholestasis-induced liver injury through modulating apoptosis, mitochondrial biogenesis and autophagy. A rat model of cholestasis was established by bile duct ligation (BDL) and compared with a sham group receiving laparotomy without BDL, with resveratrol or control treatments following BDL. The expression of proteins involved in the apoptotic and autophagic pathways were analyzed by western blotting. Apoptosis was examined by TUNEL staining. In the resveratrol/BDL group LC3-II upregulation persisted for 1-7 days, Bax was downregulated and catalase was upregulated at 3-7 days after resveratrol treatment. The decline in mitochondrial DNA copy number was reversed at 3-7 days. Caspase 3 expression was significantly downregulated at 3-7 days in the resveratrol group. TUNEL staining showed significant numbers of apoptotic liver cells appeared in livers 3-7 days after BDL and that was decreased by resveratrol treatment. Our results indicate that early resveratrol treatment reverses impaired liver function within hours of BDL.  相似文献   

7.
Although hepatocyte growth factor (HGF) was discovered as a potent hepatotrophic factor responsible for liver regeneration and may involve some organ development in embryogenesis, it remains to be revealed what roles HGF plays in liver development. The present study was undertaken to determine which cells express HGF and its receptor c-Met and when c-Met is activated in mouse liver development by using immunoblotting and immunohistochemical techniques. HGF was detected in hepatocytes and non-parenchymal cells, including biliary epithelial cells, periportal connective tissue cells, megakaryocytes, endothelial cells, and sinusoidal cells, throughout liver development. Positive HGF immunostaining in hepatocytes increased during postnatal development, and reached the maximal level in the adult stage. c-Met protein was also expressed in hepatocytes throughout liver development, but maximal staining was obtained in 1- or 2-week-old livers. Phosphorylation of tyrosine residues in the c-Met beta chain also occurred in these stages. These results suggest that HGF signaling is implicated in hepatocyte growth during postnatal liver development, and its action could be in a paracrine mode; HGF produced by non-parenchymal cells such as sinusoidal cells acts on hepatocytes expressing c-Met receptors. Positive immunostaining in adult and postnatal hepatocytes may be derived from their blood clearance of HGF.  相似文献   

8.
Obstructive cholestasis causes liver injury via accumulation of toxic bile acids (BAs). Therapeutic options for cholestatic liver disease are limited, partially because the available murine disease models lack translational value. Profiling of time-related changes following bile duct ligation (BDL) in Gold Syrian hamsters revealed a biochemical response similar to cholestatic patients in terms of BA pool composition, alterations in hepatocyte BA transport and signaling, suppression of BA production, and adapted BA metabolism. Hamsters tolerated cholestasis well for up to 28 days and progressed relatively slowly to fibrotic liver injury. Hepatocellular necrosis was absent, which coincided with preserved intrahepatic energy levels and only mild oxidative stress. The histological response to cholestasis in hamsters was similar to the changes seen in 17 patients with prolonged obstructive cholestasis caused by cholangiocarcinoma. Hamsters moreover upregulated hepatic fibroblast growth factor 15 (Fgf15) expression in response to BDL, which is a cytoprotective adaptation to cholestasis that hitherto had only been documented in cholestatic human livers. Hamster models should therefore be added to the repertoire of animal models used to study the pathophysiology of cholestatic liver disease.  相似文献   

9.
Recent studies have shown that microRNA-29 (miR-29) is significantly decreased in liver fibrosis, as demonstrated in human liver cirrhosis, and that its downregulation influences the activation of hepatic stellate cells. In addition, both cleaved caspase-3 production and apoptosis play a role in cholestatic liver injury. However, it is unknown if miR-29 is effective in modulating the extent of injury. We employed miR-29a transgenic mice (miR-29aTg mice) and wild-type (WT) littermates to clarify the role of miR-29 in hepatic injury and fibrogenesis, using the bile duct-ligation (BDL) mouse model. After BDL, all three members of the miR-29 family were significantly downregulated in the livers of WT mice, and miR-29b and miR-29c were significantly downregulated in the livers of the miR-29aTg mice. Liver function, as measured by alanine transaminase and aspartate transaminase activity, was significantly improved in the miR-29aTg mice than in the WT littermates, following 1 week of obstructive jaundice. In addition, overexpression of miR-29a was associated with a significant downregulation of the expression of collagen-1α1, collagen-4α1, phospho-FADD, cleaved caspase-8, cleaved caspase-3, Bax, Bcl-2, PARP, and nuclear factor-κB, as well as an upregulation of phospho-AKT expression. In addition, there were significantly fewer TUNEL-positive liver cells in the miR-29aTg group than in the WT littermates after BDL. Our results indicate that miR-29a decreases cholestatic liver injury and fibrosis after BDL, at least partially, by modulating the extrinsic rather than intrinsic pathway of apoptosis.  相似文献   

