首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fragmentation of populations typically enhances depletion of genetic variation, but highly polymorphic major histocompatibility complex (MHC) genes are thought to be under balancing selection and therefore retain polymorphism despite population bottlenecks. In this study, we investigate MHC DRB (class II) exon 2 variation in 14 spotted suslik populations from two regions differing in their degree of habitat fragmentation and gene flow. We found 16 alleles that segregated in a sample of 248 individuals. The alleles were highly divergent and revealed the hallmark signs of positive selection acting on them in the past, showing a significant excess of nonsynonymous substitutions. This excess was concentrated in putative antigen‐binding sites, which suggests that past selection was driven by pathogens. MHC diversity was significantly lower in fragmented western populations than in the eastern populations, characterized by significant gene flow. In contrast to neutral variation, amova did not reveal genetic differentiation between the two regions. This may indicate similar selective pressures shaping MHC variation in both regions until the recent past. However, MHC allelic richness within a population was correlated with that for microsatellites. FST outlier analyses have shown that population differentiation at DRB was neither higher nor lower than expected under neutrality. The results suggest that selection on MHC is not strong enough to counteract drift that results from recent fragmentation of spotted suslik populations.  相似文献   

2.
Summary. Class II genes of the bovine major histocompatibility complex (MHC) have been cloned from a genomic library. The library was constructed in the bacteriophage Λ vector EMBL3 and comprises approximately 10 times the equivalent of the haploid genome. Half the library was screened with the human DQA, DQB, DRA and DRB cDNA probes. Of the 100 positively hybridizing phage clones, 37 were eventually fully characterized and mapped by means of Southern blot analysis. The exons encoding the first, second and transmembrane domain of all different A and B genes were subcloned and mapped in more detail. These analyses showed that these 37 clones were derived from five different A and 10 different B genes. The hybridization studies indicate that we have cloned and mapped two DQA genes, one DRA gene, two other A genes, four DQB genes, three DRB genes and three other B genes. Since the library was made from a heterozygous animal, this would suggest that there are at least one DQA, one DRA one other undefined A, two DQB, two DRB and one or two other undefined B genes in the haploid genome of Holstein Friesian cattle.  相似文献   

3.
Class II major histocompatibility complex (MHC) beta genes were isolated from 12 species of rockfish (genus Sebastes ). Multiple sequences were found in each of the species. The majority of sequences displayed the characteristics of functional MHC genes, with a small group of sequences that were possibly pseudogenes.  相似文献   

4.
The major histocompatibility complex (MHC) is one of the most diverse regions of the mammalian genome. Diversity in MHC genes is integral to their function in the immune system, and while pathogens play a key role in shaping this diversity, the contribution of other selective forces remains unclear. The controlled breeding of cattle offers an excellent model for the identification and exploration of these forces. We characterized the MHC class I genes present in a sample of Canadian Holstein A.I. bulls and compared the results with those obtained in an earlier study. No evidence for a reduction in MHC diversity over 20 years was observed, but the relative frequency of some haplotypes had changed: the formerly rare A12 (w12B) haplotype had become the most common, together with A15, while A19, which dominated the earlier sample, had significantly reduced in frequency. Only 7% of bulls in the current study were MHC homozygous compared with the 14% expected under Hardy-Weinberg. To identify the selective forces at work, a gene substitution model was used to calculate the effects of MHC on selection traits using estimated breeding values for each bull. Significant associations between MHC and production, disease and fertility traits were identified, suggesting that MHC diversity is not merely shaped by disease in this controlled breeding system. The decrease in a common haplotype, the reduced number of homozygous bulls and the associations with disease and production traits together indicate that MHC diversity in dairy cattle is maintained by heterozygote advantage.  相似文献   

5.
A bovine genomic clone that hybridized to HLA-DQ beta cDNA was isolated and fragments containing the beta 1, beta 2 and transmembrane (TM) exons subcloned. The nucleotide sequences of the exons and flanking intron regions were determined. Comparisons of these exon nucleotide sequences and derived amino acid sequences to human class II beta-chain sequences showed that this gene is only 77% identical to HLA-DQ beta and about 75% identical to bovine DQ beta-like genes. The exon sequences were more divergent from other class II beta-chain genes. However, structural features such as conserved cysteines and regions of amino acids strongly suggest this to be a class II beta-chain gene. When exon-containing fragments were used as hybridization probes on Southern blots of bovine genomic DNA digested with Eco RI or Pvu II, each exon hybridized to a single band. Based on these results we have referred to this gene as a novel bovine class II beta-chain gene, BoLA-DIB.  相似文献   

