首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 330 毫秒
1.
Uncovering the mechanisms involved in the decline of long‐distance migrants remains one of the most pressing issues in European conservation. Since the 1980s, the British breeding population of Garden Warbler Sylvia borin has declined by more than 25%. Here we use data from repeated bird surveys of woodland sites in the 1980s and in 2003–2004 to show that, although the overall population declined between the two periods, the probability of occupancy for this species increased at high latitudes and decreased at low latitudes. Range shifts such as this arise from a change in the ratio of colonizations to extinctions at the range margins, and we therefore related colonization and local extinction at the patch level to concurrent changes in temperature and habitat. The probability of patch colonization by this species was significantly lower where the percentage cover of vegetation in the understorey had declined, reducing habitat quality for this species. The probability of local extinction was significantly correlated with increasing mean May temperature, which may reflect a change in phenology, making breeding conditions less suitable. Changed regimes of grazing and woodland management could be used to increase habitat suitability and thereby increase colonization probability at the local scale, which may in turn increase the probability of patch occupancy despite future climatic unsuitability.  相似文献   

2.
This study was undertaken to determine the current population size, structure and habitat preference of Soemmerring's gazelle [Nanger soemmerringii (Cretzschmar 1828)] in the Alledeghi Wildlife Reserve, NE Ethiopia. Animals were counted, both during dry and wet seasons, along 12 line transects each in three habitat types (grassland, tree‐scattered grassland and bushland) in 2015/16. Habitat type had nonsignificant effect on mean population density of Soemmerring's gazelle, but wet season mean density was significantly higher than dry season mean density. Estimated weighted mean (±95% CI) population density of the species in the reserve was 1.90 (±0.17) and 5.99 (±0.370) individuals/km2 during the dry and wet seasons, respectively. Total population size of the species in the Alledeghi Wildlife Reserve was estimated at 826 ± 77 and 2,562 ± 158 individuals during the dry and wet seasons, respectively. Over half of the total population of Soemmerring's gazelle was represented by adult females during both seasons. Seasonal habitat preference of Soemmerring's gazelle was statistically significant, with greater preference for grassland habitat during wet season and for bushland habitat during dry season. In conclusion, this study has provided valuable data that will be used as a baseline for future population monitoring.  相似文献   

3.
Seasonal polyphenisms are widespread in nature, yet the selective pressures responsible for their evolution remain poorly understood. Previous work has largely focussed either on the developmental regulation of seasonal polyphenisms or putative ‘top‐down’ selective pressures such as predation that may have acted to drive phenotypic divergence. Much less is known about the influence of seasonal variation in resource availability or seasonal selection on optimal resource allocation. We studied seasonal variation in resource availability, uptake and allocation in Araschnia levana L., a butterfly species that exhibits a striking seasonal colour polyphenism consisting of predominantly orange ‘spring form’ adults and black‐and‐white ‘summer form’ adults. ‘Spring form’ individuals develop as larvae in the late summer, enter a pupal diapause in the fall and emerge in the spring, whereas ‘summer form’ individuals develop directly during the summer months. We find evidence for seasonal declines in host plant quality, and we identify similar reductions in resource uptake in late summer, ‘spring form’ larvae. Further, we report shifts in the body composition of diapausing ‘spring form’ pupae consistent with a physiological cost to overwintering. However, these differences do not translate into detectable differences in adult body composition. Instead, we find minor seasonal differences in adult body composition consistent with augmented flight capacity in ‘summer form’ adults. In comparison, we find much stronger signatures of sex‐specific selection on patterns of resource uptake and allocation. Our results indicate that resource dynamics in A. levana are shaped by seasonal fluctuations in host plant nutrition, climatic conditions and intraspecific interactions.  相似文献   

4.
5.
Deciphering the dietary habits of a species is central to understanding its ecology, resource requirements, and the evolution of its life history traits. Detailed information on how primates use their environment to address their nutritional needs is available for many primate species. Such basic, but necessary data are, however, fragmented for secretive primates, especially regarding direct behavioral observations of individuals. In this study, we evaluated the impact of seasonality and demographic characteristics on diet and feeding habits in the only free‐ranging population of habituated mandrills (Mandrillus sphinx), a forest‐dwelling species inhabiting the dense humid forests of Central Africa. We collected fine‐grained quantitative data on feeding behavior of 57 individually‐recognized animals of both sexes and different age classes during a 17‐month period. We identified most consumed plant species and determined their abundance in the habitat of the studied mandrills. We showed that diet in this species was extremely diverse and included approximately 150 different plant species, but also mushrooms, invertebrates, and vertebrates. This omnivorous and highly diverse diet presented, however, a clear frugivorous tendency. While we identified three food items largely consumed throughout the year, we also found a strong seasonal signature on diet that was partly, but not only, related to food availability. Age and sex also influenced feeding habits with some feeding specializations according to the individual categories considered and their associated nutritional needs. Our quantitative data provide a basis for future studies examining the nutritional and mineral content of food items, which will further elucidate important aspects of the ecology of this little studied forest primate.  相似文献   

