首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytogenetic analysis of Astylus antis using mitotic and meiotic cells was performed to characterize the haploid and diploid numbers, sex determination system, chromosome morphology, constitutive heterochromatin distribution pattern and chromosomes carrying nucleolus organizer regions (NORs). Analysis of spermatogonial metaphase cells revealed the diploid number 2n = 18, with mostly metacentric chromosomes. Metaphase I cells exhibited 2n = 8II+Xyp and a parachute configuration of the sex chromosomes. Spermatogonial metaphase cells submitted to C-banding showed the presence of small dots of constitutive heterochromatin in the centromeric regions of nearly all the autosomes and on the short arm of the X chromosome (Xp), as well as an additional band on one of the arms of pair 1. Mitotic cells submitted to double staining with base-specific fluorochromes (DAPI-CMA(3) ) revealed no regions rich in A+T or G+C sequences. Analysis of spermatogonial mitotic cells after sequential Giemsa/AgNO (3) staining did not reveal any specific mark on the chromosomes. Meiotic metaphase I cells stained with silver nitrate revealed a strong impregnation associated to the sex chromosomes, and in situ hybridization with an 18S rDNA probe showed ribosomal cistrons in an autosomal bivalent.  相似文献   

2.
McAllister BF 《Genetics》2003,165(3):1317-1328
Sex chromosomes originate from pairs of autosomes that acquire controlling genes in the sex-determining cascade. Universal mechanisms apparently influence the evolution of sex chromosomes, because this chromosomal pair is characteristically heteromorphic in a broad range of organisms. To examine the pattern of initial differentiation between sex chromosomes, sequence analyses were performed on a pair of newly formed sex chromosomes in Drosophila americana. This species has neo-sex chromosomes as a result of a centromeric fusion between the X chromosome and an autosome. Sequences were analyzed from the Alcohol dehydrogenase (Adh), big brain (bib), and timeless (tim) gene regions, which represent separate positions along this pair of neo-sex chromosomes. In the northwestern range of the species, the bib and Adh regions exhibit significant sequence differentiation for neo-X chromosomes relative to neo-Y chromosomes from the same geographic region and other chromosomal populations of D. americana. Furthermore, a nucleotide site defining a common haplotype in bib is shown to be associated with a paracentric inversion [In(4)ab] on the neo-X chromosome, and this inversion suppresses recombination between neo-X and neo-Y chromosomes. These observations are consistent with the inversion acting as a recombination modifier that suppresses exchange between these neo-sex chromosomes, as predicted by models of sex chromosome evolution.  相似文献   

3.
Conventional and molecular chromosomal analyses were carried out on three populations of Apareiodon ibitiensis sampled from the hydrographic basins of the São Francisco River and Upper Paraná River (Brazil). The results reveal a conserved diploid number (2n = 54 chromosomes), a karyotype formula consisting of 50 m‐sm + 4st and a ZZ/ZW sex chromosome system that has not been previously identified for the species. C‐banding analysis with propidium iodide staining revealed centromeric and terminal bands located in the chromosomes of the specimens from the three populations and allowed the identification of heteromorphism of heterochromatin regions in the Z and W chromosomes. The number of 18S sites located through fluorescent in situ hybridization (FISH) varied between the populations of the São Francisco and Upper Paraná Rivers. The location of 5S rDNA sites proved comparable in one pair of metacentric chromosomes. Thus, the present study proposes a ZZ/ZW sex chromosome system for A. ibitiensis among the Parodontidae, and a hypothesis is presented regarding possible W chromosome differentiation stages in this species through DNA accumulation, showing geographical variations for this characteristic, possibly as a consequence of geographical reproductive isolation.  相似文献   

4.
The C-banding patterns in the chromosomes ofMicrotus oeconomus, M. arvalis andM. ochrogaster demonstrate differences in the amount and distribution of heterochromatin. Autosomal centromeric heterochromatin appears as conspicuous blocks or as small dots, and in several chromosomes no heterochromatin was detected; interstitial heterochromatin was observed in one autosome pair ofM. ochrogaster. The sex chromosomes also demonstrate differences in the C-banding pattern. InM. oeconomus, the X chromosome exhibits a block of centromeric heterochromatin which is larger than that of the autosomes; this characteristic helps to recognize the X chromosomes in the karyotype. InM. arvalis no heterochromatin was appreciated in the sex chromosomes. The Y chromosomes ofM. ochrogaster andM. oeconomus are entirely heterochromatic. During male meiosis heterochromatin shows condensation, association and chiasma prevention; the sex chromosomes pair end to end in the three species. At pairing, the Y chromosome ofM. arvalis is despiralized, but it appears condensed again shortly before separation of the bivalent.  相似文献   

