首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Electron microscopy (EM) was used to visualize intermediates of in vitro replication of closed circular DNA plasmids. Cell-free extracts were prepared from human cells that are proficient (IDH4, HeLa) or deficient (CTag) in bypass replication of pyrimidine dimers. The DNA substrate was either undamaged or contained a single cis, syn thymine dimer. This lesion was inserted 385 bp downstream from the center of the SV40 origin of replication and sited specifically in the template to the leading strand of the newly synthesized DNA. Products from 30 minute reactions were crosslinked with psoralen and UV, linearized with restriction enzymes and spread for EM visualization. Extended single-stranded DNA regions were detected in damaged molecules replicated by either bypass-proficient or deficient extracts. These regions could be coated with Escherichia coli single-stranded DNA binding protein. The length of duplex DNA from a unique restriction site to the single-stranded DNA region was that predicted from blockage of leading strand synthesis by the site-specific dimer. These results were confirmed by S1nuclease treatment of replication products linearized with single cutting restriction enzymes, followed by detection of the diagnostic fragments by gel electrophoresis. The absence of an extended single-stranded DNA region in replication forks that were clearly beyond the dimer was taken as evidence of bypass replication. These criteria were fulfilled in 17 % of the molecules replicated by the IDH4 extract.  相似文献   

3.
DNA polymerase III of Escherichia coli requires multiple auxiliary factors to enable it to serve as a replicative complex. We demonstrate that auxiliary components of the DNA polymerase III holoenzyme, the gamma delta complex and beta subunit, markedly stimulate DNA polymerase II on long single-stranded templates. DNA polymerase II activity is enhanced by single-stranded DNA binding protein, but the stimulation by gamma delta and beta can be observed either in the absence or presence of single-stranded DNA binding protein. In contrast with DNA polymerase III, the requirement of DNA polymerase II for gamma delta cannot be bypassed by large excesses of the beta subunit at low ionic strength in the absence of the single-stranded DNA binding protein. The product of the DNA polymerase II-gamma delta-beta reaction on a uniquely primed single-stranded circle is of full template length; the reconstituted enzyme apparently is incapable of strand displacement synthesis. The possible biological implications of these observations are discussed.  相似文献   

4.
Rolling circle replication of single-stranded DNA plasmid pC194.   总被引:39,自引:5,他引:34       下载免费PDF全文
M F Gros  H te Riele    S D Ehrlich 《The EMBO journal》1987,6(12):3863-3869
A group of small Staphylococcus aureus/Bacillus subtilis plasmids was recently found to replicate via a circular single-stranded DNA intermediate (te Riele et al., 1986a). We show here that a 55 bp region of one such plasmid, pC194, has origin activity when complemented in trans by the plasmid replication protein. This region contains two palindromes, 5 and 14 bp long, and a site nicked by the replication protein. DNA synthesis presumably initiated at the nick in the replication origin can be terminated at an 18 bp sequence homologous to the site of initiation, deriving from another plasmid, pUB110, or synthesized in vitro. This result suggests that, similar to the Escherichia coli single-stranded DNA phages, pC194 replicates as a rolling circle. Interestingly, there is homology between replication origins and replication proteins of pC194 and the phage phi mX174.  相似文献   

5.
The in vitro product of mouse leukemia virus deoxyribonucleic acid (DNA) polymerase can be separated into two fractions by sedimentation in sucrose gradients. These two fractions were analyzed for their content of single-stranded DNA, double-stranded DNA, and DNA-ribonucleic acid (RNA) hybrid by (i) digestion with enzymes of known specificity and (ii) equilibrium centrifugation in Cs(2)SO(4) gradients. The major fraction early in the reaction contained equal amounts of single-stranded DNA and DNA-RNA hybrid and little double-stranded DNA. The major fraction after extensive synthesis contained equal amounts of single-and double-stranded DNA and little hybrid. In the presence of actinomycin D, the predominant product was single-stranded DNA. To account for these various forms of DNA, we postulate the following model: the first DNA synthesis occurs in a replicative complex containing growing DNA molecules attached to an RNA molecule. Each DNA molecule is displaced as single-stranded DNA by the synthesis of the following DNA strand, and the single-stranded DNA is copied to form double-stranded DNA either before or after release of the single strand from the RNA. Actinomycin blocks this conversion of single-to double-stranded DNA.  相似文献   

