首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Impending changes in climate will interact with other stressors to threaten aquatic ecosystems and their biota. Native Colorado River cutthroat trout (CRCT; Oncorhynchus clarkii pleuriticus) are now relegated to 309 isolated high‐elevation (>1700 m) headwater stream fragments in the Upper Colorado River Basin, owing to past nonnative trout invasions and habitat loss. Predicted changes in climate (i.e., temperature and precipitation) and resulting changes in stochastic physical disturbances (i.e., wildfire, debris flow, and channel drying and freezing) could further threaten the remaining CRCT populations. We developed an empirical model to predict stream temperatures at the fragment scale from downscaled climate projections along with geomorphic and landscape variables. We coupled these spatially explicit predictions of stream temperature with a Bayesian Network (BN) model that integrates stochastic risks from fragmentation to project persistence of CRCT populations across the upper Colorado River basin to 2040 and 2080. Overall, none of the populations are at risk from acute mortality resulting from high temperatures during the warmest summer period. In contrast, only 37% of populations have a ≥90% chance of persistence for 70 years (similar to the typical benchmark for conservation), primarily owing to fragmentation. Populations in short stream fragments <7 km long, and those at the lowest elevations, are at the highest risk of extirpation. Therefore, interactions of stochastic disturbances with fragmentation are projected to be greater threats than warming for CRCT populations. The reason for this paradox is that past nonnative trout invasions and habitat loss have restricted most CRCT populations to high‐elevation stream fragments that are buffered from the potential consequences of warming, but at risk of extirpation from stochastic events. The greatest conservation need is for management to increase fragment lengths to forestall these risks.  相似文献   

2.
The behavior of endangered adult Sakhalin taimen Parahucho perryi was tracked during 2008–2010 using acoustic telemetry in the Bekanbeushi River system, which flows through eastern Hokkaido, Japan. Movement distances per unit time of tracked P. perryi were compared between mid- and downstream habitats. Results indicated that movement distances were significantly longer in downstream habitats during all seasons. The movement distances in each stream decreased from spring to autumn. Moreover, tracked P. perryi exhibited crepuscular movement patterns; however, patterns were less pronounced in downstream habitats than in up- and midstream habitats. These findings strongly suggested that adult P. perryi exhibit nearly distinctive movement patterns across stream habitats; thus, fish may adopt different foraging tactics in each stream habitat. Fish moved more frequently in spring, which included the post-wintering and post-spawning season, most likely to search for food and more desirable habitat for recovery.  相似文献   

3.
This study examined the efficacy of marking wild populations of lampreys with visible implant elastomer (VIE) for 6–18 months to examine ammocoete movements using Cormack–Jolly–Seber (CJS) open‐population models. These methods were tested on two lamprey populations in different river systems. American brook lamprey Lethenteron appendix at Dyke Creek apparent survival (φ) was high in the summer and winter (c. 0·7), but declined after flow events in the spring and autumn. Sea lamprey Petromyzon marinus at Oquaga Creek φ in the top‐ranked models varied with stream location and time. Estimates of φ were similar to Dyke Creek during the summer (c. 0·7), but declined after flow events and remained low (c. 0·1) in winter. Open‐population models support current understanding of ammocoete movement, i.e. dispersal is driven by high‐flow events at certain times of the year. The present study provides a framework to study ammocoetes with VIE.  相似文献   

4.
Wild, downstream‐migrating cutthroat trout, Oncorhynchus clarkii clarkii, smolts and adults were captured at a weir in Big Beef Creek, Hood Canal, Washington, surgically implanted with acoustic tags and tracked to identify spring and summer movements using stationary receivers in order to test the assumption that the species moves little while in marine waters. Overall, 93–96% migrated from the stream into the east side of the long narrow fjord, where they dispersed north and south along the shoreline. Most O. c. clarkii were detected nearshore within 10 km of the release site, with declining detection rates to 77 km. Over one‐third (36%) crossed c. 2–4 km of deep water to the other side but only one O. c. clarkii left the Hood Canal basin. Movements and behaviour patterns did not differ between smolts and adults but cluster analysis revealed two modes of distribution, here categorized as residents and migrants. Within these categories of overall distribution, a range of finer‐scale behaviour patterns was observed, including sedentary individuals, daily moving between proximate sites and more continuous long‐distance travel. Diel movement patterns varied markedly among individuals but overall activity increased near dawn, peaked around mid‐day and declined but continued at night. These patterns contrast with sympatric and closely related steelhead trout, Oncorhynchus mykiss, providing new insights into the diversity of salmonid behaviour.  相似文献   

