首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A common feature of many birds breeding in seasonal environments is that fitness‐related parameters such as nestling mass or survival decline as the breeding season progresses. Consequently, there is a tendency for early breeders to have better reproductive performance than individuals breeding later in the season. This variation could be caused by factors associated with the date of laying, such as changing environmental conditions (date hypothesis), or by differences in parental quality between early and late breeders (parent quality hypothesis). To evaluate the relative importance of both hypotheses, we manipulated hatch dates of Blue Tits Cyanistes caeruleus by exchanging clutches with different incubation stages and assessed the impact on nestling mass, nestling diet and provisioning rates. Mean nestling mass declined significantly over the season. This was the combined result of differences in parental quality, which dominated in the early part of the season, and the influence of hatching date (date effect per se), which prevailed later in the season. Nestling diet composition was apparently uninfluenced by the manipulation, suggesting that deteriorating food supplies are the primary reason for the seasonal variation in the nestling diet. Counter to the date hypothesis, delayed parents did not feed their young less than control pairs did, but in fact exhibited higher provisioning rates. Our results suggest that in this population, parental quality seems to constrain post‐hatching reproductive performance and such intrinsic limitations may help to explain why certain individuals breed later.  相似文献   

2.
Reproductive success declines over the course of the breeding season in many bird species. Two categories of hypothesis have been evoked to explain this decline. The “timing” hypothesis suggests that seasonal declines in breeding success are attributable to the date of laying. The “parental quality” hypothesis suggests that seasonal declines result from the fact that young, inexperienced, or low quality birds breed later in the season. To evaluate the relative importance of timing and parental quality, egg exchanges and removals were used to manipulate hatching dates of common terns Sterna hirundo. Indices of quality, attendance, provisioning rates, and reproductive success of birds in three experimental groups (delayed hatch pairs, advanced hatch pairs, and pairs induced to relay) were compared to those of date‐matched controls. Pairs that hatched chicks early raised more chicks than pairs hatching chicks late in the season, regardless of initial laying date. This suggests that hatching chicks early is advantageous in itself. Our results, however, also support the parental quality hypothesis. There was a significant negative relationship between natural laying date and fledging success, independent of hatching date. Differences in chick growth and survival suggest that higher quality adults may be able to compensate for the disadvantages of late hatching dates and achieve similar reproductive success to that of pairs hatching chicks early. We found that pairs hatching chicks late in the season were subject to more incidents of kleptoparasitism than those hatching chicks early. This may be a proximate factor contributing to seasonal declines in reproductive success for common terns, although such a mechanism would not be likely in non‐colonial species. Failure to control for egg quality may have biased the results of some prior egg exchange experiments. Additionally, altered cost of incubation may be an unavoidable confounding factor in studies designed to manipulate timing of breeding.  相似文献   

3.
Among temperate‐breeding birds, offspring survival and reproductive success are often inversely related to timing of breeding. The mechanisms that produce seasonal declines in offspring survival are not fully understood but may be related to temporal changes in parental quality, environmental quality, or both. We analyzed data for lesser scaup Aythya affinis to evaluate hypothesized effects of parental quality and date on pre‐fledging survival. Maternal quality, as indexed by body mass, did not have an independent effect on offspring survival in this species. Maternal body mass did not decline seasonally and did not have an independent effect on duckling survival. Although we did not detect an independent effect of hatch date on duckling survival, duckling survival declined seasonally for broods raised by lightweight females, indicating an interactive effect of maternal mass and date. We hypothesize that this interaction may be driven by seasonally declining food resources coupled with the influence of female condition on the ability to monopolize food resources or remain attentive to the brood. We also tested morphological predictions of the date hypothesis by examining physical characteristics of ducklings. When corrected for age and size, late‐hatched ducklings tended to have marginally larger digestive systems and smaller leg muscles than did early‐hatched birds. Abundances of intestinal parasites acquired through diet decreased marginally in late‐hatched ducklings. Results for digestive system and parasite infection patterns suggested that later‐hatched broods may shift diets, consistent with a contribution of environmental factors to seasonal variation in offspring survival. Taken together, our results suggest that both female attributes and environmental conditions may influence seasonal patterns of offspring survival in this species.  相似文献   