6.
K Saunders  A Lucy    J Stanley 《Nucleic acids research》1992,20(23):6311-6315
The plant DNA virus African cassava mosaic virus (ACMV) is believed to replicate by a rolling circle mechanism. To investigate complementary-sense DNA (lagging strand) synthesis, we have analysed the heterogenous form of complementary-sense DNA (H3 DNA) from infected Nicotiana benthamiana by two-dimensional agarose gel electrophoresis and blot hybridisation. The presence of an RNA moeity is demonstrated by comparison of results for nucleic acids resolved on neutral/alkaline and neutral/formamide gels, suggesting that complementary-sense DNA synthesis on the virus-sense single-stranded DNA template is preceded by the synthesis of an RNA primer. Hybridisation with probes to specific parts of ACMV DNA A genome indicates that synthesis of the putative RNA primer initiates between nucleotides 2581-221, a region that includes intergenic sequences that have been implicated in geminivirus DNA replication and the control of gene expression.  相似文献   

7.
Assays have been described in which duplex adeno-associated virus (AAV) DNA can be replicated in HeLa cell extracts with exogenous AAV Rep protein. These assays appear to mimic the AAV DNA replication that occurs in the cell, including the ability of extracts from adenovirus (Ad)-infected cells to replicate duplex AAV DNA templates more efficiently than extracts from uninfected cells can. We showed previously that the Ad-infected extract was able to support a more processive replication than the uninfected extract. When the Ad single-stranded DNA binding protein (Ad-DBP) was added to an uninfected extract, DNA replication became processive. Based on a strand displacement replication model, we hypothesized that the Ad-DBP was stabilizing the displaced single-stranded DNA during strand displacement replication. In this report, we show that in Ad-infected extracts most of the newly replicated duplex DNA is converted into a single-stranded form shortly after synthesis. Using the results of assays for the replication of single-stranded AAV DNA, we show that these single-stranded molecules serve as templates for additional replication. In addition, we identify a class of molecules which are likely to be intermediates of replication on single-stranded templates. We discuss a possible role for replication of single-stranded molecules in the infected cell.  相似文献   

8.
The primase activity of DNA polymerase alpha from calf thymus   总被引:14,自引:0,他引:14  
The nearly homogeneous 9 S DNA polymerase alpha from calf thymus contains a primase activity that allows priming of DNA synthesis on single-stranded templates in the presence of ribonucleoside triphosphates. Both on synthetic and natural single-stranded templates, RNA primers of 8-15 nucleotides in length are formed. In the absence of dNTPs, primers of some hundred nucleotides in length are observable. ATP and/or GTP are required for the priming reaction. UTP and CTP cannot initiate the RNA synthesis. M13 single-stranded DNA can be converted to the nicked double helical form upon primase-primed replication by the 9 S enzyme. Priming occurs mostly at specific sites on the M13 genome and replication products of up to 6000 nucleotides in length are formed. In the presence of the single-stranded DNA binding protein from Escherichia coli, specificity of priming is strongly increased. The primase is inhibited by salt and actinomycin; it is insensitive to alpha-amanitin and N-ethylmaleimide. Due to the strong complex formation between DNA polymerase and primase, it has not been possible to separate the two activities of the multisubunit 9 S enzyme.  相似文献   

9.
In modern biology, there is a critical need to develop a high-throughput and inexpensive platform for DNA sequencing. Pyrosequencing is a nonelectrophoretic single-tube DNA sequencing method that takes advantage of cooperativity between four enzymes to monitor DNA synthesis. In these studies, single-stranded DNA-binding protein (SSB) was added to the primed DNA template prior to the Pyrosequencing reaction. The addition of SSB to a Pyrosequencing reaction system resulted in a read length of more than 30 nucleotides. Improvements were observed as: (i) increased efficiency of the enzymes, (ii) reduced mispriming, as measured by nonspecific signals, (iii) an increase in signal intensity during the reaction, (iv) higher accuracy in reading the number of identical adjacent nucleotides in difficult templates, and (v) longer reads. The usefulness of these results for future Pyrosequencing applications is discussed.  相似文献   

10.
Lack of repair of ultraviolet light damage in Mycoplasma gallisepticum   总被引:10,自引:0,他引:10  
Molecules with single-stranded tails (rolling circles) were isolated as replicating intermediates in G4 progeny single-stranded DNA synthesis. Lysates from infected cells harvested late in infection during single-stranded DNA synthesis were not deproteinised but analysed directly in caesium chloride and propidium diiodide gradients. The gradient fractionated them on the basis of tail length. If the lysates were first deproteinised however, the tailed replicative intermediates banded as a peak at a density just greater than that of replicative form II DNA (RFII) and did not spread down the gradient. The origin of synthesis of the viral strand tail was mapped by electron microscopy as 55 to 60% away from the single EcoRI cleavage site. Termination molecules finishing a round of viral strand DNA synthesis have been identified as molecules consisting of a closed single-stranded DNA circle attached by a very small region to the parent double-stranded DNA circle.  相似文献   