6.
More than two nucleotide sequences of the second exon of the ELA-DQB region retrieved from a single animal and two different sequences isolated from horses homozygous in the major histocompatibility complex (MHC) region by descent indicated the existence of at least two ELA-DQB loci at the genomic level. New alleles detected by polymerase chain reaction single strand conformation polymorphism (SSCP) and defined by nucleotide sequencing of the second exon of the DQB gene(s) were described. Based on the level of nucleotide sharing, at least two groups of alleles were shown to exist. The newly defined alleles belonged preferentially to one of the groups. However, their specific locus assignment was not possible from the data collected. At least one of these alleles was shown to be transcribed. No frame-shift mutations were identified among the new alleles, although one pseudoallele containing a stop codon was identified at the genomic DNA level.  相似文献   

7.
The variation of the exon 2 of the major histo-compatibility complex (MHC) class II gene DRB locus in three feline species were examined on clouded leopard (Neofelis nebulosa), leopard (Panthera pardus) and Amur tiger (Panthera tigris altaica). A pair of degenerated primers was used to amplify DRB locus covering almost the whole exon 2. Exon 2 encodes the β1 domain which is the most variable fragments of the MHC class II molecule. Single-strand conformational polymorphism (SSCP) analysis was applied to detect different MHC class II DRB haplotypes. Fifteen recombinant plasmids for each individual were screened out, isolated, purified and sequenced finally. Totally eight distinct haplotypes of exon 2 were obtained in four individuals. Within 237 bp nucleotide sequences from four samples, 30 variable positions were found, and 21 putative peptide-binding positions were disclosed in 79 amino acid residues. The ratio of nonsynonymous substitutions (d N ) was much higher than that of synonymous substitutions (d S ), which indicated that balancing selection probably maintain the variation of exon 2. MEGA neighbor joining (NJ) and PAUP maximum parsimony (MP) methods were used to reconstruct phylogenetic trees among species, respectively. Results displayed a more close relationship between leopard and tiger; however, clouded leopard has a comparatively distant relationship form the other two. __________ Translated from Zoological Research, 2006, 27(2): 181-C188 [译自:动物学研究]  相似文献   

8.
Pathogen-driven balancing selection maintains high genetic diversity in many vertebrates, particularly in the major histocompatibility complex (MHC) immune system gene family, which is often associated with disease susceptibility. In large natural populations where subpopulations face different pathogen pressures, the MHC should show greater genetic differentiation within a species than neutral markers. We examined genetic diversity at the MHC-DQB locus and nine putatively neutral microsatellite markers in grey seals (Halichoerus grypus) from eight United Kingdom (UK) colonies, the Faeroe Islands and Sable Island, Canada. Five DQB alleles were identified in grey seals, which varied in prevalence across the grey seal range. Among the seal colonies, significant differences in DQB allele and haplotype frequencies and in average DQB heterozygosity were observed. Additionally, the DQB gene exhibited greater differentiation among colonies compared with neutral markers, yet a weaker pattern of isolation by distance (IBD). After correcting for the underlying IBD pattern, subpopulations breeding in similar habitats were more similar to one another in DQB allele frequencies than populations breeding in different habitats, but the same did not hold true for microsatellites, suggesting that habitat-specific pathogen pressure influences MHC evolution. Overall, the data are consistent with selection at MHC-DQB loci in grey seals with both varying selective pressures and geographic population structure appearing to influence the DQB genetic composition of breeding colonies.  相似文献   