4.
Timing of reproduction can influence individual fitness whereby early breeders tend to have higher reproductive success than late breeders. However, the fitness consequences of timing of breeding may also be influenced by environmental conditions after the commencement of breeding. We tested whether ambient temperatures during the incubation and early nestling periods modulated the effect of laying date on brood size and dominant juvenile survival in gray jays (Perisoreus canadensis), a sedentary boreal species whose late winter nesting depends, in part, on caches of perishable food. Previous evidence has suggested that warmer temperatures degrade the quality of these food hoards, and we asked whether warmer ambient temperatures during the incubation and early nestling periods would be associated with smaller brood sizes and lower summer survival of dominant juveniles. We used 38 years of data from a range‐edge population of gray jays in Algonquin Provincial Park, Ontario, where the population has declined over 50% since the study began. Consistent with the “hoard‐rot” hypothesis, we found that cold temperatures during incubation were associated with larger brood sizes in later breeding attempts, but temperatures had little effect on brood size for females breeding early in the season. This is the first evidence that laying date and temperature during incubation interactively influence brood size in any bird species. We did not find evidence that ambient temperatures during the incubation period or early part of the nestling period influenced summer survival of dominant juveniles. Our findings provide evidence that warming temperatures are associated with some aspects of reduced reproductive performance in a species that is reliant on cold temperatures to store perishable food caches, some of which are later consumed during the reproductive period.  相似文献   

5.
Reproductive success usually declines in the course of the season, which may be a direct effect of breeding time, an effect of quality (individuals with high phenotypic or environmental quality breeding early), or a combination of the two. Being able to distinguish between these possibilities is crucial when trying to understand individual variation in annual routines, for instance when to breed, moult and migrate. We review experiments with free-living birds performed to distinguish between the 'timing' and 'quality' hypothesis. 'Clean' manipulation of breeding time seems impossible, and we therefore discuss strong and weak points of different manipulation techniques. We find that the qualitative results were independent of manipulation technique (inducing replacement clutches versus cross-fostering early and late clutches). Given that the two techniques differ strongly in demands made on the birds, this suggests that potential experimental biases are limited. Overall, the evidence indicated that date and quality are both important, depending on fitness component and species, although evidence for the date hypothesis was found more frequently. We expected both effects to be prevalent, since only if date per se is important, does an incentive exist for high-quality birds to breed early. We discuss mechanisms mediating the seasonal decline in reproductive success, and distinguish between effects of absolute date and relative date, for instance timing relative to seasonal environmental fluctuations or conspecifics. The latter is important at least in some cases, suggesting that the optimal breeding time may be frequency dependent, but this has been little studied. A recurring pattern among cross-fostering studies was that delay experiments provided evidence for the quality hypothesis, while advance experiments provided evidence for the date hypothesis. This indicates that late pairs are constrained from producing a clutch earlier in the season, presumably by the fitness costs this would entail. This provides us with a paradox: evidence for the date hypothesis leads us to conclude that quality is important for the ability to breed early.  相似文献   

6.
Haemosporidians causing avian malaria are very common parasites among bird species. Their negative effects have been repeatedly reported in terms of deterioration in survival prospects or reproductive success. However, a positive association between blood parasites and avian fitness has also been reported. Here, we studied a relationship between presence of malaria parasites and reproductive performance of the host, a hole‐breeding passerine – the blue tit Cyanistes caeruleus. Since the malaria parasites might affect their hosts differently depending on environmental conditions, we performed brood size manipulation experiment to differentiate parental reproductive effort and study the potential interaction between infection status and brood rearing conditions on reproductive performance. We found individuals infected with malaria parasites to breed later in the season in comparison with uninfected birds, but no differences were detected in clutch size. Interestingly, infected parents produced heavier and larger offspring with stronger reaction to phytohemagglutinin. More importantly, we found a significant interaction between infection status and brood size manipulation in offspring tarsus length and reaction to phytohemagglutinin: presence of parasites had stronger positive effect among birds caring for experimentally enlarged broods. Our results might be interpreted either in the light of the parasite‐mediated selection or terminal investment hypothesis.  相似文献   

