首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
TA Quinten  A Kuhn 《Journal of virology》2012,86(20):11107-11114
Assembly of the bacteriophage T4 head structure occurs at the cytoplasmic face of the inner membrane of Escherichia coli with the formation of proheads. The proheads contain an internal scaffolding core that determines the size and the structure of the capsid. In a mutant where the major shell protein gp23 was compromised, core structures without a shell had been detected. Such core structures were also found in the mutant T4am20am23. Since the mutation in gene 20 is at the N terminus of gp20, it was assumed that these core structures assemble in the absence of gp20. However, sequencing showed that the mutation introduces a new ribosome binding site that leads to a restart at codon 15. Although the mutant protein gp20s lacks the very N-terminal sequence, we found that it still binds to the membrane of the host cell and can initiate prohead assembly. This explains its activity to allow the assembly of core structures and proheads at the membrane surface. With a cross-linking approach, we show here that gp20 and gp20s are escorted by the chaperones DnaK, trigger factor, and GroEL and dock on the membrane at the membrane protein YidC.  相似文献   

2.
The core shell of hepatitis B virus is a potent immune stimulator, giving a strong neutralizing immune response to foreign epitopes inserted at the immunodominant region, located at the tips of spikes on the exterior of the shell. Here, we analyze structures of core shells with a model epitope inserted at two alternative positions in the immunodominant region. Recombinantly expressed core protein assembles into T=3 and T=4 icosahedral shells, and atomic coordinates are available for the T=4 shell. Since the modified protein assembles predominantly into T=3 shells, a quasi-atomic model of the native T=3 shell was made. The spikes in this T=3 structure resemble those in T=4 shells crystallized from expressed protein. However, the spikes in the modified shells exhibit an altered conformation, similar to the DNA containing shells in virions. Both constructs allow full access of antibodies to the foreign epitope, DPAFR from the preS1 region of hepatitis B virus surface antigen. However, one induces a 10-fold weaker immune response when injected into mice. In this construct, the epitope is less constrained by the flanking linker regions and is positioned so that the symmetry of the shell causes pairs of epitopes to come close enough to interfere with one another. In the other construct, the epitope mimics the native epitope conformation and position. The interaction of native core shells with an antibody specific to the immunodominant epitope is compared to the constructs with an antibody against the foreign epitope. Our findings have implications for the design of vaccines based on virus-like particles.  相似文献   

3.
Coat and scaffolding subunits derived from P22 procapsids have been purified in forms that co-assemble rapidly and efficiently into icosahedral shells in vitro under native conditions. The half-time for this reaction is approximately five minutes at 21 degrees C. The in vitro reaction exhibits the regulated features observed in vivo. Neither coat nor scaffolding subunits alone self-assemble into large structures. Upon mixing the subunits together they polymerize into procapsid-like shells with the in vivo coat and scaffolding protein composition. The subunits in the purified coat protein preparations are monomeric. The scaffolding subunits appear to be monomeric or dimeric. These results confirm that P22 procapsid formation does not proceed through the assembly of a core of scaffolding, which then organizes the coat, but requires copolymerization of coat and scaffolding. To explore the mechanisms of the control of polymerization, shell assembly was examined as a function of the input ratio of scaffolding to coat subunits. The results indicated that scaffolding protein was required for both initiation of shell assembly and continued polymerization. Though procapsids produced in vivo contain about 300 molecules of scaffolding, shells with fewer subunits could be assembled down to a lower limit of about 140 scaffolding subunits per shell. The overall results of these experiments indicate that coat and scaffolding subunits must interact in both the initiation and the growth phases of shell assembly. However, it remains unclear whether during growth the coat and scaffolding subunits form a mixed oligomer prior to adding to the shell or whether this occurs at the growing edge.  相似文献   