9.
Our understanding of the evolution of genes of the major histocompatibility complex (MHC) is rapidly increasing, but there are still enigmatic questions remaining, particularly regarding the maintenance of high levels of MHC polymorphisms in small, isolated populations. Here, we analyze the genetic variation at eight microsatellite loci and sequence variation at exon 2 of the MHC class IIB (DAB) genes in two wild populations of the Trinidadian guppy, Poecilia reticulata. We compare the genetic variation of a small (Ne, 100) and relatively isolated upland population to that of its much larger (Ne approximately 2400) downstream counterpart. As predicted, microsatellite diversity in the upland population is significantly lower and highly differentiated from the population further downstream. Surprisingly, however, these guppy populations are not differentiated by MHC genetic variation and show very similar levels of allelic richness. Computer simulations indicate that the observed level of genetic variation can be maintained with overdominant selection acting at three DAB loci. The selection coefficients differ dramatically between the upland (s > or = 0.2) and lowland (s < or = 0.01) populations. Parasitological analysis on wild-caught fish shows that parasite load is significantly higher on upland than on lowland fish, which suggests that large differences in selection intensity may indeed exist between populations. Based on the infection intensity, a substantial proportion of the upland fish would have suffered direct or indirect fitness consequences as a result of their high parasite loads. Selection by parasites plays a particularly important role in the evolution of guppies in the upland habitat, which has resulted in high levels of MHC diversity being maintained in this population despite considerable genetic drift.  相似文献   

10.
The major histocompatibility complex (MHC), an important component of the vertebrate immune system, provides an important suite of genes to examine the role of genetic diversity at non‐neutral loci for population persistence. We contrasted patterns of diversity at the two classical MHC loci in sockeye salmon (Oncorhynchus nerka), MHC class I (UBA) and MHC class II (DAB), and neutral microsatellite loci across 70 populations spanning the species range from Washington State to Japan. There was no correlation in allelic richness or heterozygosity between MHC loci or between MHC loci and microsatellites. The two unlinked MHC loci may be responding to different selective pressures; the distribution of FST values for the two loci was uncorrelated, and evidence for both balancing and directional selection on alleles and lineages of DAB and UBA was observed in populations throughout the species range but rarely on both loci within a population. These results suggest that fluctuating selection has resulted in the divergence of MHC loci in contemporary populations.  相似文献   

11.
The predictive value of class II DQ and DYA polymorphisms of the bovine major histocompatibility (MHC) complex (BoLA) for the incidence of disease in dairy cattle was estimated in a sample of 196 progeny-tested AI bulls of the Swedish Red and White breed. The BoLA DQ and DYA types of the bulls were determined by analysing restriction fragment length polymorphisms (RFLPs). Breeding values of bulls for clinical mastitis, all diseases including clinical mastitis and diseases other than clinical mastitis were used as measures of disease resistance or susceptibility. The relationship between MHC polymorphism and bull breeding values for disease resistance was evaluated statistically by linear regression analysis. A significant association between the haplotype DQ1A and susceptibility to clinical mastitis was revealed. No other DQ haplotype nor the DYA locus has a significant effect on any of the disease traits studied.  相似文献   

12.
Understanding drivers of genetic diversity at the major histocompatibility complex (MHC) is vitally important for predicting how vertebrate immune defence might respond to future selection pressures and for preserving immunogenetic diversity in declining populations. Parasite-mediated selection is believed to be the major selective force generating MHC polymorphism, and while MHC-based mating preferences also exist for multiple species including humans, the general importance of mate choice is debated. To investigate the contributions of parasitism and sexual selection in explaining among-species variation in MHC diversity, we applied comparative methods and meta-analysis across 112 mammal species, including carnivores, bats, primates, rodents and ungulates. We tested whether MHC diversity increased with parasite richness and relative testes size (as an indicator of the potential for mate choice), while controlling for phylogenetic autocorrelation, neutral mutation rate and confounding ecological variables. We found that MHC nucleotide diversity increased with parasite richness for bats and ungulates but decreased with parasite richness for carnivores. By contrast, nucleotide diversity increased with relative testes size for all taxa. This study provides support for both parasite-mediated and sexual selection in shaping functional MHC polymorphism across mammals, and importantly, suggests that sexual selection could have a more general role than previously thought.  相似文献   

