首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
To improve the low water-solubility of HIV-1 protease inhibitors KNI-272, -279 and -727, we previously reported the water-soluble prodrugs of these inhibitors based on O-->N intramolecular acyl migration reaction. These prodrugs were rapidly converted to the corresponding parent drugs under physiological conditions. To understand the steric and electrostatic effects of O-acyl moiety on the migration rate, we examined several types of prodrug. A remarkably slow migration was observed in the benzoyl-type prodrugs, and Hammett plot of migration rate constants of p-substituted benzoyl-type prodrugs gave a linear free energy relationship.  相似文献   

3.
A new enzyme-labile group called S-acyl-3-thiopropyl group (SATP) has been synthesized from allylic esters of phosphonate. After demonstration of the enzyme-labile character of the SATP in cellular extracts, it has been introduced onto the phosphonate moiety of PFA (Foscarnet) to obtain potential lipophilic prodrugs. To ponder the lipophilicity of the triesters of PFA, esters of monomethylether of polyethyleneglycols and of thioglycerol were introduced on the PFA carboxylate moiety. The SATP groups were introduced in an attempt to deliver PFA after bioactivation inside the cells. The PFA prodrugs were evaluated in vitro for their activity against human immunodeficiency viruses (HIV-1 and HIV-2).  相似文献   

4.
Novel glycerolipidic prodrugs of didanosine and didanosine monophosphate designed to by-pass the hepatic first pass metabolism were synthesized and tested for their cytotoxicity and anti-HIV-1 activity. Formulation as liposomes of dipalmitoylphosphatidylcholine was elaborated. A simple quantitative HPLC-UV method was developed and validated, and ESI-MS was used for qualitative purpose. These two prodrugs exhibited promising biological activities against HIV-1 in in vitro infected cell culture.  相似文献   

5.
To improve the low water-solubility of HIV protease inhibitors, we synthesized water-soluble prodrugs of KNI-272 and KNI-279 which are potent HIV-1 protease inhibitors consisting of an Apns–Thz core structure (Apns; allophenylnorstatine, Thz; thiazolidine-4-carboxylic acid) as an inhibitory machinery. The prodrugs, which contained an O-acyl peptidomimetic structure with an ionized amino group leading to the increase of water-solubility, were designed to regenerate the corresponding parent drugs based on the ON intramolecular acyl migration reaction at the -hydroxy-β-amino acid residue, that is allophenylnorstatine. The synthetic prodrugs 3, 4, 6, and 7 improved the water-solubility (>300 mg/mL) more than 4000-fold in comparison with the parent compounds, which is the practically acceptable value as water-soluble drugs. These prodrugs were stable as an HCl salt and in a strongly acidic solution corresponding to gastric juice (pH 2.0), and could be converted to the parent compounds promptly in the aqueous condition from slightly acidic to basic pH at 37 °C, with the suitable migration rate, via a five-membered ring intermediate. Using a similar method, we synthesized a prodrug (12) of ritonavir, a clinically useful HIV-1 protease inhibitor as an anti-AIDS drug. In contrast to the prodrugs 3, 4, 6, and 7, the prodrug 12 was very slowly converted to ritonavir probably through a six-membered ring intermediate, with the t1/2 value of 32 h that may not be suitable for practical use.  相似文献   

6.
A series of anti-HIV prodrugs possessing various polyaminated side arms have been developed. The incorporation of a N-Boc protected monoamine or diamine side arm into the backbone of the 2',3'-dideoxy-3'-thiacytidine 1 (BCH-189) provided an increase in antiviral potency, which could be several orders magnitude greater than the parent drug (1) depending on the cell culture systems used (MT-4 or MDMs). Twenty six 2',3'-dideoxy-3'-thiacytidine prodrugs which differ from each other by the length, the nature of the 5'-O function and the 5'-O or/and N-4 position on the nucleoside moiety were synthesized. Among this new series of prodrugs, several congeners (12c and 12a) were found to inhibit HIV-1 replication in cell culture with 50% effective concentrations EC50 of 10 and 50 nM respectively, in MT-4 cells. Compound 12c was found more active on infected MDMs cells with 50% effective concentration of 0.01 nM. The synthesis and the antiviral properties of these compounds are discussed.  相似文献   