6.
1 Submergence of coastal wetlands in Louisiana is currently rapid and widespread. A number of factors contribute to this loss of habitat, including the activities of herbivores. The objective of this study was to examine the effects of large mammals, predominantly nutria and wild boar, on processes controlling soil elevation in coastal marshes.
2 Effects of herbivores on soil and vegetation were assessed by the use of paired fenced and unfenced plots over two successive growing seasons. Above-ground biomass, litter production, changes in soil elevation, vertical soil accretion, shallow subsidence, below-ground production of roots and rhizomes, the thickness of the root zone, soil bulk density, and soil organic matter were measured.
3 Above-ground biomass, below-ground production, soil elevation and the expansion of the root zone decreased due to herbivore activity. Litter production, the rate of soil surface accretion and shallow soil subsidence were all higher in grazed compared to ungrazed plots, while soil organic matter and bulk density did not differ significantly between treatments.
4 The results indicate that herbivores can have a negative effect on soil building processes, primarily by reducing below-ground production and expansion of the root zone. Where natural rates of mineral sediment deposition are high, coastal marshes are expected to persist, despite herbivore activities. However, where sediment inputs are substantially less, herbivores may lead to destruction of habitat.  相似文献   

7.
Many species are locally adapted to decreased habitat quality at their range margins, and therefore show genetic differences throughout their ranges. Under contemporary climate change, range shifts may affect evolutionary processes at the expanding range margin due to founder events. In addition, populations that are affected by such founder events will, in the course of time, become located in the range centre. Recent studies investigated evolutionary changes at the expanding range margin, but have not assessed eventual effects across the species' range. We explored the possible influence of range shift on the level of adaptation throughout the species' total range. For this we used a spatially explicit, individual‐based simulation model of a woodland bird, parameterized after the middle spotted woodpecker ( Dendrocopos medius) in fragmented habitat. We simulated its range under climate change, and incorporated genetic differences at a single locus that determined the individual's degree of adaptation to optimal temperature conditions. Generalist individuals had a large thermal tolerance, but relatively low overall fitness, whereas climate specialists had high fitness combined with a small thermal tolerance. In equilibrium, the populations in the range centre were comprised of the specialists, whereas the generalists dominated the margins. In contrast, under temperature increase, the generalist numbers increased at the expanding margin and eventually also occupied the centre of the shifting range, whereas the specialists were located in the retracting margins. This was caused by founder events and led to overall maladaptation of the species, which resulted in a reduced metapopulation size and thus impeded the species' persistence. We therefore found no evidence for a complementary effect of local adaptation and range shifts on species' survival. Instead, we showed that founder events can cause local maladaptation which can amplify throughout the species' range, and, as such, hamper the species' persistence under climate change.  相似文献   

8.
Land use is likely to be a key driver of population dynamics of species inhabiting anthropogenic landscapes, such as farmlands. Understanding the relationships between land use and variation in population growth rates is therefore critical for the management of many farmland species. Using 24 years of data of a declining farmland bird in an integrated population model, we examined how spatiotemporal variation in land use (defined as habitats with “Short” and “Tall” ground vegetation during the breeding season) and habitat‐specific demographic parameters relates to variation in population growth taking into account individual movements between habitats. We also evaluated contributions to population growth using transient life table response experiments which gives information on contribution of past variation of parameters and real‐time elasticities which suggests future scenarios to change growth rates. LTRE analyses revealed a clear contribution of Short habitats to the annual variation in population growth rate that was mostly due to fledgling recruitment, whereas there was no evidence for a contribution of Tall habitats. Only 18% of the variation in population growth was explained by the modeled local demography, the remaining variation being explained by apparent immigration (i.e., the residual variation). We discuss potential biological and methodological reasons for high contributions of apparent immigration in open populations. In line with LTRE analysis, real‐time elasticity analysis revealed that demographic parameters linked to Short habitats had a stronger potential to influence population growth rate than those of Tall habitats. Most particularly, an increase of the proportion of Short sites occupied by Old breeders could have a distinct positive impact on population growth. High‐quality Short habitats such as grazed pastures have been declining in southern Sweden. Converting low‐quality to high‐quality habitats could therefore change the present negative population trend of this, and other species with similar habitat requirements.  相似文献   