11.
By using a complementation assay that enabled DNA polymerase delta and DNA polymerase epsilon to replicate a singly-DNA primed M13 DNA in the presence of proliferating cell nuclear antigen (PCNA) and Escherichia coli single-stranded DNA binding protein (SSB), we have purified from calf thymus in a five step procedure a multipolypeptide complex with molecular masses of polypeptides of 155, 70, 60, 58, 39 (doublet), 38 (doublet) and 36 kDa. The protein is very likely replication factor C (Tsurimoto, T. and Stillman, B. (1989) Mol. Cell. Biol. 9, 609-619). This conclusion is based on biochemical and physicochemical data and the finding that it contains a DNA stimulated ATPase which is under certain conditions stimulated by PCNA. Together RF-C, PCNA and ATP convert DNA polymerases delta and epsilon to holoenzyme forms, which were able to replicate efficiently SSB-covered singly-DNA primed M13 DNA. Calf thymus RF-C could form a primer recognition complex on a 3'-OH primer terminus in the presence of calf thymus PCNA and ATP. Holoenzyme complexes of DNA polymerase delta and epsilon could be isolated suggesting that these enzymes directly interact with the auxiliary proteins in a similar way. Under optimal replication conditions on singly-DNA primed M13 DNA the DNA synthesis rate of DNA polymerase delta was higher than of DNA polymerase epsilon. Based on these functional date possible roles of these two DNA polymerases in eukaryotic DNA replication are discussed.  相似文献   

12.
Control of single-strand DNA synthesis in coliphage f1 was studied with the use of mutants which are temperature sensitive in gene 2, a gene essential for phage DNA replication. Cells were infected at a restrictive temperature with such a mutant, and the DNA synthesized after a shift to permissive temperature was examined. When cells were held at 42 °C for ten or more minutes after infection, only single-stranded DNA was synthesized immediately after the shift to permissive temperature. This indicated that the accumulation of a pool of double-stranded, replicative form DNA molecules is not an absolute requirement for the synthesis of single-stranded DNA, although replicative form DNA accumulation precedes single-strand synthesis in cells infected with wild-type phage. Cells infected at restrictive temperature with the mutant phage do not replicate the infecting DNA, but do accumulate a substantial amount of gene 5 protein, a DNA-binding protein essential for single-strand synthesis. It is proposed that this accumulated gene 5 protein, by binding to the limited number of replicating DNA molecules formed following the shift to the permissive temperature, acts to prevent the synthesis of double-stranded replicative form DNA, thus causing the predominant appearance of single strands. This explanation implies an intermediate common to both single and double-stranded DNA synthesis. The kinetics of gene 5 protein synthesis indicates that it is the ratio of the gene 5 protein to replicating DNA molecules which determines whether an intermediate will synthesize double or single-stranded DNA.  相似文献   

13.
14.
The DNA polymerase encoded by herpes simplex virus 1 consists of a single polypeptide of Mr 136,000 that has both DNA polymerase and 3'----5' exonuclease activities; it lacks a 5'----3' exonuclease. The herpes polymerase is exceptionally slow in extending a synthetic DNA primer annealed to circular single-stranded DNA (turnover number approximately 0.25 nucleotide). Nevertheless, it is highly processive because of its extremely tight binding to a primer terminus (Kd less than 1 nM). The single-stranded DNA-binding protein from Escherichia coli greatly stimulates the rate (turnover number approximately 4.5 nucleotides) by facilitating the efficient binding to and extension of the DNA primers. Synchronous replication by the polymerase of primed single-stranded DNA circles coated with the single-stranded DNA-binding protein proceeds to the last nucleotide of available 5.4-kilobase template without dissociation, despite the 20-30 min required to replicate the circle. Upon completion of synthesis, the polymerase is slow in cycling to other primed single-stranded DNA circles. ATP (or dATP) is not required to initiate or sustain highly processive synthesis. The 3'----5' exonuclease associated with the herpes DNA polymerase binds a 3' terminus tightly (Km less than 50 nM) and is as sensitive as the polymerase activity to inhibition by phosphonoacetic acid (Ki approximately 4 microM), suggesting close communication between the polymerase and exonuclease sites.  相似文献   