7.
We have developed a new approach to prodrugs, which utilizes a pH-induced intramolecular O-->N migration of an acyloxy group in carbonate moiety to a free amino moiety at neutral pH. This method is exemplified by facile rearrangement of highly water-soluble prodrug 3 to carbamate 4, a close analogue of HIV-1 protease inhibitor Amprenavir. The O-->N acyloxy migration is unprecedented in the context of prodrugs and it enables a high atom economy due to recycling of the 'pro' moiety.  相似文献   

8.
A novel series of acetamide-substituted derivatives and two prodrugs of doravirine were designed and synthesized as potent HIV-1 NNRTIs by employing the structure-based drug design strategy. In MT-4 cell-based assays using the MTT method, it was found that most of the new compounds exhibited moderate to excellent inhibitory potency against the wild-type (WT) HIV-1 strain with a minimum EC50 value of 54.8?nM. Among them, the two most potent compounds 8i (EC50?=?59.5?nM) and 8k (EC50?=?54.8?nM) displayed robust activity against WT HIV-1 with double-digit nanomolar EC50 values, being superior to lamivudine (3TC, EC50?=?12.8?μM) and comparable to doravirine (EC50?=?13?nM). Besides, 8i and 8k shown moderate activity against the double RT mutant (K103N?+?Y181C) HIV-1 RES056 strain. The HIV-1 RT inhibition assay further validated the binding target. Molecular simulation of the representative compounds was employed to provide insight on their structure-activity relationships (SARs) and direct future design efforts. Finally, the aqueous solubility and chemical stability of the prodrugs 9 and 10 were investigated in detail.  相似文献   

9.
Abstract

A series of anti-HIV prodrugs possessing various polyaminated side arms have been developed. The incorporation of a N-Boc protected monoamine or diamine side arm into the backbone of the 2′,3′-dideoxy-3′-thiacytidine 1 (BCH-189) provided an increase in antiviral potency, which could be several orders magnitude greater than the parent drug (1) depending on the cell culture systems used (MT-4 or MDMs). Twenty six 2′,3′-dideoxy-3′-thiacytidine prodrugs which differ from each other by the length, the nature of the 5′-O function and the 5′-O or /and N-4 position on the nucleoside moiety were synthesized. Among this new series of prodrugs, several congeners (12c and 12a) were found to inhibit HIV-1 replication in cell culture with 50% effective concentrations ECso of 10 and 50 nM respectively, in MT-4 cells. Compound 12c was found more active on infected MDMs cells with 50% effective concentration of 0.01 nM. The synthesis and the antiviral properties of these compounds are discussed.  相似文献   

10.
11.
A series of (?)-β-d-(2R,4R)-dioxolane-thymine-5′-O-aliphatic acid esters as well as amino acid esters were synthesized as prodrugs of (?)-β-d-(2R,4R)-dioxolane-thymine (DOT). The compounds were evaluated for anti-HIV activity against HIV-1LAI in human peripheral blood mononuclear (PBM) cells as well as for their cytotoxicity in PBM, CEM and Vero cells. Improved anti-HIV potency in vitro was observed for the compound 24 (5′-O-aliphatic acid esters) without increase in cytotoxicity in comparison to the parent drug. Chemical and enzymatic hydrolysis of the prodrugs was also studied, in which the prodrugs exhibited good chemical stability with the half-lives from 3 h to 54 h at pH 2.0 and 7.4 phosphate buffer. However, the prodrugs were relatively labile to porcine esterase with the half-lives from 12.3 to 48.0 min.  相似文献   

12.
To improve the low water-solubility of HIV protease inhibitors, we synthesized water-soluble prodrugs of KNI-727, a potent small-sized dipeptide-type HIV-1 protease inhibitor consisting of an Apns-Dmt core (Apns; allophenylnorstatine, Dmt; (R)-5,5-dimethyl-1,3-thiazolidine-4-carboxylic acid) as inhibitory machinery. These prodrugs contained an O-acyl peptidomimetic structure with an ionized amino group leading to an increase in water-solubility, and were designed to regenerate the corresponding parent drugs based on the O-->N intramolecular acyl migration reaction via a five-membered ring intermediate at the alpha-hydroxy-beta-amino acid residue, that is Apns. The synthetic prodrug 3a improved the water-solubility (13 mg/mL) more than 8000-fold in comparison with the parent compound, which is the practically acceptable value as water-soluble drug. Furthermore, to understand the structural effects of the O-acyl moiety on the migration rate, we evaluated several phenylacetyl-type and benzoyl-type prodrugs. These prodrugs were stable as an HCl salt and in a strongly acidic solution corresponding to gastric juice (pH 2.0), and could be converted to the parent compounds promptly under aqueous conditions from slightly acidic to basic pH at 37 degrees C.  相似文献   