5.
Dioecious species accounted for 6% of all plant species, including a number of crops and economically important species, such as poplar. However, sex determination and sex chromosome evolution have been studied only in few dioecious species. In poplar, the sex-determining locus was mapped to chromosome 19. Interestingly, this locus was mapped to either a peritelomeric or a centromeric region among different poplar species. We developed an oligonucleotide (oligo)-based chromosome painting probe based on the sequence of chromosome 19 from Populus trichocarpa. We performed chromosome painting in P. tomentosa and P. deltoides. Surprisingly, the distal end on the short arm of chromosome 19, which corresponds to the location of the sex-determining locus reported in several species, was not painted in both species. Thus, the DNA sequences associated with this region have not been anchored to the current chromosome 19 pseudomolecule, which was confirmed by painting of somatic metaphase chromosome 19 of P. trichocarpa. Interestingly, the unpainted distal ends of the two chromosome 19 did not pair at the pachytene stage in 22–24% of the meiotic cells in the two species, suggest that these regions from the sex chromosomes have structurally diverged from each other, resulting in the reduced pairing frequency. These results shed light on divergence of a pair of young sex chromosomes in poplar.  相似文献   

6.
Odierna G  Aprea G  Barucca M  Canapa A  Capriglione T  Olmo E 《Genetica》2006,127(1-3):341-349
Karyotype, location of the nucleolar organiser region (NOR) and heterochromatin presence and composition were studied in the Antarctic scallop Adamussium colbecki Smith, 1902. The karyotype exhibits 2n = 38 chromosomes with 11 pairs of metacentrics, 5 of submetacentrics, one subtelocentric and two telocentrics. Ag–NOR, CMA3, DA/MM and NOR–FISH evidenced paracentromeric NORs on the short arm of 2nd pair chromosomes. Digestion with three restriction endonucleases followed by sequential staining with Giemsa, CMA3 and DAPI evidenced on all chromosomes centromeric heterochromatin positive for both DAPI and CMA3. In situ hybridisation analysis showed the presence of an AT-rich satellite DNA in the centromeric heterochromatin of several chromosomes. A mosaicism was detected in the germinal cell lines of one specimen, as in six of the 20 plates examined the set had 37 chromosomes with a missing pair of telocentrics and an unpaired metacentric. Comparison of the chromosome sets of all the pectinids studied to date and comparison with a phyletic tree obtained from molecular mitochondrial genes studies yielded good agreement between karyotype morphology and taxonomic classification.  相似文献   

7.
Three species of marsupials from the Amazon region (Marmosa cinerea, Caluromys lanatus, and Didelphis marsupialis) and two from the region of S?o Paulo (Didelphis marsupialis and Didelphis albiventris) were studied. The G-banding pattern of the species with 2n = 14 (M. cinerea and C. lanatus) was very similar, as well as the pattern of G-bands in the species with 22 chromosomes (Didelphis). All of the autosomes of M. cinerea and D. albiventris have centromeric C-bands and the Y chromosome is totally C-band positive. The long arm of the M. cinerea X chromosome is completely C-band positive except for a negative band close to the centromeric region. In D. albiventris the long arm of the X chromosome is C-band positive except for a negative band close to the telomeric region. In M. cinerea the silver-stained nucleolar organizer regions (Ag-NORs) are found in the acrocentric chromosomes, being located in the telomeric region of one pair and in the centromeric region of the other pair. Caluromys lanatus has centromeric Ag-NORs in one acrocentric and in one submetacentric chromosome pairs. Didelphis marsupialis has three chromosome pairs with telomeric Ag-NORs. In D. albiventris the Ag-NORs are terminal and located in both arms of one pair and in the long arm of two pairs of chromosomes.  相似文献   