9.
10.
Factors shaping the geographic range of a species can be identified when phylogeographic patterns are combined with data on contemporary and historical geographic distribution, range‐wide abundance, habitat/food availability, and through comparisons with codistributed taxa. Here, we evaluate range dynamism and phylogeography of the rocky intertidal gastropod Mexacanthina lugubris lugubris across its geographic range – the Pacific coast of the Baja peninsula and southern California. We sequenced mitochondrial DNA (CO1) from ten populations and compliment these data with museum records, habitat availability and range‐wide field surveys of the distribution and abundance of M. l. lugubris and its primary prey (the barnacle Chthamalus fissus). The geographic range of M. l. lugubris can be characterized by three different events in its history: an old sundering in the mid‐peninsular region of Baja (~ 417,000 years ago) and more recent northern range expansion and southern range contraction. The mid‐peninsular break is shared with many terrestrial and marine species, although M. l. lugubris represents the first mollusc to show it. This common break is often attributed to a hypothesized ancient seaway bisecting the peninsula, but for M. l. lugubris it may result from large habitat gaps in the southern clade. Northern clade populations, particularly near the historical northern limit (prior to the 1970s), have high local abundances and reside in a region with plentiful food and habitat – which makes its northern range conducive to expansion. The observed southern range contraction may result from the opposite scenario, with little food or habitat nearby. Our study highlights the importance of taking an integrative approach to understanding the processes that shape the geographic range of a species via combining range‐wide phylogeography data with temporal geographic distributions and spatial patterns of habitat/food availability.  相似文献   

11.
12.
A population of mountain pygmy‐possums Burramys parvus was studied at the Mount Blue Cow ski resort in Kosciuszko National Park between 1986 and 1989. Forty‐eight individuals were radiotracked during the snow‐free months and 21 individuals were tracked during winter over the 3 years of study. Trapping and radiotracking showed that the density, population structure, movements and home range sizes of B. parvus on Mount Blue Cow were strongly correlated with elevation and changed with the season. Female densities were greatest in habitats characterized by deep boulderfields, at high elevations with an abundance of Bogong moths. Males visited the areas where females were located to breed in November–December and then by February, the majority migrated to lower elevations or north and westerly aspects. Females that nested at lower elevations also visited high‐elevation habitats to access the high concentrations of Bogong moths, which were the main food source in summer. A high proportion of the juvenile males and some juvenile females dispersed to lower elevations in March and April. The resulting sexual segregation during autumn and winter may be a result of female aggression or scramble competition, but is also explainable by differences in energy requirements, seed availability and hibernation strategies between the sexes. The extraordinarily large nightly and seasonal movements between habitat patches of up to 2 km for females and 3 km for males, sexual segregation and the use of different hibernation sites have important implications for the management of this species. These include the need for movement and dispersal corridors and the conservation of boulder‐heath habitats outside the main boulderfields.  相似文献   

13.
East Asian migratory waterfowl have greatly declined since the 1950s, especially the populations that winter in China. Conservation is severely hampered by the lack of primary information about migration patterns and stopover sites. This study utilizes satellite tracking techniques and advanced spatial analyses to investigate spring migration of the greater white‐fronted goose (Anser albifrons) and tundra bean goose (Anser serrirostris) wintering along the Yangtze River Floodplain. Based on 24 tracks obtained from 21 individuals during the spring of 2015 and 2016, we found that the Northeast China Plain is far‐out the most intensively used stopover site during migration, with geese staying for over 1 month. This region has also been intensely developed for agriculture, suggesting a causal link to the decline in East Asian waterfowl wintering in China. The protection of waterbodies used as roosting area, especially those surrounded by intensive foraging land, is critical for waterfowl survival. Over 90% of the core area used during spring migration is not protected. We suggest that future ground surveys should target these areas to confirm their relevance for migratory waterfowl at the population level, and core roosting area at critical spring‐staging sites should be integrated in the network of protected areas along the flyway. Moreover, the potential bird–human conflict in core stopover area needs to be further studied. Our study illustrates how satellite tracking combined with spatial analyses can provide crucial insights necessary to improve the conservation of declining Migratory species.  相似文献   

14.
15.
Anthropogenic habitat fragmentation often restricts gene flow and results in small populations that are at risk of inbreeding. However, some endangered species naturally occupy patchy habitat where local population extinction and recolonization are normal. We investigated population fragmentation in the range‐restricted New Zealand small‐scaled skink (Oligosoma microlepis), documenting changes in habitat occupancy and analyzing mitochondrial, microsatellite, and morphological variation sampled across the geographical range of the species (approximately 100 km2). Small‐scaled skinks have a strong preference for rocky outcrops that exist in a mosaic of other habitat types. A metapopulation structure was indicated by both local extinction and colonization of new sites. We found relatively high mtDNA nucleotide site diversity within this narrow range (π = 0.004; 16S), evidence of inter‐patch gene flow, and no statistical support for inbreeding. Gene flow was limited by geographical distance, although the existence of pasture between habitat patches apparently has not prevented skink dispersal. Generalized linear models indicated an association between body size and location suggesting a local environmental influence on phenotype. Prior to human‐induced habitat modification, native forest probably separated preferred sites and, less than 2000 years ago, volcanic activity devastated much of the area currently occupied by O. microlepis. This skink appears able to re‐establish populations if other human‐linked factors such as agricultural intensification and introduced predators are limited. Although in contrast to expectations for a scarce and localized species living in a highly modified landscape, this lizard may have previously adapted to a dynamic, mosaic environment mediated by volcanism.  相似文献   