5.
For migratory species, the success of population reintroduction or reinforcement through captive‐bred released individuals depends on survivors undertaking appropriate migrations. We assess whether captive‐bred Asian Houbara Chlamydotis macqueenii from a breeding programme established with locally sourced individuals and released into suitable habitat during spring or summer undertake similar migrations to those of wild birds. Using satellite telemetry, we compare the migrations of 29 captive‐bred juveniles, 10 wild juveniles and 39 wild adults (including three birds first tracked as juveniles), examining migratory propensity (proportion migrating), timing, direction, stopover duration and frequency, efficiency (route deviation), and wintering and breeding season locations. Captive‐bred birds initiated autumn migration an average of 20.6 (±4.6 se) days later and wintered 470.8 km (±76.4) closer to the breeding grounds, mainly in Turkmenistan, northern Iran and Afghanistan, than wild birds, which migrated 1217.8 km (±76.4), predominantly wintering in southern Iran and Pakistan (juveniles and adults were similar). Wintering locations of four surviving captive‐bred birds were similar in subsequent years (median distance to first wintering site = 70.8 km, range 6.56–221.6 km), suggesting that individual captive‐bred birds (but not necessarily their progeny) remain faithful to their first wintering latitude. The migratory performance of captive‐bred birds was otherwise similar to that of wild juveniles. Although the long‐term fitness consequences for captive‐bred birds establishing wintering sites at the northern edge of those occupied by wild birds remain to be quantified, it is clear that the pattern of wild migrations established by long‐term selection is not replicated. If the shorter migration distance of young captive‐bred birds has a physiological rather than a genetic basis, then their progeny may still exhibit wild‐type migration. However, as there is a considerable genetic component to migration, captive breeding management must respect migratory population structure as well as natal and release‐site fidelity.  相似文献   

6.
Didymosphenia geminata is a stalk-forming freshwater diatom which was historically found primarily in oligotrophic lakes and streams, but has recently become a nuisance species in many lotic systems worldwide. In the last 5–8 years, D. geminata has become established in Boulder Creek and South Boulder Creek, two regulated montane streams in the Front Range of the Colorado Rocky Mountains. Factors that may influence the growth of D. geminata were monitored during the summer of 2006. D. geminata abundance decreased in Boulder Creek after an unusual flood event caused by 3 days of sustained rainfall in the headwaters of the watershed. However, within a week, coverage had been restored to pre-flood levels. Variations in D. geminata abundance among sites were found to be negatively correlated with total dissolved phosphorus concentrations and bed movement, as measured by Shields stress. In contrast, D. geminata abundance was not significantly correlated with temperature, conductivity, pH, total suspended solids, or dissolved inorganic nitrogen. Our results suggest that bed movement may be a dominant scouring mechanism that acts to control the growth and distribution of D. geminata. The potential role of total dissolved phosphorus and bed movement in decreasing D. geminata coverage adds to the limited base of knowledge regarding controls on the growth and distribution of this species, and could be investigated by researchers studying D. geminata blooms in other stream ecosystems. Handling editor: J. Saros  相似文献   