15.
Linear phiX174 single-stranded DNA can be isolated from phiX phage particles produced under various conditions. About half of the linear strands have a dGMP residue at the 5' end, the remaining have roughly comparable amounts of dCMP, dTMP, and dAMP. The linear strands can be converted to covalently closed circular molecules by polynucleotide ligase, but only after they have been incubated with T4 DNA polymerase and deoxynucleoside triphosphates. Experiments with endonuclease R, the restriction enzyme from Haemophilus influenzae, indicated that the nucleotides incorporated into the DNA during this reaction were found predominantly in a limited region of the genome. The results suggest that the normal intermediate in single-stranded phiX174 DNA synthesis may be a single-stranded linear molecule which is shorter than unit length and is intrinsically capable of circularization.  相似文献   

16.
17.
Escherichia coli cells infected with gene H mutants of bacteriophage phi X174 produce two types of particles. The 110S particles contain single-stranded circular DNA; the 110S particles are not infectious, although their DNA is infectious for E. coli spheroplasts. The second type of particles, 70S particles, contain a fragment of single-stranded DNA ranging from 0.2 to 0.5 genome in length. This fragment DNA anneals only to restriction enzyme fragments of replicative-form DNA from the portion of the molecule corresponding to the origin and early region of phi X174 single-stranded synthesis, although full-round single-stranded DNA synthesis is occurring in the H mutant-infected cells. Different H mutant phages produce different proportions of 70S to 110S particles; those mutants producing the most 70S also exhibit the largest amount of degradation of intracellularly labeled DNA during infection. These results suggest that in H mutant-infected cells, full-length single-stranded DNA is synthesized; varying amounts of degradation of the single-stranded material occur, and the resulting fragment DNA is subsequently incorporated into 70S particles.  相似文献   

18.
Isolation and characterization of a DNA primase from human mitochondria   总被引:4,自引:0,他引:4  
A family of enzymatic activities isolated from human mitochondria is capable of initiating DNA replication on single-stranded templates. The principal enzymes include at least a primase and DNA polymerase gamma and require that rNTPs as well as dNTPs be present in the reaction mixture. Poly(dC) and poly(dT), as well as M13 phage DNA, are excellent templates for the primase activity. A single-stranded DNA containing the cloned origin of mitochondrial light-strand synthesis can be a more efficient template than M13 phage DNA alone. Primase and DNA polymerase activities were separated from each other by sedimentation in a glycerol density gradient. Using M13 phage DNA as template, these mitochondrial enzymes synthesize RNA primers that are 9 to 12 nucleotides in size and are covalently linked to nascent DNA. The formation of primers appears to be the rate-limiting step in the replication process. Replication of M13 DNA is sensitive to N-ethylmaleimide and dideoxynucleoside triphosphates, but insensitive to rifampicin, alpha-amanitin, and aphidicolin.  相似文献   

19.
Duplex DNA with a contiguous single-stranded tail was nearly as effective as single-stranded DNA in acting as a cofactor for the ATPase activity of recA protein at neutral pH and concentrations of MgCl2 that support homologous pairing. The ATP hydrolysis reached a steady state rate that was proportional to the length of the duplex DNA attached to a short 5' single-stranded tail after a lag. Separation of the single-stranded tail from most of the duplex portion of the molecule by restriction enzyme cleavage led to a gradual decline in ATP hydrolysis. Measurement of the rate of hydrolysis as a function of DNA concentration for both tailed duplex DNA and single-stranded DNA cofactors indicated that the binding site size of recA protein on a duplex DNA lattice, about 4 base pairs, is similar to that on a single-stranded DNA lattice, about four nucleotides. The length of the lag phase preceding steady state hydrolysis depended on the DNA concentration, length of the duplex region, and the polarity of the single-stranded tail, but was comparatively independent of tail length for tails over 70 nucleotides in length. The lag was 5-10 times longer for 3' than for 5' single-stranded tailed duplex DNA molecules, whereas the steady state rates of hydrolysis were lower. These observations show that, after nucleation of a recA protein complex on the single-stranded tail, the protein samples the entire duplex region via an interaction that is labile and not strongly polarized.  相似文献   

20.
Using heteroduplex molecules formed from a pair of plasmids, one of which contains a small deletion relative to the other, it is shown that bacterial topoisomerase I can relax a positively supercoiled DNA if a short single-stranded loop is placed in the DNA. This result supports the postulate that the specificity of bacterial DNA topoisomerase I for negatively supercoiled DNA in its relaxation reaction derives from the requirement of a short single-stranded DNA segment in the active enzyme-substrate complex. Nucleolytic and chemical probing of complexes between bacterial DNA topoisomerase I and heteroduplex DNA molecules containing single-stranded loops ranging from 13 to 27 nucleotides in length suggests that the enzyme binds specifically to the region containing a single-stranded loop; the site of DNA cleavage by the topoisomerase appears to lie within the single-stranded loop, with the enzyme interacting with nucleotides on both sides of the point of cleavage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号