8.
Peripheral blood lymphocyte metaphase chromosomes of three Bovoidean species have been studied using Quinacrine fluorescence and Giemsa banding techniques to give Q-, G-, and C-banding patterns. Q- and G-banding characteristics, coupled with chromosome length, enabled all of the chromosomes in each of the chromosome complements to be clearly distinguished, although some difficulties were encountered with the very smallest chromosomes. A comparison of G-banding patterns between the species revealed a remarkable degree of homology of banding patterns. Each of the 23 different acrocentric autosomes of the domestic sheep (2n=54) was represented by an identical chromosome in the goat (2n=60) and the arms of the 3 pairs of sheep metacentric autosomes were identical matches with the remaining 6 goat acrocentrics. A similar interspecies homology was evident for all but two of the autosomes in the ox (2n=60). This homology between sheep metacentric and goat acrocentric elements confirms a previously suggested Robertsonian variation. The close homology in G-banding patterns between these related species indicates that the banding patterns are evolutionarily conservative and may be a useful guide in assessing interspecific relationships. —The centromeric heterochromatin in the autosomes of the three species was found to show little or no Q-or G-staining, in contrast to the sex chromosomes. This lack of centromeric staining with the G-technique (ASG) contrasts markedly with results obtained with other mammalian species. However, with the C-banding technique these regions show a normal intense Giemsa stain and the C-bands in the sex chromosomes are inconspicuous. The amount of centromeric heterochromatin in the sheep metacentric chromosomes is considerable less than in the acrocentric autosomes or in a newly derived metacentric element discovered in a goat. It is suggested that the pale G-staining of the centromeric heterochromatin in these species might be related to the presence of G-Crich satellite DNA.  相似文献   

9.
We analysed samples of Aedes aegypti from São José do Rio Preto and Franca (Brazil) by C‐banding and Ag‐banding staining techniques. C‐banding pattern of Ae.aegypti from São José do Rio Preto examined in metaphase cells differed from Franca. The chromosomes 2, 3 and X showed centromeric C‐bands in both populations, but a slightly stained centromeric band in the Y chromosome was observed only in São José do Rio Preto. In addition, the X chromosome in both populations and the Y chromosome of all individuals from São José do Rio Preto showed an intercalary band on one of the arms that was absent in Franca. An intercalary, new band, lying on the secondary constriction of chromosome 3 was also present in mosquitoes of both populations. The comparison of the present data with data in the literature for Ae.aegypti from other regions of the world showed that they differ as to the banding pattern of sex chromosomes and the now described intercalary band in chromosome 3. The observations suggested that the heterochromatic regions of all chromosomes are associated to constitute a single C‐banded body in interphase cells. Ag‐banding technique stained the centromeric regions of all chromosomes (including the Y) and the intercalary C‐band region of the X chromosome in both populations. As Ae.aegypti populations are widespread in a great part of the world, the banding pattern variations indicate environmental interactions and may reveal both the chromosome evolutionary patterns in this species and the variations that may interfere with its vector activity.  相似文献   

10.
Heteromorphisms between sex chromosomes are rarely found in anurans and sex chromosome differentiation is considered to be a set of recent recurrent events in the evolutionary history of this group. This paper describes for the first time heteromorphic sex chromosomes Z and W in the leiuperid genus Physalaemus. They were found in P. ephippifer, a species of the P. cuvieri group, and corresponded to the eighth pair of its karyotype. The W chromosome differed from the Z chromosome by the presence of an additional segment in the short arm, composed of a distal NOR and an adjacent terminal DAPI-positive C-band. The identification of this sex chromosome pair may help in future investigations into the sex determining genes in the genus Physalaemus.  相似文献   

11.
J. L. Oud  F. Schuring 《Genetica》1987,74(3):211-217
With the help of Computer Aided Karyotyping procedures, Ag-NOR staining and C-banding techniques, the karyotype of Pyrrhopappus carolinianus (Asteraceae, Lactuceae) has been studied. The species has 2n=12 chromosomes. Silver staining reveals that the two shortest pairs of chromosomes possess NOR's. On the basis of chromosome length and centromere position, only the longest chromosome pair and the satellite chromosomes can be identified. Two types of C-banding can be obtained, dependent on the temperature of the hydrochloric acid hydrolysis of the root tips. Hydrolysis at 60°C results exclusively in centromeric bands, whereas a treatment at room temperature reveals a pattern of intercalary bands. A computer assisted analysis of the intercalary banding pattern resulted in the construction of schematic representation of the average C-banding pattern. This banding pattern allows an easy identification of each of the chromosome pairs.  相似文献   