7.
Males in lek mating systems tend to exhibit high fidelity to breeding leks despite substantial evidence of skewed mating success among males. Although movements between leks are often reported to be rare, such movements provide a mechanism for an individual to improve lifetime fitness in response to heterogeneity in reproductive conditions. Additionally, estimates of apparent movements among leks are potentially biased due to unaccounted variation in detection probability across time and space. We monitored breeding male Greater Sage‐grouse Centrocercus urophasianus on 13 leks in eastern Nevada over a 10‐year period, and estimated movement rates among leks using capture‐mark‐recapture methods. We expected that male movement rates among leks would be low, despite predictions of low breeding success for most males, and that detection rates would be highly variable among leks and years. We used a robust design multistate analysis in Program mark to estimate probability of movements among leks, while accounting for imperfect detection of males. Male Sage‐grouse were extremely faithful to their leks; the annual probability of a male moving away from its original lek of capture was approximately 3% (se = 0.01). Detection probabilities varied substantially among leks (range = 0.21–0.95), and among years (range = 0.30–0.76), but remained relatively constant within years at each lek. These results suggest that male Sage‐grouse dispersal is either rare, or consists primarily of dispersal of sub‐adults from their natal areas prior to the breeding season. The study highlights the benefits of robust design multistate models over standard ‘live‐encounter’ analyses, as they not only permit estimation of additional parameters, such as movement rates, but also allow for more precise parameter estimates that are less sensitive to heterogeneity in detection rates. Additionally, as these data were collected using capture‐mark‐recapture methods, our approach to estimating movement rates would be beneficial in systems where radiotagging is detrimental to the study organism.  相似文献   

8.
9.
The timing of spring leaf development, trajectories of summer leaf area, and the timing of autumn senescence have profound impacts to the water, carbon, and energy balance of ecosystems, and are likely influenced by global climate change. Limited field‐based and remote‐sensing observations have suggested complex spatial patterns related to geographic features that influence climate. However, much of this variability occurs at spatial scales that inhibit a detailed understanding of even the dominant drivers. Recognizing these limitations, we used nonlinear inverse modeling of medium‐resolution remote sensing data, organized by day of year, to explore the influence of climate‐related landscape factors on the timing of spring and autumn leaf‐area trajectories in mid‐Atlantic, USA forests. We also examined the extent to which declining summer greenness (greendown) degrades the precision and accuracy of observations of autumn offset of greenness. Of the dominant drivers of landscape phenology, elevation was the strongest, explaining up to 70% of the spatial variation in the onset of greenness. Urban land cover was second in importance, influencing spring onset and autumn offset to a distance of 32 km from large cities. Distance to tidal water also influenced phenological timing, but only within ~5 km of shorelines. Additionally, we observed that (i) growing season length unexpectedly increases with increasing elevation at elevations below 275 m; (ii) along gradients in urban land cover, timing of autumn offset has a stronger effect on growing season length than does timing of spring onset; and (iii) summer greendown introduces bias and uncertainty into observations of the autumn offset of greenness. These results demonstrate the power of medium grain analyses of landscape‐scale phenology for understanding environmental controls on growing season length, and predicting how these might be affected by climate change.  相似文献   

10.
11.
We combine large observed data sets and dynamically downscaled climate data to explore historic and future (2050–2069) stream temperature changes over the topographically diverse Greater Yellowstone Ecosystem (elevation range = 824–4017 m). We link future stream temperatures with fish growth models to investigate how changing thermal regimes could influence the future distribution and persistence of native Yellowstone cutthroat trout (YCT) and competing invasive species. We find that stream temperatures during the recent decade (2000–2009) surpass the anomalously warm period of the 1930s. Climate simulations indicate air temperatures will warm by 1 °C to >3 °C over the Greater Yellowstone by mid‐21st century, resulting in concomitant increases in 2050–2069 peak stream temperatures and protracted periods of warming from May to September (MJJAS). Projected changes in thermal regimes during the MJJAS growing season modify the trajectories of daily growth rates at all elevations with pronounced growth during early and late summer. For high‐elevation populations, we find considerable increases in fish body mass attributable both to warming of cold‐water temperatures and to extended growing seasons. During peak July to August warming, mid‐21st century temperatures will cause periods of increased thermal stress, rendering some low‐elevation streams less suitable for YCT. The majority (80%) of sites currently inhabited by YCT, however, display minimal loss (<10%) or positive changes in total body mass by midcentury; we attribute this response to the fact that many low‐elevation populations of YCT have already been extirpated by historical changes in land use and invasions of non‐native species. Our results further suggest that benefits to YCT populations due to warmer stream temperatures at currently cold sites could be offset by the interspecific effects of corresponding growth of sympatric, non‐native species, underscoring the importance of developing climate adaptation strategies that reduce limiting factors such as non‐native species and habitat degradation.  相似文献   