13.
DQ alpha, DQ beta, DR alpha and DR beta class II genes of the bovine major histocompatibility complex (MHC) were investigated by Southern blot hybridizations using human probes. Hybridizations of these probes to genomic DNA, digested with PvuII or TaqI, revealed extensive restriction fragment length polymorphisms (RFLPs). The polymorphisms were interpreted genetically by analysing a family material, comprising five sires, 48 dams and 50 offspring, and a population sample comprising 197 breeding bulls. The analysis resolved 20 DQ alpha, 17 DQ beta, 5 DR alpha and 25 DR beta RFLP types. The segregation data were consistent with simple Mendelian inheritance of the RFLPs. The analysis of the bull sample showed that it is possible to apply the RFLP method for routine typing of class II polymorphism in population samples. The linkage disequilibrium in the DQ-DR region was found to be extremely strong as only about 20 DQ and about 30 DQ-DR haplotypes were observed despite the large number of possible haplotypes. Close linkage to the blood group locus M was also found; the M' allele occurred in strong linkage disequilibrium with the class II haplotype DQ1BDR alpha 4DR beta 1B. A population genetic analysis of the DQ data in the sample of breeding bulls revealed that the frequency of homozygotes was significantly lower than Hardy-Weinberg expectation and that the allele frequency distribution deviated significantly from the one expected for selectively neutral alleles.  相似文献   

14.
The ovine major histocompatibility complex (MhcOvar) class II region was investigated by Southern blot hybridizations using ovine probes specific for the second exons of Ovar-DRB and Ovar-DQB genes. Multiple bands were revealed when genomic DNA was digested with each of five restriction enzymes (Bam HI, Eco RI, Hin dIII, PvuII and TaqI), and successively hybridized with the two radiolabeled ovine probes. Restriction fragment length polymorphisms (RFLPs) were analysed in 89 sheep originating from six inbred families and the inheritance of the fragment patterns was determined. Forty-one fragments were recorded with the DQB probe; 32 were detected with the DRB probe. They constituted 9 DQB and 10 DRB allelic patterns. Twelve DQB-DRB haplotypes were resolved in this study.  相似文献   

15.
Restriction fragment length polymorphisms (RFLPs) have been identified in the bovine MHC class II region using five hybridization probes constructed from two bovine genomic clones. Four probes were constructed from a bovine DR beta-like gene, BoLA-DRB2. These included a probe containing the complete beta 1 exon (R2-beta 1), a probe containing the last 129 base pairs of the beta 2 exon (R2-beta 2), a probe containing intron immediately 5' of the beta 2 exon (R2-5' beta 2), and a probe containing the complete transmembrane exon (R2-TM). A fifth probe was constructed from a novel bovine beta-chain gene, BoLA-DIB, and contained the entire TM exon (I1-TM). R2-beta 1 defined very little polymorphism. R2-beta 2 hybridized to several fragments but one or two fragments hybridized much stronger on all Southern blots and it was presumed these corresponded to BoLA-DRB2 fragments. By using R2-5' beta 2 as a probe, these BoLA-DRB2 fragments were confirmed: 6.4 and 2.7-kb Eco RI alleles, 1.7- and 1.5-kb Pvu II alleles, 5.9-, 5.4-, 3.7- and 1.9-kb TaqI alleles, and a non-polymorphic 22.5-kb BamHI fragment. I1-TM identified three alleles with TaqI. To investigate the linkage between the RFLP alleles, 166 offspring of five sires were tested. Complete linkage was found for all RFLPs identified with the BoLA-DRB2 probes. However, the RFLP patterns of 13 calves out of 58 indicated recombination between BoLA-DRB2 and BoLA-DIB.  相似文献   

16.
Genetic diversity is fundamental to maintaining the long‐term viability of populations, yet reduced genetic variation is often associated with small, isolated populations. To examine the relationship between demography and genetic variation, variation at hypervariable loci (e.g., microsatellite DNA loci) is often measured. However, these loci are selectively neutral (or near neutral) and may not accurately reflect genomewide variation. Variation at functional trait loci, such as the major histocompatibility complex (MHC), can provide a better assessment of adaptive genetic variation in fragmented populations. We compared patterns of microsatellite and MHC variation across three Eastern Massasauga (Sistrurus catenatus) populations representing a gradient of demographic histories to assess the relative roles of natural selection and genetic drift. Using 454 deep amplicon sequencing, we identified 24 putatively functional MHC IIB exon 2 alleles belonging to a minimum of six loci. Analysis of synonymous and nonsynonymous substitution rates provided evidence of historical positive selection at the nucleotide level, and Tajima's D provided support for balancing selection in each population. As predicted, estimates of microsatellite allelic richness, observed, heterozygosity, and expected heterozygosity varied among populations in a pattern qualitatively consistent with demographic history and abundance. While MHC allelic richness at the population and individual levels revealed similar trends, MHC nucleotide diversity was unexpectedly high in the smallest population. Overall, these results suggest that genetic variation in the Eastern Massasauga populations in Illinois has been shaped by multiple evolutionary mechanisms. Thus, conservation efforts should consider both neutral and functional genetic variation when managing captive and wild Eastern Massasauga populations.  相似文献   