13.
The N-2 position of pyridazinone 1, a potent HIV-1 NNRTI that has limited aqueous solubility, was derivatized into a series of hydroxymethyl esters and carbonates as well as one phosphate. The derivatives served as prodrugs to effectively deliver 1 to rat plasma upon oral treatment at 50 mpk. Increases of 4.3- to 8.6-fold in 24-hour exposure of 1 (over that of parent) were observed while the prodrugs and the hydroxymethyl adduct 2 were undetectable.  相似文献   

14.
The prodrugs (glyceride derivatives) 3a and 3b of diclofenac were prepared by reacting 1, 2, 3-trihydroxy propane-1,3-dipalmitate/stearate with the acid chloride of diclofenac as potential prodrugs to reduce the gastrointestinal toxicity associated with them. These prodrugs were evaluated for their ulcerogenicity, anti-inflammatory and analgesic activity. It was found that the prodrugs were significantly less irritating to the gastric mucosa as indicated by severity index of 0.86, 0.78 compared to 1.6 of diclofenac. The prodrugs 3a and 3b showed better anti-inflammatory and analgesic activity than the parent drugs. The hydrolysis of prodrugs 3a and 3b were studied at pH 3, 4, 5 and 7.4. The HPLC analysis showed that the prodrugs were resistant to hydrolysis at pH 3, 4 and 5 indicating that they did not hydrolyze in acidic environment, whereas at pH 7.4 the prodrugs readily released the parent drug in significant quantities. The plasma levels of diclofenac were also analyzed by HPLC in rats after single oral dose of the prodrugs. The results indicated that the parent drugs were readily released. The concentration of diclofenac during the study was found higher in animals treated with prodrugs 3a and 3b compared with animals treated with diclofenac. The concentration of diclofenac was found to be 38.59, 33.6 and 30.36 microg/ml in animals treated with prodrugs 3a, 3b and diclofenac respectively. In conclusion, all these studies indicated that the glyceride prodrugs of diclofenac might be considered as potential biolabile prodrugs of diclofenac.  相似文献   

15.
In contrast to 5'-O-carbonate 3TC derivatives (23, 24), which are clearly 3TC prodrugs, the corresponding 3TC carbamates (15-21 and 25), found to be very stable compounds with respect to enzymatic hydrolysis (cellular lysates and culture cell media) and still active on both HIV-1 and HBV infected cells, may not be 3TC prodrugs. The antiviral properties as well as the mechanism of action of 3TC analogues have been studied and evaluated.  相似文献   