12.
白眉长臂猿(Hylobates hoolock leuconedys)的染色体研究   总被引:7,自引:3,他引:4  
本文对两只雄性白眉长臂猿的染色体的C带、G带及Ag-NORs分布进行了较详细的分析,证实染色体数2n=38,并对该种的分类地位提出了一些新看法。  相似文献   

13.
The DNA composition and the in situ hybridization of satellite fractions were analysed in the New World camelids llama, alpaca, guanaco and vicuña. In the four camelid forms, it was possible to identify a similar main band DNA and five satellite fractions (I–V) with G+C base contents ranging from 32% to 66%. Satellites II–V from llama were in situ reannealed on chromosomes from the four camelid forms. The results obtained were: (a) the four satellites hybridized with regions of C-banding (centromeric regions of all chromosomes and short arms of some autosomes); (b) in general, homologous hybridizations (llama DNA versus llama chromosomes) were more efficient than heterologous reassociations; there were however three exceptions to this rule (vicuña and alpaca satellite fraction II, chromosome group B; vicuña fraction V, chromosome groups A and B); (c) X chromosomes from the four camelids had satellites III–V but lacked satellite II, (d) no satellite fraction was detected on chromosome Y. The analysis of the in situ hybridization patterns allowed to conclude that most or all C-banded chromosome regions comprise several satellite DNA fractions. It is, moreover, proposed that there is an ample interspecies variation in the number of chromosomes that cross-react with a given satellite fraction. Our data give further support to the close genomic kinship of New World camelids.  相似文献   

14.
15.
This work describes the karyotype and chromosomal location of the ribosomal DNA (rDNA) of Pecten maximus and Mimachlamys varia, two commercial scallop species from Europe. According to the chromosome centromeric index values found, the karyotype of P. maximus is composed of 1 metacentric, 2 metacentric–submetacentric, 1 telocentric–subtelocentric and 15 telocentric pairs, and that of M. varia of 4 metacentric, 2 subtelocentric–submetacentric, 9 subtelocentric, 3 subtelocentric–telocentric and 1 telocentric–subtelocentric pairs. In P. maximus, 18S-28S rDNA was located by FISH on a metacentric–submetacentric pair, and in M. varia on a subtelocentric–submetacentric pair using both silver staining and FISH. PCR amplification of the 5S rDNA unit yielded a single product of about 460 bp (P. maximus) and 450 bp (M. varia), that used as probe revealed a 5S rDNA site on a telocentric pair in P. maximus and a subtelocentric pair in M. varia. Two-color FISH or sequential silver staining of 5S rDNA-FISH-metaphases corroborated that the two gene families are located on different chromosomes in both species. A comparative analysis of the data allowed the inference of karyotypic relationships within scallops.  相似文献   

16.
Huang X  Hu J  Hu X  Zhang C  Zhang L  Wang S  Lu W  Bao Z 《Genes & genetic systems》2007,82(3):257-263
The chromosomes of Argopecten irradians irradians were studied by various cytogenetic approaches. Conventional chromosome characterization built on C-banding, DAPI-staining, and silver staining was complemented by the physical mapping of ribosomal DNA and telomeric sequence (TTAGGG)n by FISH. Results showed that the constitutive heterochromatin revealed by C-banding was mainly distributed at telomeric and centromeric regions. However, interstitial C-bands were also observed. The pattern of DAPI banding was almost consistent with that of C-banding. Silver staining revealed that NORs were located on the short arms of chromosome 3 and 10, and this was further confirmed by FISH using 18S-28S rDNA. 5S rDNA was mapped as two distinguishable loci on the long arm of chromosome 11. 18S-28S and 5S rDNA were located on different chromosomes by sequential FISH. FISH also showed that the vertebrate telomeric sequence (TTAGGG)n was located on both ends of each chromosome and no interstitial signals were detected. Sequential 18S-28S rDNA and (TTAGGG)n FISH demonstrated that repeated units of the two multicopy families were closely associated on the same chromosome pair.  相似文献   