7.
In seasonal environments, avian reproductive performance almost generally declines in the course of the season. Quantifying the associated fitness consequences of timing of breeding, i.e. of date‐related factors, is important for understanding the evolution of temporal patterns in avian life‐histories and for predicting consequences of climate change. The seasonal decline can also be caused by an effect of parental quality: individuals with high phenotypic quality may breed early. The results of existing experimental studies investigating whether date or quality effects cause the seasonal decline are inconsistent, indicating that both mechanisms might be involved. However, it remains unclear to what extent the confounding effect of quality occurs and what the fitness consequences of timing per se over a whole breeding episode are. In a cross‐fostering experiment using the barn swallows’ second broods we evaluated the causes for the seasonal decline in reproductive performance for three distinct periods of a reproductive attempt, the early nestling period, the late nestling period and the post‐fledging period, and we assessed the overall fitness consequences of timing per se. A seasonal decline in juvenile feather growth rate was mainly due to date effects in the late nestling period, although we determined quality effects during early nestling development. Date effects on survival were present in the post‐fledging period, but not in the nestling period. The decline in feather length due to date effects in the nestling period accounted for 9% of the seasonal decline in post‐fledging survival, whereas date effects arising only in the post‐fledging period caused 91% of the decline. These results suggest that date effects increase in the course of a reproductive episode. Thus, the benefits of an early timing of breeding can be quantified only when considering also the post‐fledging period. We suggest that the timing of breeding evolved through a trade‐off between date‐related benefits and quality‐related costs of early breeding.  相似文献   

8.
In the mid 1970s, the breeding populations of the migrant White Stork Ciconia ciconia were close to extinction in the northeastern region of France (Alsace). A re-introduction project was implemented, resulting in the year-round settlement of some individuals in the region, which rely on additional food supplied by humans during the winter. Today, both resident and migrant birds breed in the same areas and take food from rubbish dumps and humans (farmers). The effects of these anthropogenic influences, altering Stork behaviour, on Stork reproductive success are not known. The aim of this study was to test the influence of bird status (resident vs. migrant) and food availability (control nests vs. nests that benefit from high food supply) on reproductive success. In control nests, the mean laying date was earlier in resident than in migrant White Storks. There was also a clear seasonal decline in clutch size. For all nests, the numbers of eggs and hatchlings were higher in resident birds than in migrants, which can be attributed to the earlier breeding of resident Storks. The large broods of resident birds showed a high mortality rate, leading to the same fledgling success (fledglings/hatchlings) and number of fledglings as in migrants. Fledgling success and the number of fledglings were higher for nests close to a reliable food supply. In summary, although resident birds can breed earlier and produce more eggs than migrants, we found no advantage in terms of number of fledglings. The higher mortality rate of chicks found in pairs with a large brood could be caused by the deterioration of their habitat. Thus, the year-round settlement of Storks may not present a biological advantage if the quality of their habitat is not guaranteed by the conservation of their grasslands.  相似文献   

9.
Individual variation in breeding dispersal has extensive ecological and evolutionary consequences, but the factors driving individual dispersal behaviour and their fitness consequences remain poorly understood. Our data on dispersal events of a rodent‐specialist predator, the Eurasian kestrel Falco tinnunculus, over 20 years in western Finland offers a unique opportunity to explore the mechanisms underlying breeding dispersal behaviour and its reproductive consequences in a wild bird population. Sex, age, body condition and previous breeding success affected breeding dispersal. Dispersal distances were longer in females than in males as well as longer in yearlings than in older individuals. Body condition was positively correlated to breeding dispersal distances, particularly for females. The lowest dispersal distances were recorded for intermediate brood sizes in the year preceding dispersal. Our results highlight sex‐ and environment‐specific consequences of breeding dispersal on reproductive performance. During increase phases of the three‐year vole cycles, males dispersing further had lower reproductive performance after dispersal, whereas in females, long breeding dispersal distances were associated with increased breeding success under all environmental conditions. These results suggest benefits associated to breeding dispersal in females, potentially related to large spatio‐temporal variation in main food abundance and intensity of intra‐specific competition. Breeding dispersal of males was costly during increasing food abundance, indicating the potential fitness benefits of environmental familiarity in this migratory species. Overall, our results indicate that both individual traits and environmental factors interact to shape breeding dispersal strategies in wide‐ranging predator populations under fluctuating food conditions.  相似文献   