16.
17.
The objective of this work was to synthesize cyclic prodrugs 1a-d of RGD peptidomimetics 2a-d with various ring sizes (n[CH2] = 1, 3, 5 and 7) and to evaluate the effect of ring size on their transport, physicochemical, enzymatic stability, and antithrombic properties. The syntheses of cyclic prodrugs 1a-d were achieved by converging two key intermediates, Boc-Phe-O-CH2-OCO-OpNP (5) and H2N-(CH2)n-CO-Asp(OBzl)-OTce (8a-d), to give linear precursors Boc-Phe-O-CH2-OCO-HN-(CH2)n-CO-Asp(OBzl)-OTce (9a-d). The N- and C-terminus protecting groups were removed from 9a-d to give 10a-d. Linear precursors 10a-d were cyclized, and the remaining Bzl-protecting group was removed to produce cyclic prodrugs 1a-d in around 20% overall yield. The linear RGD peptidomimetics (2a-d) were synthesized using standard Boc-amino acid chemistry by solution-phase method. Increasing the ring size by adding methylene groups also increases the hydrophobicity of the cyclic prodrugs and parent RGD peptidomimetics. The transport properties of cyclic prodrugs 1c and 1d were 2.6- and 4.4-fold better than those of parent compounds 2c and 2d, respectively. These results suggest that increasing the hydrophobicity of the cyclic prodrugs and parent RGD peptidomimetics enhanced their transport properties. The hydrodynamic radii of the cyclic prodrugs were also smaller than those of their respective parent compounds, suggesting that the change in size may contribute to their transport properties. The chemical stability of the cyclic prodrugs was affected by the ring size, and the cyclic prodrug with the larger ring size (i.e. 1d) was more stable than the smaller one (i.e. 1a). All the cyclic prodrugs were more stable at pH 4 than at pH 7 and 10. Prodrug-to-drug conversion could be induced by isolated esterase as well as esterase found in human plasma. An increase in the length of methylene group (n[CH2] = 1, 3, 5, 7) enhanced the antithrombic activity of the prodrugs and the parent compounds. In summary, the ring size of cyclic prodrugs affected their transport, physicochemical, and antithrombic properties.  相似文献   

18.
The binding of human immunodeficiency virus type 1 (HIV-1) to the cellular receptor CD4 has been suggested to induce conformational changes in the viral envelope glycoproteins that promote virus entry. Conserved, discontinuous epitopes on the HIV-1 gp120 glycoprotein recognized by the 17b, 48d, and A32 antibodies are preferentially exposed upon the binding of soluble CD4 (sCD4). The binding of the 17b and 48d antibodies to the gp120 glycoprotein can also be enhanced by the binding of the A32 antibody. Here we constructed HIV-1 gp120 mutants in which the variable segments of the V1/V2 and V3 structures were deleted, individually or in combination, while the 17b, 48d, and A32 epitopes were retained. The effects of the variable loop deletions on the function of the HIV-1 envelope glycoproteins and on the exposure of epitopes induced by sCD4 or A32 binding to the monomeric gp120 glycoprotein were examined. The variable-loop-deleted envelope glycoproteins were able to mediate virus entry, albeit at lower efficiencies than those of the wild-type glycoproteins. Thus, the V1/V2 and V3 variable sequences contribute to the efficiency of HIV-1 entry but are not absolutely required for the process. Neither the V1/V2 nor V3 loops were necessary for the increase in exposure of the 17b/48d epitopes induced by binding of the A32 monoclonal antibody. By contrast, induction of the 17b, 48d, and A32 epitopes by sCD4 binding apparently involves a movement of the V1/V2 loops, which in the absence of CD4 partially mask these epitopes on the native gp120 monomer. The results obtained with a mutant glycoprotein containing a deletion of the V1 loop alone indicated that the contribution of the V2 loop to these phenomena was more significant than that of the V1 sequences. These results suggest that the V1/V2 loops, which have been previously implicated in CD4-modulated, postattachment steps in HIV-1 entry, contribute to CD4-induced gp120 conformational changes detected by the 17b, 48d, and A32 antibodies.  相似文献   

19.
In one current strategy to develop membrane-soluble pronucleotides, the phosphoramidate derivatives of the approved anti-HIV nucleosides 2',3'-didehydro-3'-deoxythymidine (d4T), 3'-azido-3'-deoxythymidine (AZT), (-)-beta-L-2',3'-dideoxy-3'- thiacytidine (3TC), and 2',3'-dideoxyadenosine (ddA) exhibit promising antiviral activity. However, the non-stereoselective synthetic route results in a mixture of diastereoisomers, which differ in the configuration of the phosphorus chiral center. Since it is believed that enzymatic ester hydrolysis is the first step in the intracellular activation of these prodrugs and that this process could be dependent on the stereochemistry at the phosphorus center, analytical methods must be developed. In the present work, in vitro evaluation of the selectivity of pig liver esterase (PLE) towards each diastereomer of d4T, AZT, 3TC, and ddA prodrugs has been investigated, applying our recently published HPLC-MS procedure using a polysaccharide-type chiral stationary phase. This method has been used to analyze the products of the PLE-catalyzed hydrolysis of the pronucleotides. It was found that both diastereomers of the four prodrugs were substrates for PLE.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号