12.
Environmental rehabilitation budgets are often limited, and management actions need to be prioritised to achieve the best outcomes. Prioritisation can best be done when evidence informs the decision‐making process. We acoustically tagged twenty Golden Perch (Macquaria ambigua) in the Loddon River, Australia, and tracked their movements to gain an understanding on the requirements for fish passage at a major regulating structure, the Box Creek regulator. The movements of these fish were monitored through a network of receivers located throughout the lower Loddon River and Pyramid Creek system. Five fish moved 50–120 km upstream, four of which reached the Box Creek regulator before moving back downstream to the entrance of the Kerang Lakes system. Most long distance upstream movements were associated with an increase in river discharge. The remaining 15 fish moved <20 km, with all fish being detected at least once. This pilot study indicates that Box Creek regulator is acting as a barrier for some fish within the Loddon River system. Movement data also indicate that Golden Perch migration pathways may be influenced by river discharge. The management implications of this work includes the need to reinstate fish passage at Box Creek regulator and the potential use of environmental flows to enhance colonisation of native fish species throughout the Murray Darling Basin.  相似文献   

13.
It is hypothesized that the stocking procedure influences survival, growth and distribution of introduced fishes; however, there is still limited information on the effect of various stocking strategies on recaptures in natural freshwaters. The present study aim was to investigate how the rate and distribution of anglers' catches of common carp (Cyprinus carpio) vary with the stocking season (spring, summer and autumn), lake area, method (shore and offshore releases), and fish size (≤500 and >500 g) in the large and shallow Lake Balaton, Hungary. In 2010, 4500 two‐summer‐old individually‐tagged common carp were stocked to test 36 release set‐ups (three seasons × three lake areas × two methods × two size groups). Anglers reported the date, location and fish size (standard length and weight) on 787 recaptures within 2 years after the release. Recapture rate was highest in summer and lowest in autumn stockings, but was not affected by the stocking area, method or fish size. Regarding space, the widest dispersals were in recaptures in autumn and in the centre of the lake, but fish movement was not influenced by the stocking method or fish size. In conclusion, in summer the stocking quotas should be evenly distributed along the entire shoreline; early spring stockings may be optimized for transport costs and concentrated by each lake basin. Late autumn stockings should be avoided, and the capacity of effective wintering ponds should be developed. This study also provides a good framework for testing fisheries management alternatives in other intensively fished habitats.  相似文献   

14.
1. We studied the effect of substratum movement on the communities of adjacent mountain and spring tributaries of the Ivishak River in arctic Alaska (69°1′N, 147°43′W). We expected the mountain stream to have significant bed movement during summer because of storm flows and the spring stream to have negligible bed movement because of constant discharge. 2. We predicted that the mountain stream would be inhabited only by taxa able to cope with frequent bed movement. Therefore, we anticipated that the mountain stream would have lower macroinvertebrate species richness and biomass and a food web with fewer trophic levels and lower connectance than the spring stream. 3. Substrata marked in situ indicated that 57–66% of the bed moved during summer in the mountain stream and 4–20% moved in the spring stream. 4. Macroinvertebrate taxon richness was greater in the spring (25 taxa) than in the mountain stream (20 taxa). Mean macroinvertebrate biomass was also greater in the spring (4617 mg dry mass m?2) than in the mountain stream (635 mg dry mass m?2). Predators contributed 25% to this biomass in the spring stream, but only 7% in the mountain stream. 5. Bryophyte biomass was >1000 times greater in the spring stream (88.4 g ash‐free dry mass m?2) than the mountain stream (0.08 g ash‐free dry mass m?2). We attributed this to differences in substratum stability between streams. The difference in extent of bryophyte cover between streams probably explains the high macroinvertebrate biomass in the spring stream. 6. Mean food‐web connectance was similar between streams, ranging from 0.18 in the spring stream to 0.20 in the mountain stream. Mean food chain length was 3.04 in the spring stream and 1.83 in the mountain stream. Dolly Varden char (Salvelinus malma) was the top predator in the mountain stream and the American dipper (Cinclus mexicanus) was the top predator in the spring stream. The difference in mean food chain length between streams was due largely to the presence of C. mexicanus at the spring stream. 7. Structural differences between the food webs of the spring and mountain streams were relatively minor. The difference in the proportion of macroinvertebrate biomass contributing to different trophic levels was major, however, indicating significant differences in the volume of material and energy flow between food‐web nodes (i.e. food web function).  相似文献   