4.
Bacteriophage phi29 requires scaffolding protein to assemble the 450 x 540 A prolate prohead with T = 3 symmetry end caps. In infections with a temperature-sensitive mutant scaffolding protein, capsids assemble predominantly into 370 A diameter isometric particles with T = 3 symmetry that lack a head-tail connector. However, a few larger, 430 A diameter, particles are also assembled. Cryo-electron microscopy shows that these larger particles are icosahedral with T = 4 symmetry. The prolate prohead, as well as the two isometric capsids with T = 3 and T = 4 symmetry, are composed of similar pentamers and differently skewed hexamers. The skewing of the hexamers in the equatorial region of proheads and in the T = 4 isometric particles reflects their different environments. One of the functions of the scaffolding protein, present in the prohead, may be to stabilize skewed hexamers during assembly.  相似文献   

5.
The double-stranded DNA bacteriophages are good model systems to understand basic biological processes such as the macromolecular interactions that take place during the virus assembly and maturation, or the behavior of molecular motors that function during the DNA packaging process. Using cryoelectron microscopy and single-particle methodology, we have determined the structures of two phage T7 assemblies produced during its morphogenetic process, the DNA-free prohead and the mature virion. The first structure reveals a complex assembly in the interior of the capsid, which involves the scaffolding, and the core complex, which plays an important role in DNA packaging and is located in one of the phage vertices. The reconstruction of the mature virion reveals important changes in the shell, now much larger and thinner, the disappearance of the scaffolding structure, and important rearrangements of the core complex, which now protrudes the shell and interacts with the tail. Some of these changes must originate by the pressure exerted by the DNA in the interior of the head.  相似文献   

6.
The assembly of the precursor shells of bacteriophage P22 entails the co-polymerization of gene 5 coat protein with gene 8 scaffolding protein into double shell structures. During DNA encapsidation, the inner shell of scaffolding molecules dissociates and exits from the prohead. These molecules then recycle, catalyzing the assembly of newly synthesized coat protein to form new proheads (King and Casjens, 1974).Although gene 5 and gene 8 are adjacent on the phage chromosome, we find that the synthesis of the two proteins is differentially regulated. In productively infected cells, scaffolding protein is synthesized at a low rate relative to the coat protein. In contrast, cells that are infected with mutants blocked in DNA packaging and accumulate precursor shells synthesize scaffolding protein at a much higher rate. If a mutation is introduced into the coat protein gene, however, preventing shell assembly, the rate of scaffolding protein synthesis decreases to less than the wild-type rate.The experiments are consistent with models in which either continued synthesis of scaffolding protein depends upon co-polymerization with coat subunits, or soluble scaffolding subunits (but not assembled subunits) depress their own further synthesis. The finding that amber fragments of the scaffolding protein are synthesized at a very low rate is inconsistent with the second model. There is evidence, however, that fragments of the protein may have regulatory activity.The regulatory circuit couples scaffolding protein synthesis to morphogenesis. Gene dosage experiments show that regulation results in the maintenance of coat and scaffolding subunits in the proper ratio for shell assembly.  相似文献   

7.
Assembly of bacteriophage P22 procapsids requires the participation of approximately 300 molecules of scaffolding protein in addition to the 420 coat protein subunits. In the absence of the scaffolding, the P22 coat protein can assemble both wild-type-size and smaller size closed capsids. Both sizes of procapsid assembled in the absence of the scaffolding protein have been studied by electron cryomicroscopy. These structural studies show that the larger capsids have T = 7 icosahedral lattices and appear the same as wild-type procapsids. The smaller capsids possess T = 4 icosahedral symmetry. The two procapsids consist of very similar penton and hexon clusters, except for an increased curvature present in the T = 4 hexon. In particular, the pronounced skewing of the hexons is conserved in both sizes of capsid. The T = 7 procapsid has a local non-icosahedral twofold axis in the center of the hexon and thus contains four unique quasi-equivalent coat protein conformations that are the same as those in the T = 4 procapsid. Models of how the scaffolding protein may direct these four coat subunit types into a T = 7 rather than a T = 4 procapsid are presented.  相似文献   