10.
Bile acid-induced apoptosis plays an important role in the pathogenesis of cholestatic liver disease, and its prevention is of therapeutic interest. The aim of this study was to test whether the andrographolide limits the evolution of apoptosis in a murine model of bile duct ligation (BDL)-induced hepatic fibrosis. Male Sprague–Dawley rats were divided into four groups and hepatic apoptosis was induced by BDL for 2 weeks. The BDL animals were also treated with andrographolide (50, 100, and 200 mg/kg, i.p.) during the same time period. BDL-induced liver injury was associated with apoptosis and fibrosis, and the latter was significantly reduced in animals receiving andrographolide. The increase in serum alanine aminotransferase, asparate aminotransferase, tumor necrosis factor-α and IL-1β levels caused by BDL were also significantly reduced by treatment with andrographolide. Andrographolide decreased the intrahepatic protein levels of cannabinoid receptor 1 (CB1), Bax, and cytochrome c, along with of α-smooth muscle actin (α-SMA) and transforming growth factor-β (TGF-β), two markers of fibrogenesis. This effect was mediated by the inactivation of the c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK1/2) phosphorylation cascade, but it did not affect the p38 mitogen-activated protein kinase pathway. Additionally, andrographolide reduced the generation of hepatic lipid peroxidation and enhance senescence marker protein-30 levels to resist the hepatic oxidative stress in the presence of BDL. In conclusion, this study has identified AP as a potent protector against cholestasis-induced apoptosis in vivo. Its anti-apoptotic action largely relies on the inhibition of the oxidative stress pathway.  相似文献   

11.
The stomach is constantly exposed to mechanical and chemical stresses. Under persistent damages, epithelial cell proliferation is required to maintain mucosal integrity. Nevertheless, which ligand system(s) is physiologically involved in gastric defense remains unclear. Herein, we provide evidence that HGF is a key "natural ligand" to reverse gastric injury. The injection of cisplatin in mice led to the loss of HGF in the gastric interstitium, associated with the decrease in proliferating epithelium and the progression of mucotitis. When c-Met tyrosine phosphorylation was abolished by anti-HGF IgG, mucosal cell proliferation became faint, leading to delayed recovery from mucotitis, and vice versa in cases of HGF supplementation. Our findings indicate that: (1) HGF/c-Met signal on mucosa is needed to restore gastric injuries; and (2) the loss of local HGF leads to manifestation of gastric lesions. This study provides a rationale that explains why HGF supplement is useful for reversing gastric diseases.  相似文献   

12.
Alpha-naphthylisothiocyanate (ANIT) is a hepatotoxicant that causes acute cholestatic hepatitis with infiltration of neutrophils around bile ducts and necrotic hepatocytes. The objective of this study was to determine whether the beta2-integrin CD18, which plays an important role in leukocyte invasion and cytotoxicity, contributes to ANIT-induced hepatic inflammation and liver injury. Mice with varying levels of leukocyte CD18 expression were treated with ANIT and monitored for hepatic neutrophil influx and liver injury over 48 h. Mice that were partially deficient in CD18 (30% of normal levels) developed periportal inflammation and widespread hepatic necrosis after ANIT treatment in a pattern identical to that in wild-type (WT) mice. In contrast, mice that completely lack CD18 (CD18 null) were resistant to ANIT toxicity. Forty-eight hours after ANIT, CD18-null mice displayed 60% lower serum alanine aminotransferase (ALT) levels and 75% less hepatic necrosis, as shown by morphometry, than WT mice. This was true despite evidence that ANIT still provoked hepatic neutrophil influx in CD18-null mice. WT mice could also be protected from ANIT-induced hepatocellular necrosis, by depleting the animals of neutrophils. Notably, neither CD18-null mice nor neutrophil-depleted WT mice exhibited any attenuation of bile duct injury or cholestasis due to ANIT. We conclude from these experiments that neutrophils invade ANIT-treated livers in a CD18-independent fashion but utilize CD18 to induce hepatocellular cytotoxicity. The results emphasize that neutrophil-mediated amplification of ANIT-induced liver injury is directed toward hepatocytes rather than cholangiocytes. In fact, the data indicate that the majority of ANIT toxicity toward hepatocytes in vivo is neutrophil driven.  相似文献   

13.
The death receptor pathway is coupled to the mitochondria apoptosis pathway. However, mitochondrial participation, which is stimulated by Bid but suppressed by Bcl-2/Bcl-x(L), is required in certain cells (Type II), but not in others (Type I). While these differences were originally characterized in the lymphoid cell lines, the typical Type II cells are represented by hepatocytes in vivo. The molecular mechanisms that distinguish Type II from Type I cells and the regulation are not fully understood. Fas can be sequestered by the HGF receptor c-Met and high doses of HGF can promote cell death by freeing Fas from c-Met complex. We thus reasoned that treatment of the Type II cells with high doses of HGF could enhance Fas-mediated apoptosis and spare the mitochondria amplification. Indeed, such treatment led to increased apoptosis in Type II lymphoid cells, which could not be blocked by Bcl-x(L). Moreover, significant hepatocyte apoptosis was induced by this scheme in the absence of Bid with increased dissociation of Fas from c-Met. These findings indicate that high doses of HGF could be used to promote apoptosis in Type II cells bypassing the requirement for mitochondria activation.  相似文献   