10.
Life-history theory suggests that the variation in the seasonal timing of reproduction within populations may be explained on the basis of individual optimization. Optimal breeding times would vary between individuals as a result of trade-offs between fitness components. The existence of such trade-offs has seldom been tested empirically. We experimentally investigated the consequences of altered timing of current reproduction for future reproductive output in the European coot (Fulica atra). First clutches of different laying date were cross-fostered between nests, and parents thereby experienced a delay or an advance in the hatching date. The probability and success of a second brood, adult survival until and reproduction in the next season were then compared to the natural variation among control pairs. Among control pairs the probability of a second brood declined with the progress of season. Delayed pairs were less likely and advanced pairs were more likely to produce a second brood. These changes were quantitatively as predicted from the natural seasonal decline. The number of eggs in the second clutch was positively related to egg number in the first clutch and negatively related to laying date. Compared to the natural variation, delayed females had more and advanced females had fewer eggs in their second clutch. The size of the second brood declined with season, but there was no significant effect of delay or advance. Local adult survival was higher following a delay and reduced following an advance. The effect of the experiment on adult survival was independent of sex. Laying date and clutch size of females breeding in the next year were not affected by treatment. The study demonstrates the existence of a trade-off between increased probability of a second brood and decreased parental survival for early breeding. Timing-dependent effects of current reproduction on future reproductive output may thus play an important role in the evolution of the seasonal timing of reproduction.  相似文献   

11.
Seasonal fecundity of birds is influenced by clutch sizes and the number of successful breeding attempts during a breeding season. As such, understanding the factors that determine the decision to initiate multiple broods within a season and the consequences of this reproductive tactic is important. We examined the frequency of double brooding by Southern House Wrens (Troglodytes aedon musculus) in eastern Argentina. We analyzed inter‐ and intraseasonal variation in double brooding and evaluated the effect of weather conditions and laying date on the frequency and occurrence of this behavior. Finally, we assessed the effect of double brooding on the seasonal and lifetime productivity of female Southern House Wrens. During our 8‐year study, we found that ~43% (range = 17–83% each year) of breeding pairs attempted a second brood after successfully raising a first brood. The probability of females having a second brood was affected by the laying date of the first nesting attempt, but was independent of the number of young fledged. About 65% of females that started laying eggs before the first quarter of each breeding season produced a second brood, and this percentage decreased to ~40% after this period. In addition, variation in double‐brooding frequency among years was related to weather conditions, with the proportion of pairs double brooding increasing with increased precipitation early in the breeding season. More precipitation likely contributed to an increase in insect abundance. Although double brooding increased the seasonal and lifetime productivity of female Southern House Wrens, additional study of the survival and fate of fledglings from first and second broods is needed to assess the importance of multi‐brooding in the reproductive success of these wrens.  相似文献   

12.
Annual reproductive success in many species is influenced by the number of breeding attempts within a season. Although previous studies have shown isolated effects of female quality, food, and timing of breeding on the probability of female birds producing second broods, to our knowledge, none have tested the relative importance of multiple factors and their interactions using simultaneous manipulations within populations of free-living birds. In this study, we show that individual quality and timing of breeding interact to affect the probability of double-brooding in female mountain bluebirds (Sialia currucoides). High-quality females (those that naturally initiated clutches early in the season) were more likely to double-brood, regardless of whether their hatching date was advanced or delayed, whereas later breeding, lower quality females were much less likely to double-brood when their first attempt was delayed. This indicates that annual fecundity of poorer quality (or younger) female bluebirds may be more sensitive to seasonal variation in environmental conditions. In addition, birds that were provided with supplemental food throughout first breeding attempts were more likely to double-brood in one of the study years, suggesting that female bluebirds may be energetically limited in their capacity to initiate a second brood. Females that had their first brood delayed also had a shorter inter-brood interval and were moulting fewer feathers during second broods compared to controls, while females in better condition showed more advanced moult in second breeding attempts. Taken together, our results demonstrate the combined effects of age- or individual quality-mediated energetic trade-offs between current and future reproduction, and between investments in offspring and self-maintenance, on annual fecundity of female birds.  相似文献   