8.
Structure and assembly of the capsid of bacteriophage P22.   总被引:2,自引:0,他引:2  
Identification of the genes and proteins involved in phage P22 formation has permitted a detailed analysis of particle assembly, revealing some unexpected aspects. The polymerization of the major coat protein (gene 5 product) into an organized capsid is directed by a scaffolding protein (gene 8 product) which is absent from mature phage. The resulting capsid structure (prohead) is the precursor for DNA encapsidation. All of the scaffolding protein exits from the prohead in association with DNA packaging. These molecules then recycle, directing further rounds of prohead assembly. The structure of the prohead has been studied by electron microscopy of thin sections of phage infected cells, and by low angle X-ray scattering of concentrated particles. The results show that the prohead is a double shell structure, or a ball within a shell. The inner ball or shell is composed of the scaffolding protein while the outer shell is composed of coat protein. The conversion from prohead to mature capsid is associated with an expansion of the coat protein shell. It is possible that the scaffolding protein molecules exit through the capsid lattice. When DNA encapsidation within infected cells is blocked by mutation, scaffolding protein is trapped in proheads and cannot recycle. Under these conditions, the rate of synthesis of gp8 increases, so that normal proheads continue to form. These results suggest that free scaffolding protein negatively regulates its own further synthesis, providing a coupling between protein synthesis and protein assembly.  相似文献   

9.
10.
Form determination of the heads of bacteriophages   总被引:3,自引:0,他引:3  
The shape of the DNA-containing heads of many bacteriophages is not only determined by the properties of the protein subunits which build the shell (capsid) but also by the scaffolding core which is a transient structure of the prohead. The form-determining properties of the scaffolding proteins have been characterized by genetic methods based on conditional mutants and site-directed mutagenesis. The mechanism of form determination has been studied by in vitro assembly experiments. The theoretical background is discussed and different models for mechanisms of form determination are considered. Definitive decisions about the validity of a model is still limited by the difficulty of obtaining unambiguous answers on the stoichiometry and the fine structure of the scaffold because of their high instability.  相似文献   

11.
During the packaging of double-stranded DNA by bacterial viruses, the precursor procapsid loses its internal core of scaffolding protein and undergoes a substantial expansion to form the mature virion. Here we show that upon heating, purified P22 procapsids release their scaffolding protein subunits, and the coat protein lattice expands in the absence of any other cellular or viral components. Following these processes by differential scanning calorimetry revealed four different transitions that correlated with structural transitions in the coat protein shells. Exit of scaffolding protein from the procapsid occurred reversibly and just above physiological temperature. Expansion of the procapsid lattice, which was exothermic, occurred after the release of scaffolding protein. Partial denaturation of coat subunits within the intact shell structure was detected prior to the major endothermic event. This major endotherm occurred above 80 degrees C and represents particle breakage and irreversible coat protein denaturation. The results indicate that the coat subunits are designed to form a metastable precursor lattice, which appears to be separated from the mature lattice by a kinetic barrier.  相似文献   

12.
Initiation of P22 procapsid assembly in vivo   总被引:7,自引:0,他引:7  
The procapsids of all double-stranded DNA phages have a unique portal vertex, which is the locus of DNA packaging and DNA injection. Procapsid assembly is also initiated at this vertex, which is defined by the presence of a cyclic dodecamer of the portal protein. Assembly of the procapsid shell of phage P22 requires the gene 5 coat protein and the gene 8 scaffolding protein. We report here that removal of gene product (gp) 1 portal protein of P22 by mutation does not slow the rate of polymerization of coat and scaffolding subunits into shells, indicating that the portal ring is dispensable for shell initiation. Mutant scaffolding subunits specified by tsU172 copolymerize with coat subunits into procapsids at restrictive temperature, and also correctly autoregulate their synthesis. However, the shell structures formed from the temperature-sensitive scaffolding subunits fail to incorporate the portal ring and the three minor DNA injection proteins. This mutation identifies a domain of the scaffolding protein specifically involved in organization of the portal vertex. The results suggest that it is a complex of the scaffolding protein that initiates procapsid assembly and organizes the portal ring.  相似文献   