14.
15.
16.
Zinc deficiency is common in the liver of patients with chronic liver disease. Zinc supplementation suppresses the progression of liver fibrosis induced by bile duct ligation (BDL) in mice. The present study was undertaken to specifically investigate a possible mechanism by which zinc plays this role in the liver. Kunming mice were subjected to BDL for 4 weeks to induce liver fibrosis, and concomitantly treated with zinc sulfite or saline as control by gavage once a day. The results showed that zinc supplementation significantly suppressed liver fibrosis and inflammation along with inhibition of hepatic stellate cells activation induced by BDL. These inhibitory effects were accompanied by the reduction of collagen deposition and a significant reduction of macrophage infiltration affected livers. Importantly, zinc selectively inhibited M1 macrophage polarization and M1-related inflammatory cytokines. This inhibitory effect was further confirmed by the reduction of relevant biomarkers of M1 macrophages including inducible NO synthase (iNOS), monocyte chemotactic protein-1 (MCP-1/CCL2), and tumor necrosis factor-α in the zinc supplemented BDL livers. In addition, zinc inhibition of M1 macrophages was associated with a decrease of Notch1 expression. Taken together, these data indicated that zinc supplementation inhibited liver inflammation and fibrosis in BDL mice through selective suppression of M1 macrophages, which is associated with inhibition of Notch1 pathway in M1 macrophage polarization.  相似文献   

17.
Contact inhibition, the inhibition of cell proliferation by tight cell-cell contact is a fundamental characteristic of normal cells. Using primary cultured hepatocytes, we investigated the mechanisms of contact inhibition that decrease the mitogenic activity of hepatocyte growth factor (HGF), focusing on the regulation of c-Met/HGF-receptor activation. In hepatocytes cultured at a sparse cell density, HGF stimulation induced prolonged c-Met tyrosine phosphorylation for over 5 h and a marked mitogenic response. In contrast, HGF stimulation induced transient c-Met tyrosine phosphorylation in <3 h and failed to induce mitogenic response in hepatocytes cultured at a confluent cell density. Treatment of the confluent cells with HGF plus orthovanadate, a broad spectrum protein-tyrosine phosphatase inhibitor, however, prolonged c-Met tyrosine phosphorylation for over 5 h and permitted the subsequent mitogenic response. The mitogenic response to HGF was associated with the duration of c-Met tyrosine phosphorylation even in the sparse cells. We found that the activity and expression of the protein-tyrosine phosphatase LAR increased following HGF stimulation specifically in confluent hepatocytes and not in sparse hepatocytes. LAR and c-Met were associated, and purified LAR dephosphorylated tyrosine-phosphorylated c-Met in in vitro phosphatase reactions. Furthermore, antisense oligonucleotides specific for LAR mRNA suppressed the expression of LAR, allowed prolonged c-Met tyrosine phosphorylation, and led to acquisition of a mitogenic response in hepatocytes even under the confluent condition. Thus functional association of LAR and c-Met underlies the inhibition of c-Met-mediated mitogenic signaling through the dephosphorylation of c-Met, which specifically occurs under the confluent condition.  相似文献   

18.
19.
20.
Recent studies reveal that multifunctional protein β-arrestin 2 (Arrb2) modulates cell apoptosis. Survival and various aspects of liver injury were investigated in WT and Arrb2 KO mice after bile duct ligation (BDL). We found that deficiency of Arrb2 enhances survival and attenuates hepatic injury and fibrosis. Following BDL, Arrb2-deficient mice as compared with WT controls displayed a significant reduction of hepatocyte apoptosis as demonstrated by the TUNEL assay. Following BDL, the levels of phospho-Akt and phospho-glycogen synthase kinase 3β (GSK3β) in the livers were significantly increased in Arrb2 KO compared with WT mice, although p-p38 increased in WT but not in Arrb2-deficient mice. Inhibition of GSK3β following BDL decreases hepatic apoptosis and decreased p-p38 in WT mice but not in Arrb2 KO mice. Activation of Fas receptor with Jo2 reduces phospho-Akt and increases apoptosis in WT cells and WT mice but not in Arrb2-deficient cells and Arrb2-deficient mice. Consistent with direct interaction of Arrb2 with and regulating Akt phosphorylation, the expression of a full-length or N terminus but not the C terminus of Arrb2 reduces Akt phosphorylation and coimmunoprecipates with Akt. These results reveal that the protective effect of deficiency of Arrb2 is due to loss of negative regulation of Akt due to BDL and decreased downstream GSK3β and p38 MAPK signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号