13.
Life-history theory predicts that parents refer to the resources they hold to determine their breeding strategy. In multi-brooded species, it is hypothesized that single-brooded parents produce larger clutches and raise offspring with a brood survival strategy, whereas multi-brooded parents only do this under good breeding conditions. Under poor conditions, they produce smaller clutches and raise offspring with a brood reduction strategy. We tested this hypothesis in the Brown-cheeked Laughing Thrush Trochalopteron henrici, which can breed twice a year on the Tibetan Plateau, by investigating the life-history traits and provisioning behaviours of single- and double-brooded parents. Single-brooded parents laid larger clutches of smaller eggs and produced more and larger fledglings than double-brooded parents in their first brood. Double-brooded parents produced smaller clutches of larger eggs but fledged larger nestlings in their first brood than in their second brood. As single-brooded parents only need to raise one brood a year, then producing and raising as many offspring as possible (i.e. the brood survival strategy in a large brood) can maximize their reproductive success. For double-brooded parents, producing and raising fewer offspring in the first brood (i.e. the brood survival strategy in a small brood) can ensure their nesting success during a short breeding cycle. Additionally, producing more offspring but raising larger nestlings in the second brood (i.e. the brood reduction strategy in a large brood) can select for offspring of higher quality within the brood. Our findings indicate that different tradeoffs between single- and double-brooded parents in egg-laying and nestling-raising may be an adaptation to the seasonal variation in environmental conditions.  相似文献   

14.
Uniparental offspring desertion occurs in a wide variety of avian taxa and usually reflects sexual conflict over parental care. In many species, desertion yields immediate reproductive benefits for deserters if they can re‐mate and breed again during the same nesting season; in such cases desertion may be selectively advantageous even if it significantly reduces the fitness of the current brood. However, in many other species, parents desert late‐season offspring when opportunities to re‐nest are absent. In these cases, any reproductive benefits of desertion are delayed, and desertion is unlikely to be advantageous unless the deserted parent can compensate for the loss of its partner and minimize costs to the current brood. We tested this parental compensation hypothesis in Hooded Warblers Setophaga citrina, a species in which males regularly desert late‐season nestlings and fledglings during moult. Females from deserted nests effectively doubled their provisioning efforts, and nestlings from deserted nests received just as much food, gained mass at the same rate, and were no more likely to die from either complete nest predation or brood reduction as young from biparental nests. The female provisioning response, however, was significantly related to nestling age; females undercompensated for male desertion when the nestlings were young, but overcompensated as nestlings approached fledging age, probably because of time constraints that brooding imposed on females with young nestlings. Overall, our results indicate that female Hooded Warblers completely compensate for male moult‐associated nest desertion, and that deserting males pay no reproductive cost for desertion, at least up to the point of fledging. Along with other studies, our findings support the general conclusion that late‐season offspring desertion is likely to evolve only when parental compensation by the deserted partner can minimize costs to the current brood.  相似文献   

15.
In some tropical birds, breeding seasonality is weak at the population level, even where there are predictable seasonal peaks in environmental conditions. It therefore remains unclear whether individuals are adapted to breeding at specific times of the year or flexible to variable environmental conditions. We tested whether the relative year‐round breeding activity of the Common Bulbul Pycnonotus barbatus arises due to within‐individual variability in breeding dates. We collected data from 827 birds via mist‐netting over 2 years with corresponding local weather data. We used a combination of climate envelope and generalized linear mixed models to explore how the timing of breeding is influenced by time of year, individual variation, rainfall and temperature in a West African savannah where seasonal precipitation determines annual variation in environmental conditions. We also pooled 65 breeding records from 19 individuals recorded between 2006 and 2017 based on brood patch occurrence and behavioural observation to compare within‐individual and population variability in breeding dates. We show that the breeding dates of individuals may be as variable as for the population as a whole. However, we observed a seasonal peak in juvenile occurrence that varies significantly between years. Models suggest no relationship between nesting and moult, and within‐year variation in rainfall and temperature, and birds were unlikely to breed during moult but may do so afterwards. Moult was very seasonal, correlating strongly with day length. We suggest that because environmental conditions permit year‐round breeding, and because reproductive output is subject to high predation risk, there is probably a weak selection for individuals to match breeding with variable peak conditions in the environment. Instead, moult, which always occurs annually and successfully, is probably under strong selection to match variable peak conditions in the environment so that long‐term survival ensures future reproduction.  相似文献   