13.
The polymerase complex of the enveloped double-stranded RNA (dsRNA) bacteriophage phi6 fulfils a similar function to those of other dsRNA viruses such as Reoviridae. The phi6 complex comprises protein P1, which forms the shell, and proteins P2, P4 and P7, which are involved in RNA synthesis and packaging. Icosahedral reconstructions from cryo-electron micrographs of recombinant polymerase particles revealed a clear dodecahedral shell and weaker satellites. Difference imaging demonstrated that these weak satellites were the sites of P4 and P2 within the complex. The structure determined by icosahedral reconstruction was used as an initial model in an iterative reconstruction technique to examine the departures from icosahedral symmetry. This approach showed that P4 and P2 contribute to structures at the 5-fold positions of the icosahedral P1 shell which lack 5-fold symmetry and appear in variable orientations. Reconstruction of isolated recombinant P4 showed that it was a hexamer with a size and shape matching the satellite. Symmetry mismatch between the satellites and the shell could play a role in RNA packaging akin to that of the portal vertex of dsDNA phages in DNA packaging. This is the first example of dsRNA virus in which the structure of the polymerase complex has been determined without the assumption of icosahedral symmetry. Our result with phi6 illustrates the symmetry mismatch which may occur at the sites of RNA packaging in other dsRNA viruses such as members of the Reoviridae.  相似文献   

14.
The procapsid of the Bacillus subtilis bacteriophage SPP1 is formed by the major capsid protein gp13, the scaffolding protein gp11, the portal protein gp6, and the accessory protein gp7. The protein stoichiometry suggests a T=7 symmetry for the SPP1 procapsid. Overexpression of SPP1 procapsid proteins in Escherichia coli leads to formation of biologically active procapsids, procapsid-like, and aberrant structures. Co-production of gp11, gp13 and gp6 is essential for assembly of procapsids competent for DNA packaging in vitro. Presence of gp7 in the procapsid increases the yield of viable phages assembled during the reaction in vitro five- to tenfold. Formation of closed procapsid-like structures requires uniquely the presence of the major head protein and the scaffolding protein. The two proteins interact only when co-produced but not when mixed in vitro after separate synthesis. Gp11 controls the polymerization of gp13 into normal (T=7) and small sized (T=4?) procapsids. Predominant formation of T=7 procapsids requires presence of the portal protein. This implies that the portal protein has to be integrated at an initial stage of the capsid assembly process. Its presence, however, does not have a detectable effect on the rate of procapsid assembly during SPP1 infection. A stable interaction between gp6 and the two major procapsid proteins was only detected when the three proteins are co-produced. Efficient incorporation of a single portal protein in the procapsid appears to require a structural context created by gp11 and gp13 early during assembly, rather than strong interactions with any of those proteins. Gp7, which binds directly to gp6 both in vivo and in vitro, is not necessary for incorporation of the portal protein in the procapsid structure.  相似文献   

