首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Accurate image alignment is needed for computing three-dimensional reconstructions from transmission electron microscope tilt series. So far, the best results have been obtained by using colloidal gold beads as fiducial markers. If their use has not been possible for some reason, the only option has been the automatic cross-correlation-based registration methods. However, the latter methods are inaccurate and, as we will show, inappropriate for the whole problem. Conversely, we propose a novel method that uses the actual 3D motion model but works without any fiducial markers in the images. The method is based on matching and tracking some interest points of the intensity surface by first solving the underlying geometrical constraint of consecutive images in the tilt series. The results show that our method is near the gold marker alignment in the level of accuracy and hence opens the way for new opportunities in the analysis of electron tomography reconstructions, especially when markers cannot be used.  相似文献   

3.
We have implemented a Fast Fourier Summation algorithm for tomographic reconstruction of three-dimensional biological data sets obtained via transmission electron microscopy. We designed the fast algorithm to reproduce results obtained by the direct summation algorithm (also known as filtered or R-weighted backprojection). For two-dimensional images, the new algorithm scales as O(N(theta)M log M)+O(MN log N) operations, where N(theta) is the number of projection angles and M x N is the size of the reconstructed image. Three-dimensional reconstructions are constructed from sequences of two-dimensional reconstructions. We demonstrate the algorithm on real data sets. For typical sizes of data sets, the new algorithm is 1.5-2.5 times faster than using direct summation in the space domain. The speed advantage is even greater as the size of the data sets grows. The new algorithm allows us to use higher order spline interpolation of the data without additional computational cost. The algorithm has been incorporated into a commonly used package for tomographic reconstruction.  相似文献   

4.
5.
Anatomy of large biological specimens is often reconstructed from serially sectioned volumes imaged by high-resolution microscopy. We developed a method to reassemble a continuous volume from such large section series that explicitly minimizes artificial deformation by applying a global elastic constraint. We demonstrate our method on a series of transmission electron microscopy sections covering the entire 558-cell Caenorhabditis elegans embryo and a segment of the Drosophila melanogaster larval ventral nerve cord.  相似文献   

6.
The resolution in 3D reconstructions from tilt series is limited to the information below the first zero of the contrast transfer function unless the signal is corrected computationally. The restoration is usually based on the assumption of a linear space-invariant system and a linear relationship between object mass density and observed image contrast. The space-invariant model is no longer valid when applied to tilted micrographs because the defocus varies in a direction perpendicular to the tilt axis and with it the shape of the associated point spread function. In this paper, a method is presented for determining the defocus gradient in thin specimens such as sections and 2D crystals, and for restoration of the images subsequently used for 3D reconstruction. The alignment procedure for 3D reconstruction includes area matching and tilt geometry refinement. A map with limited resolution computed from uncorrected micrographs is compared to a volume computed from corrected micrographs with extended resolution.  相似文献   

7.
A modification of a scanning transmission electron microscope specimen holder which permits full viewing of large plastic embedded tissue sections is discussed. The method for producing one-centimeter diameter "giant" grids is explained and the procedure for sample preparation is outlined. The modification aids the microscopist in his evaluation of tissue structural relationships by providing large areas of tissue for examination and reduces significantly the time required to prepare and examine standard 1-2 mm2 electron microscopy tissue sections. Light and electron microscopic evaluations can be made on the same tissue sections.  相似文献   

8.
Electron microscopy is the only currently available technique with a resolution adequate to identify and follow every axon and dendrite in dense neuropil. Reconstructions of large volumes of neural tissue, necessary to reconstruct even local neural circuits, have, however, been inhibited by the daunting task of serially sectioning and reconstructing thousands of sections. Recent technological developments have improved the quality of volume electron microscopy data and automated its acquisition. This opens up the prospect of reconstructing almost complete invertebrate and sizable fractions of vertebrate nervous systems. Such reconstructions of complete neural wiring diagrams could rekindle the tradition of relating neural function to the underlying neuroanatomical circuitry.  相似文献   

9.
AutoEM is a software package developed by Zhang et al. [J. Struct. Biol. 1356, 251] for semi-automated acquisition of cryo-electron micrographs from Tecnai series electron microscopes and is used frequently at the lowest level of automation. We report here on the new progress that we have made based on their preliminary work. A fourth low-dose state is created where the system can pre-select all the good holes in a grid square from a single CCD image taken at low magnification, making the system operative at much higher levels of automation. An additional control interface enables the operator to monitor the status of the program and the quality of the data, interact with the program, and direct the execution process according to intermediate results. When data acquisition is in progress, all useful information is automatically saved in certain text files which are easily accessible by a database. More detailed improvements and general advantages are illustrated and discussed. We have started to use the program to perform routine data collection. A number of applications show that the performance of the program is satisfactory and the quality of the micrographs and their power spectra acquired by the program is comparable to those manually collected under the same conditions.  相似文献   

10.
We present a strategy for the alignment of dual-axis tomographic series, based on reference points and simultaneous alignment of both series. Each series is first aligned individually, an affine transformation is determined to bring the two series in a unique reference system, and all experimental coordinates are combined in a single system of equations. In case of severe shrinkage, a global and a local refinement of the orientation parameters are performed to correct all minors misalignments.The strategy is illustrated on tomographic experiments performed on sections from plastic-embedded biological samples. The efficiency in correcting the misalignment of gold particles and in improving the quality of the reconstruction is documented both visually and quantitatively.In our approach every region of the tomogram is associated with its own orientation parameters and can be eventually reconstructed with the preferred algorithm. This is convenient in the computation of 3D averages of equivalent structures. A simulation experiment is presented to show that the performances of this approach are superior to those of the method of rotation in direct space.  相似文献   

11.
12.
The resolution of cryo-electron tomography can be limited by the first zero of the microscope’s contrast transfer function (CTF). To achieve higher resolution, it is critical to determine the CTF and correct its phase inversions. However, the extremely low signal-to-noise ratio (SNR) and the defocus gradient in the projections of tilted specimens make this process challenging. Two programs, CTFPLOTTER and CTFPHASEFLIP, have been developed to address these issues. CTFPLOTTER obtains a 1D power spectrum by periodogram averaging and rotational averaging and it estimates the noise background with a novel approach, which uses images taken with no specimen. The background-subtracted 1D power spectra from image regions at different defocus values are then shifted to align their first zeros and averaged together. This averaging improves the SNR sufficiently that it becomes possible to determine the defocus for subsets of the tilt series rather than just the entire series. CTFPHASEFLIP corrects images line-by-line by inverting phases appropriately in thin strips of the image at nearly constant defocus. CTF correction by these methods is shown to improve the resolution of aligned, averaged particles extracted from tomograms. However, some restoration of Fourier amplitudes at high frequencies is important for seeing the benefits from CTF correction.  相似文献   

13.
14.
15.
16.
An electron microscope study of deoxyribonucleoprotamines   总被引:4,自引:0,他引:4  
  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号