首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Computational analysis of core promoters in the Drosophila genome   总被引:1,自引:0,他引:1       下载免费PDF全文
Ohler U  Liao GC  Niemann H  Rubin GM 《Genome biology》2002,3(12):research0087.1-8712
  相似文献   

2.
3.
4.
5.
6.
DNA encodes at least two independent levels of functional information. The first level is for encoding proteins and sequence targets for DNA-binding factors, while the second one is contained in the physical and structural properties of the DNA molecule itself. Although the physical and structural properties are ultimately determined by the nucleotide sequence itself, the cell exploits these properties in a way in which the sequence itself plays no role other than to support or facilitate certain spatial structures. In this work, we focus on these structural properties, comparing them between different organisms and assessing their ability to describe the core promoter. We prove the existence of distinct types of core promoters, based on a clustering of their structural profiles. These results indicate that the structural profiles are much conserved within plants (Arabidopsis and rice) and animals (human and mouse), but differ considerably between plants and animals. Furthermore, we demonstrate that these structural profiles can be an alternative way of describing the core promoter, in addition to more classical motif or IUPAC-based approaches. Using the structural profiles as discriminatory elements to separate promoter regions from non-promoter regions, reliable models can be built to identify core-promoter regions using a strictly computational approach.  相似文献   

7.
8.
9.
10.
W Kammerer  U Deuschle  R Gentz    H Bujard 《The EMBO journal》1986,5(11):2995-3000
After binding to a promoter Escherichia coli RNA polymerase is in contact with a region of about 70 bp. Around 20 bp of this sequence are transcribed. Information encoded within this transcribed region is involved in late steps of the functional program of a promoter. By changing such 'down-stream' sequences promoter strength in vivo can be varied more than 10-fold. By contrast, information for early steps of the promoter program such as recognition by the enzyme and formation of a stable complex resides in a central core region of about 35 bp. Our data show that the strength of a promoter can be limited at different levels of the overall process. Consequently promoters of identical strength can exhibit different structures due to an alternate optimization of their program.  相似文献   

11.
12.
13.
Predicting the location and strength of promoters from genomic sequence requires accurate sequenced-based promoter models. We present the first model of a full-length bacterial promoter, encompassing both upstream sequences (UP-elements) and core promoter modules, based on a set of 60 promoters dependent on σ(E), an alternative ECF-type σ factor. UP-element contribution, best described by the length and frequency of A- and T-tracts, in combination with a PWM-based core promoter model, accurately predicted promoter strength both in vivo and in vitro. This model also distinguished active from weak/inactive promoters. Systematic examination of promoter strength as a function of RNA polymerase (RNAP) concentration revealed that UP-element contribution varied with RNAP availability and that the σ(E) regulon is comprised of two promoter types, one of which is active only at high concentrations of RNAP. Distinct promoter types may be a general mechanism for increasing the regulatory capacity of the ECF group of alternative σ's. Our findings provide important insights into the sequence requirements for the strength and function of full-length promoters and establish guidelines for promoter prediction and for forward engineering promoters of specific strengths.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号