16.
Hybridization is an important evolutionary process, with ecological and behavioural factors influencing gene exchange between hybrids and parent species. Patterns of hybridization in anemonefishes may result from living in highly specialized habitats and breeding status regulated by size‐based hierarchal social groups. Here, morphological, ecological and genetic analyses in Kimbe Bay, Papua New Guinea, examine the hybrid status of Amphiprion leucokranos, a nominal species and presumed hybrid between Amphiprion sandaracinos and Amphiprion chrysopterus. We test the hypothesis that habitat use and relative size differences of the parent species and hybrids determine the patterns of gene exchange. There is strong evidence that A. leucokranos is a hybrid of smaller A. sandaracinos and larger A. chrysopterus, where A. chrysopterus is exclusively the mother to each hybrid, based on mtDNA cytochrome b and multiple nDNA microsatellite loci. Overlap in habitat, depth and host anemone use was found, with hybrids intermediate to parents and cohabitation in over 25% of anemones sampled. Hybrids, intermediate in body size, colour and pattern, were classified 55% of the time as morphologically first‐generation hybrids relative to parents, whereas 45% of hybrids were more A. sandaracinos‐like, suggesting backcrossing. Unidirectional introgression of A. chrysopterus mtDNA into A. sandaracinos via hybrid backcrosses was found, with larger female hybrids and small male A. sandaracinos mating. Potential nDNA introgression was also evident through distinct intermediate hybrid genotypes penetrating both parent species. Findings support the hypothesis that anemonefish hierarchical behaviour, habitat use and species‐specific size differences determine how hybrids form and the evolutionary consequences of hybridization.  相似文献   

17.
18.
19.
Tent‐making bats modify leaves to build refuges. Leaf modification involves energetic and defense costs that should be balanced by the benefits of tent‐roosting. The alteration of the leaf's vascular system reduces the tent's life expectancy, so to obtain a benefit, bats are expected to use tents regularly as long as they remain functional and not modify more leaves than necessary. Over 2 yr, we documented the dynamics of tent construction and use by Uroderma convexum and other bat species in the palm Sabal mauritiiformis in a Colombian transitional dry forest. We also assessed tent condition and compared it to nonmodified leaves of approximately the same age in focal palms. Probability of tent use by U. convexum varied between 57 percent during a reproductive period and 4 percent outside of this period. Bats cut the main vein of folioles, partially affecting water transport in the leaf. However, there were no differences between tents and nonmodified leaves in deterioration scores or deterioration rates over 1 yr. During 2 yr, 48 tents were lost for different causes, but this loss was balanced by the construction of 51 new tents. Thus, bats maintained an excess of usable tents. Palm leaves are long‐lived and seem preadapted to sustain damage and remain viable, particularly in species growing in dry environments. We present several hypotheses to explain the advantage of maintaining a tent surplus.  相似文献   

20.
Inbreeding depression, the reduction in fitness due to mating of related individuals, is of particular conservation concern in species with small, isolated populations. Although inbreeding depression is widespread in natural populations, long‐lived species may be buffered from its effects during population declines due to long generation times and thus are less likely to have evolved mechanisms of inbreeding avoidance than species with shorter generation times. However, empirical evidence of the consequences of inbreeding in threatened, long‐lived species is limited. In this study, we leverage a well‐studied population of gopher tortoises, Gopherus polyphemus, to examine the role of inbreeding depression and the potential for behavioural inbreeding avoidance in a natural population of a long‐lived species. We tested the hypothesis that increased parental inbreeding leads to reduced hatching rates and offspring quality. Additionally, we tested for evidence of inbreeding avoidance. We found that high parental relatedness results in offspring with lower quality and that high parental relatedness is correlated with reduced hatching success. However, we found that hatching success and offspring quality increase with maternal inbreeding, likely due to highly inbred females mating with more distantly related males. We did not find evidence for inbreeding avoidance in males and outbred females, suggesting sex‐specific evolutionary trade‐offs may have driven the evolution of mating behaviour. Our results demonstrate inbreeding depression in a long‐lived species and that the evolution of inbreeding avoidance is shaped by multiple selective forces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号