15.
The orientation and location of the 240 hexons comprising the outer protein shell of adenovirus have been determined. Electron micrographs of the capsid and its fragments were inspected for the features of hexon known from the X-ray crystallographic model as described in the accompanying paper. A capsid model is proposed with each facet comprising a small p3 net of 12 hexons, arranged as a triangular sextet with three outer hexon pairs. The sextet is centrally placed about the icosahedral threefold axis, with its edges parallel to those of the facet. The outer pairs project over the facet edges on one side of the icosahedral twofold axes at each edge. The model capsid is defined by the underlying icosahedron, of edge 445 A, upon which hexons are arranged. The hexons are thus bounded by icosahedra with insphere radii of 336 A and 452 A. A quartet of hexons forms the asymmetric unit of an icosahedral hexon shell, which can be closed by the addition of pentons at the 12 vertices. Considering the hexon trimer as a complex structure unit, its interactions in the four topologically distinct environments are very similar, with conservation of at least two-thirds of the inter-hexon bonding. The crystal-like construction explains the flat facets and sharp edges characteristic of adenovirus. Larger "adenovirus-like" capsids of any size could be formed using only one additional topologically different environment. The construction of adenovirus illustrates how an impenetrable protein shell can be formed, with highly conserved intermolecular bonding, by using the geometry of an oligomeric structure unit and symmetry additional to that of the icosahedral point group. This contrasts with the manner suggested by Caspar & Klug (1962), in which the polypeptide is the structure unit, and for which the number of possible bonding configurations required of a structure unit tends to infinity as the continuously curved capsid increases in size. The known structures of polyoma and the plant viruses with triangulation number equal to 3 are evaluated in terms of hexamer-pentamer packing, and evidence is presented for the existence of larger subunits than the polypeptide in both cases. It is suggested that spontaneous assembly can occur only when exact icosahedral symmetry relates structure units or sub-assemblies, which would themselves have been formed by self-limiting closed interactions. Without such symmetry, the presence of scaffolding proteins or nucleic acid is necessary to limit aggregation.  相似文献   

16.
Two amber mutations in gene 67 of bacteriophage T4 were constructed by oligonucleotide-directed mutagenesis and the resulting mutated genes were recombined back into the phage genome and their phenotype was studied. The 67amK1 mutation is close to the amino terminus of the gene, and phage carrying this mutation are unable to form plaques on suppressor-negative hosts. A second mutation, 67amK2, which lies in the middle of the gene, three codons N-terminal to a proteolytic cleavage site, produces a small number of viable phage particles. In suppressor-negative hosts, both mutants produce polyheads and proheads. 67amK1 assembles only few proheads that have a disorganized core structure, as judged from thin sections of infected cells. The proheads and the mature phages of both mutants are mainly isometric rather than having the usual prolate shape. Depending on the 67 mutant and the host, between 20% and 73% of the particles that are produced are isometric, and 1 to 10% are two-tailed biprolate particles. 67amK2 phages grown on a supD suppressor strain that inserts serine in place of the wild-type leucine do not contain gp67* derived from gene product 67 (gp67) by proteolytic cleavage. This demonstrates the importance of the correct amino acid at this position in the protein. Other abnormalities in these 67amK2 phages are the presence of uncleaved scaffolding core proteins (IPIII and gp68), indicating a structural alteration in the prohead scaffold, resulting in only partial cleavage. In wild-type phages these proteins are found in the head only in the cleaved form. With double-mutants of 67 with mutations in the major shell protein gp23 no naked scaffolding cores were found, confirming the necessity of gp67 for the assembly or persistence of a "normal" core.  相似文献   

17.
Isolation and reassembly of bacteriophage T4 core proteins   总被引:1,自引:0,他引:1  
The products of genes 22, 67 and 68, and the internal proteins IPI, IPII and IPIII, as components of the scaffolding core of the bacteriophage T4 prohead, have been isolated and purified by hydroxylapatite column chromatography. Under conditions promoting reassembly in vitro, the proteins associated into elongated particles of practically constant width but variable length that we have called polycores. Preliminary optical diffraction experiments indicate that polycores may have an ordered structure, possibly helical, as has been suggested for the polyhead core. The coassembly of core proteins and the purified shell protein gp23 results in the formation of core-containing polyheads. Occasionally, prolate core-like particles have been observed but their reproducible formation has not been attained. Attempts to investigate the role of the minor prohead component gp20 in core assembly have been made through the cloning of the corresponding gene in an expression vector and subsequent purification of the protein.  相似文献   