15.
16.
Because space‐use patterns are a key aspect of the ecology and distribution of species, identifying factors associated with variation in size of territories and home ranges has been central to studies on population ecology. Space use might vary in response to extrinsic factors like habitat quality and to intrinsic factors like physical condition and individual aggressiveness. However, the role of these factors has been poorly documented in the tropics, particularly in high‐elevation bird species. We report the home‐range size of a Neotropical Andean bird, the gray‐browed brush finch (Arremon assimilis), and evaluate the role of physical condition in explaining variation in home‐range size among individuals. We performed spot mapping to estimate the home ranges of 14 territorial males in Bogotá, Colombia, using minimum convex polygons (MCP) and 95% kernel density estimators (KDE). The mean home‐range size estimated for the 100% MCP was 0.522 ± 0.305 ha (range = 0.15–1.18 ha), whereas the 95% KDE estimation was 0.504 ± 0.471 ha (range = 0.13–1.88). We calculated the real mass index of each bird as a proxy of physical condition to assess whether individuals in better physical condition had larger home ranges. Because we found no relation between our estimations of physical condition and home‐range size, we conclude that space use in this species might depend more on ecological factors such as habitat quality or neighbor density than on individual traits. Abstract in French is available with online material.  相似文献   

17.
Information on site fidelity and ranging patterns of wild animals is critical to understand how they use their environment and guide conservation and management strategies. Delphinids show a wide variety of site fidelity and ranging patterns. Between September 2013 and October 2015, we used boat‐based surveys, photographic identification, biopsy sampling, clustering analysis, and geographic information systems to determine the site‐fidelity patterns and representative ranges of southern Australian bottlenose dolphins (Tursiops cf. australis) inhabiting the inner area of Coffin Bay, a highly productive inverse estuary located within Thorny Passage Marine Park, South Australia. Agglomerative hierarchical clustering (AHC) of individuals’ site‐fidelity index and sighting rates indicated that the majority of dolphins within the inner area of Coffin Bay are “regular residents” (n = 125), followed by “occasional residents” (n = 28), and “occasional visitors” (n = 26). The low standard distance deviation indicated that resident dolphins remained close to their main center of use (range = 0.7–4.7 km, X ± SD = 2.3 ± 0.9 km). Representative ranges of resident dolphins were small (range = 3.9–33.5 km2, X ± SD = 15.2 ± 6.8 km2), with no significant differences between males and females (Kruskal–Wallis, χ2 = 0.426, = .808). The representative range of 56% of the resident dolphins was restricted to a particular bay within the study area. The strong site fidelity and restricted ranging patterns among individuals could be linked to the high population density of this species in the inner area of Coffin Bay, coupled with differences in social structure and feeding habits. Our results emphasize the importance of productive habitats as a major factor driving site fidelity and restricted movement patterns in highly mobile marine mammals and the high conservation value of the inner area of Coffin Bay for southern Australian bottlenose dolphins.  相似文献   

18.
Knowledge of the latitudinal patterns in biotic interactions, and especially in herbivory, is crucial for understanding the mechanisms that govern ecosystem functioning and for predicting their responses to climate change. We used sap‐feeding insects as a model group to test the hypotheses that the strength of plant–herbivore interactions in boreal forests decreases with latitude and that this latitudinal pattern is driven primarily by midsummer temperatures. We used a replicated sampling design and quantitatively collected and identified all sap‐feeding insects from four species of forest trees along five latitudinal gradients (750–1300 km in length, ten sites in each gradient) in northern Europe (59 to 70°N and 10 to 60°E) during 2008–2011. Similar decreases in diversity of sap‐feeding insects with latitude were observed in all gradients during all study years. The sap‐feeder load (i.e. insect biomass per unit of foliar biomass) decreased with latitude in typical summers, but increased in an exceptionally hot summer and was independent of latitude during a warm summer. Analysis of combined data from all sites and years revealed dome‐shaped relationships between the loads of sap‐feeders and midsummer temperatures, peaking at 17 °C in Picea abies, at 19.5 °C in Pinus sylvestris and Betula pubescens and at 22 °C in B. pendula. From these relationships, we predict that the losses of forest trees to sap‐feeders will increase by 0–45% of the current level in southern boreal forests and by 65–210% in subarctic forests with a 1 °C increase in summer temperatures. The observed relationships between temperatures and the loads of sap‐feeders differ between the coniferous and deciduous tree species. We conclude that climate warming will not only increase plant losses to sap‐feeding insects, especially in subarctic forests, but can also alter plant‐plant interactions, thereby affecting both the productivity and the structure of future forest ecosystems.  相似文献   