17.
The molecules encoded by major histocompatibility complex (MHC) genes play an essential role in the adaptive immune response among vertebrates. We investigated the molecular evolution of MHC class I genes in the sable Martes zibellina. We isolated 26 MHC class I sequences, including 12 putatively functional sequences and 14 pseudogene sequences, from 24 individuals from two geographic areas of northeast China. The number of putatively functional sequences found in a single individual ranged from one to five, which might be at least 1–3 loci. We found that both balancing selection and recombination contribute to evolution of MHC class I genes in M. zibellina. In addition, we identified a candidate nonclassical MHC class I lineage in Carnivora, which may have preceded the divergence (about 5257 Mya) of Caniformia and Feliformia. This may contribute to further understanding of the origin and evolution of nonclassical MHC class I genes. Our study provides important immune information of MHC for M. zibellina, as well as other carnivores.  相似文献   

18.
The spleen is the main organ for immune defense during infection with Plasmodium parasites and splenomegaly is one of the major symptoms of such infections. Using a rodent model of Plasmodium yoelii infection, MHC class II+CD11c? non‐T, non‐B cells in the spleen were characterized. Although the proportion of conventional dendritic cells was reduced, that of MHC II+CD11c? non‐T, non‐B cells increased during the course of infection. The increase in this subpopulation was dependent on the presence of lymphocytes. Experiments using Rag‐2?/? mice with adoptively transferred normal spleen cells indicated that these cells were non‐lymphoid cells; however, their accumulation in the spleen during infection with P. yoelii depended on lymphocytes. Functionally, these MHC II+CD11c? non‐T, non‐B cells were able to produce the proinflammatory cytokines alpha tumor necrosis factor and interleukin‐6 in response to infected red blood cells, but had only a limited ability to activate antigen‐specific CD4+ T cells. This study revealed a novel interaction between MHC II+CD11c? non‐lymphoid cells and lymphoid cells in the accumulations of these non‐lymphoid cells in the spleen during infection with P. yoelii.
  相似文献   

19.
With their direct link to individual fitness, genes of the major histocompatibility complex (MHC) are a popular system to study the evolution of adaptive genetic diversity. However, owing to the highly dynamic evolution of the MHC region, the isolation, characterization and genotyping of MHC genes remain a major challenge. While high‐throughput sequencing technologies now provide unprecedented resolution of the high allelic diversity observed at the MHC, in many species, it remains unclear (i) how alleles are distributed among MHC loci, (ii) whether MHC loci are linked or segregate independently and (iii) how much copy number variation (CNV) can be observed for MHC genes in natural populations. Here, we show that the study of allele segregation patterns within families can provide significant insights in this context. We sequenced two MHC class I (MHC‐I) loci in 1267 European barn owls (Tyto alba), including 590 offspring from 130 families using Illumina MiSeq technology. Coupled with a high per‐individual sequencing coverage (~3000×), the study of allele segregation patterns within families provided information on three aspects of the architecture of MHC‐I variation in barn owls: (i) extensive sharing of alleles among loci, (ii) strong linkage of MHC‐I loci indicating tandem architecture and (iii) the presence of CNV in the barn owl MHC‐I. We conclude that the additional information that can be gained from high‐coverage amplicon sequencing by investigating allele segregation patterns in families not only helps improving the accuracy of MHC genotyping, but also contributes towards enhanced analyses in the context of MHC evolutionary ecology.  相似文献   

20.
Northern elephant seals were hunted to near extinction in the 19th century, yet have recovered remarkably and now number around 175,000. We surveyed 110 seals for single-strand conformation polymorphism (SSCP) and sequence variation at three major histocompatibility (MHC) class II loci (DQA, DQB and DRB) to evaluate the genetic consequences of the population bottleneck at these loci vs. other well-studied genes. We found very few alleles at each MHC locus, significant variation among breeding sites for the DQA locus, and linkage disequilibrium between the DQB and DRB loci. Northern elephant seals are evidently inbred, although there is as yet no evidence of correlative reductions in fitness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号