18.
In the morphogenesis of double stranded DNA phages, a precursor protein shell empty of DNA is first assembled and then filled with DNA. The assembly of the correctly dimensioned precursor shell (procapsid) of Salmonella bacteriophage P22 requires the interaction of some 420 coat protein subunits with approximately 200 scaffolding protein subunits to form a double shelled particle with the scaffolding protein on the inside. In the course of DNA packaging, all of the scaffolding protein subunits exit from the procapsid and participate in further rounds of procapsid assembly (King and Casjens. 1974. Nature (Lond.). 251:112-119). To study the mechanism of shell assembly we have purified the coat and scaffolding protein subunits by selective dissociation of isolated procapsids. Both proteins can be obtained as soluble subunits in Tris buffer at near neutral pH. The coat protein sedimented in sucrose gradients as a roughly spherical monomer, while the scaffolding protein sedimented as if it were an elongated monomer. When the two proteins were mixed together in 1.5 M guanidine hydrochloride and dialyzed back to buffer at room temperature, procapsids formed which were very similar in morphology, sedimentation behavior, and protein composition to procapsids formed in vivo. Incubation of either protein alone under the same conditions did not yield any large structures. We interpret these results to mean that the assembly of the shell involves a switching of both proteins from their nonaggregating to their aggregating forms through their mutual interaction. The results are discussed in terms of the general problem of self-regulated assembly and the control of protein polymerization in morphogenesis.  相似文献   

19.
Previous studies have shown that the assembly of the precursor shell (prohead) of bacteriophage P22 requires the copolymerization of the gene 5 coat protein with the gene 8 scaffolding protein. Removal of the scaffolding protein by mutation prevents efficient coat protein assembly, but some aberrant particles do form. We have now isolated these structures and characterized them with respect to morphology, protein composition, and small-angle X-ray scattering properties.The aberrant particles fall into three morphological classes, i.e. complex spirals and closed shells of two sizes. Small-angle X-ray scattering studies confirm that the larger particles are hollow shells with the radius of proheads (r = 260 A?), and not of the mature virus (r = 285 A?). These structures lack the inner shell of scaffolding protein found in proheads. The small particles have a radius of 195 Å, smaller than proheads, and appear to contain material, not scaffolding protein, within the outer shell.The aberrant particles contain two minor protein species, the gene 9 tail-spike protein, and an unidentified 67,000 molecular weight polypeptide, probably from the host. Neither is found in normal proheads. Removal of gene.9 product by mutation did not affect the formation of the aggregates. Fractionation of the morphological classes of particles revealed that the 67,000 molecular weight band was associated with the closed shells. It may be serving as a pseudo-initiator.Earlier studies had shown that treatment of proheads with sodium dodecyl sulfate in vitro resulted in loss of the scaffolding protein, and expansion of the shell to the mature radius of 285 Å. When the 8? prohead-sized shells were treated similarly, they also expanded to the mature-sized shell. These results support the idea that there are at least two stable states of the coat protein, one of which, the prohead form, is an obligatory precursor of the mature form.  相似文献   

20.
Three-dimensional structure of the HSV1 nucleocapsid   总被引:26,自引:0,他引:26  
J D Schrag  B V Prasad  F J Rixon  W Chiu 《Cell》1989,56(4):651-660
The three-dimensional structures of full and empty capsids of HSV1 were determined by computer analysis of low dose cryo-electron images of ice embedded capsids. The full capsid structure is organized into outer, intermediate, and inner structural layers. The empty capsid structure has only one layer which is indistinguishable from the outer layer of the full capsids. This layer is arranged according to T = 16 icosahedral symmetry. The intermediate layer of full capsids appears to lie on a T = 4 icosahedral lattice. The genomic DNA is located inside the T = 4 shell and is the component of the innermost layer of the full capsids. The outer and intermediate layers interact in such a way that the channels along their icosahedral two-fold axis coincide and form a direct pathway between the DNA and the environment outside the capsid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号