19.
Ecological diversity has been reported for killer whales (Orcinus orca) throughout the North Atlantic but patterns of prey specialization have remained poorly understood. We quantify interindividual dietary variations in killer whales (n = 38) sampled throughout the year in 2017–2018 in northern Norway using stable isotopic nitrogen (δ15N: 15N/14N) and carbon (δ13C: 13C/12C) ratios. A Gaussian mixture model assigned sampled individuals to three differentiated clusters, characterized by disparate nonoverlapping isotopic niches, that were consistent with predatory field observations: seal‐eaters, herring‐eaters, and lumpfish‐eaters. Seal‐eaters showed higher δ15N values (mean ± SD: 12.6 ± 0.3‰, range = 12.3–13.2‰, n = 10) compared to herring‐eaters (mean ± SD: 11.7 ± 0.2‰, range = 11.4–11.9‰, n = 19) and lumpfish‐eaters (mean ± SD: 11.6 ± 0.2‰, range = 11.3–11.9, n = 9). Elevated δ15N values for seal‐eaters, regardless of sampling season, confirmed feeding at high trophic levels throughout the year. However, a wide isotopic niche and low measured δ15N values in the seal‐eaters, compared to that of whales that would eat solely seals (δN‐measured = 12.6 vs. δN‐expected = 15.5), indicated a diverse diet that includes both fish and mammal prey. A narrow niche for killer whales sampled at herring and lumpfish seasonal grounds supported seasonal prey specialization reflective of local peaks in prey abundance for the two fish‐eating groups. Our results, thus, show differences in prey specialization within this killer whale population in Norway and that the episodic observations of killer whales feeding on prey other than fish are a consistent behavior, as reflected in different isotopic niches between seal and fish‐eating individuals.  相似文献   

20.
How plant populations, communities, and ecosystems respond to climate change is a critical focus in ecology today. The responses of introduced species may be especially rapid. Current models that incorporate temperature and precipitation suggest that future Bromus tectorum invasion risk is low for the Colorado Plateau. With a field warming experiment at two sites in southeastern Utah, we tested this prediction over 4 years, measuring B. tectorum phenology, biomass, and reproduction. In a complimentary greenhouse study, we assessed whether changes in field B. tectorum biomass and reproductive output influence offspring performance. We found that following a wet winter and early spring, the timing of spring growth initiation, flowering, and summer senescence all advanced in warmed plots at both field sites and the shift in phenology was progressively larger with greater warming. Earlier green‐up and development was associated with increases in B. tectorum biomass and reproductive output, likely due early spring growth, when soil moisture was not limiting, and a lengthened growing season. Seeds collected from plants grown in warmed plots had higher biomass and germination rates and lower mortality than seeds from ambient plots. However, in the following two dry years, we observed no differences in phenology between warmed and ambient plots. In addition, warming had a generally negative effect on B. tectorum biomass and reproduction in dry years and this negative effect was significant in the plots that received the highest warming treatment. In contrast to models that predict negative responses of B. tectorum to warmer climate on the Colorado Plateau, the effects of warming were more nuanced, relied on background climate, and differed between the two field sites. Our results highlight the importance of considering the interacting effects of temperature, precipitation, and site‐specific characteristics such as soil texture, on plant demography and have direct implications for B. tectorum invasion dynamics on the Colorado Plateau.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号