17.
三种龟类动物的细胞遗传研究   总被引:2,自引:0,他引:2  
本文以外周血淋巴细胞为材料,首次报道马来闭壳龟和地龟的核型,G带,C带和Ag-NORs,以及平胸龟的G带和C带,发现平胸龟的核型与前人报道的有差异。研究结果表明:平胸龟2n=54(14M+4ST+8T+28m),N.F.=72,7+6+14。A组No.6q per有一次缢痕。Ag-NORs位于A组的No.7 q ter。其全部染色体的着丝粒区均显示阳性C带,并且A组的No.7整条异染色质化;马来闭  相似文献   

18.
Arrangement of centromeres in mouse cells   总被引:17,自引:4,他引:17  
Applying a staining procedure which reveals constitutive heterochromatin to cytological preparations of the mouse (Mus musculus), one detects heterochromatin pieces at the centromeric areas of all chromosomes except the Y. The Y chromosome is somewhat heteropyenotic in general but possesses no intensely stained centromeric heterochromatin. The arrangement of the centromeric heterochromatin in interphase cells is apparently specific for a given cell type. In meiotic prophase, centromeric heterochromatin may form clusters among bivalents. From the location of the centromeric heterochromatin of the X chromosome in the sex bivalent, it is concluded that the association between the X and Y (common end) in meiosis is limited to the distal portions of the sex elements.  相似文献   

19.
We performed cytogenetic analyses on specimens from three population samples of Proceratophrys boiei from southeastern and northeastern Brazil. We stained chromosomes of mitotic and meiotic cells with Giemsa, C-banding and Ag-NOR methods. All specimens of P. boiei presented a karyotype with a full chromosome complement of 2n=22, metacentric and submetacentric. We observed the secondary constriction within the short arm of pair 8, which was in the same position of the nucleolus organizer region (NOR). NOR heteromorphism was observed within two specimens from the municipality of Mata de S?o Jo?o (northeastern Bahia State). The C-banding evidenced an unusual heterochromatic pattern in the genome of P. boiei. In the southern most population samples (S?o Paulo State), we observed large blocks of heterochromatin in the centromeric regions of all chromosomes, whereas the northernmost samples (Bahia State) presented a small amount of constitutive heterochromatin. We suppose that this geographic variation in heterochromatin quantities could be due to heterochromatinization of some chromosome regions in the genome of the S?o Paulo samples. Furthermore, females from S?o Paulo presented, within chromosome pair 1 from C-banded karyotypes, one homologous chromosome almost heterochromatic, whereas males had heterochromatin restricted to the centromeric region. This unusual heterochromatic arrangement led us to assume that P. boiei owns a ZZ/ZW type of sexual determination system. This finding is very important, as this is the first record of ZZ/ZW sex chromosomes within Cycloramphidae. We believe that the cytogenetic differences found between southeastern and northeastern Brazilian population samples of P. boiei strongly supports the existence of a species complex under the name P. boiei, and the requirement of taxonomic and systematic reviews by morphological, bioacoustical, molecular, and cytogenetic data could define this taxonomic issue in the future.  相似文献   

20.
Ueno K  Takai A 《Genetica》2008,132(1):35-41
The karyotype and other chromosomal markers as revealed by C-banding and Ag-staining were studied in Lutjanus quinquelineatus and L. kasmira (Lutjanidae, Perciformes). While in latter species, the karyotype was invariably composed of 48 acrocentric chromosomes in both sexes, in L. quinquelineatus the female karyotype had exclusively 48 acrocentric chromosomes (2n = 48) but that of the male consisted of one large metacentric and 46 acrocentric chromosomes (2n = 47). The chromosomes in the first meiotic division in males showed 22 bivalents and one trivalent, which was formed by an end-to-end association and a chiasmatic association. Multiple sex chromosome system of X1X1X2X2/X1X2Y type resulting from single Robertsonian fusion between the original Y chromosome and an autosome was hypothesized to produce neo-Y sex chromosome. The multiple sex chromosome system of L. quinquelineatus appears to be at the early stage of the differentiation. The positive C-banded heterochromatin was situated exclusively in centromeric regions of all chromosomes in both species. Similarly, nucleolus organizer region sites were identified in the pericentromeric region of one middle-sized pair of chromosomes in both species. The cellular DNA contents were the same (3.3 pg) between the sexes and among this species and related species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号