16.
Parent birds show a continuous spectrum of breeding strategies, ranging from a low‐fecundity and high‐survival pattern to a high‐fecundity, low‐survival pattern. Investigations of parental breeding strategies under variable environmental conditions can illustrate how parents trade‐off the benefits and costs of these two extreme strategies. White‐collared Blackbirds Turdus albocinctus can breed twice a year on the Tibetan Plateau. We show that both life‐history traits and parental feeding behaviour differ between these two breeding attempts. In the first attempt, the birds produced small clutches and fledged a small number of nestlings of high body condition. In the second attempt, they produced larger clutches and fledged more nestlings of lower body condition. Males made greater contributions to brood provisioning compared with females in the first attempt but there was no sex difference in brood provisioning in the second attempt. In the first attempt, producing smaller clutches can shorten the nestling period, and the increased male contribution to brood provisioning can protect the energy reserves of females. Thus, females can begin a second attempt sooner and produce larger clutches. During the second nesting attempt, when conditions are warmer and wetter, parents rely on a broader array of food types (both invertebrates and plant material, primarily berries) than during the first attempt, which includes only animal food such as arthropods and annelids. We suggest that this difference in breeding strategies between nesting attempts and sexes is in part influenced by marked seasonal variation in food availability.  相似文献   

17.
1.?We assessed the relative influence of variability in recruitment age, dynamic reproductive investment (time-specific reproductive states) and frailty (unobserved differences in survival abilities across individuals) on survival in the black-legged kittiwake. Furthermore, we examined whether observed variability in survival trajectories was best explained by immediate reproductive investment, cumulative investment, or both. 2.?Individuals that delayed recruitment (≥ age 7) suffered a higher mortality risk than early recruits (age 3), especially later in life, suggesting that recruitment age may be an indicator of individual quality. Although recruitment age helped explain variation in survival, time-varying reproductive investment had a more substantial influence. 3.?The dichotomy of attempting to breed or not explained variability in survival across life better than other parameterizations of reproductive states such as clutch size, brood size or breeding success. In the kittiwake, the sinequanon condition to initiate reproduction is to hold a nest site, which is considered a very competitive activity. This might explain why attempting to breed is the key level of investment that affects survival, independent of the outcome (failure or success). 4.?Interestingly, the more individuals cumulate reproductive attempts over life, the lower their mortality risk, indicating that breeding experience may be a good indicator of parental quality as well. In contrast, attempting to breed at time t increased the risk of mortality between t and t + 1. We thus detected an immediate trade-off between attempting to breed and survival in this population; however, the earlier individuals recruited, and the more breeding experience they accumulated, the smaller the cost. 5.?Lastly, unobserved heterogeneity across individuals improved model fit more (1·3 times) than fixed and dynamic sources of observed heterogeneity in reproductive investment, demonstrating that it is critical to account for both sources of individual heterogeneity when studying survival trajectories. Only after simultaneously accounting for both sources of heterogeneity were we able to detect the 'cost' of immediate reproductive investment on survival and the 'benefit' of cumulative breeding attempts (experience), a proxy to individual quality.  相似文献   

18.
Nest defence is a common form of parental care employed by birds to improve the survival of their offspring. Theory predicts that parents should adjust their nest defence according to the value of the brood at stake, defending more intensively broods with high survival and reproductive prospects. We evaluated the influence of offspring number, offspring age, laying date and parent sex on nest‐defence intensity (NDI) of the Imperial Shag Phalacrocorax atriceps, a sexually dimorphic seabird with seasonal decline in offspring survival and very limited renesting potential. We also evaluated whether NDI was correlated within pairs and whether NDI of both members of the pair was correlated with incubation and breeding success. To elicit defensive behaviour, we simulated predation attempts using a Kelp Gull Larus dominicanus model. As predicted by theory, NDI was positively correlated with the number of offspring in the nest and offspring age. NDI during chick rearing was higher than that at early and late incubation, while no differences were found between incubation stages. Contrary to our prediction, we did not find differences in NDI according to laying date. NDI for males was higher than females, while NDI was also positively correlated within pairs. NDI was not statistically related to incubation or breeding success. These results suggest that other factors, such as laying date or parental quality and age, play a much larger role in determining the outcome and productivity of a nesting attempt. Our results provide partial support for parental investment theory; while parental defence increased with brood value according to offspring number and age, parental defence was not related to laying date, a factor strongly affecting offspring survival and recruitment probabilities in this species.  相似文献   

19.
Life history theory predicts that individuals should maximize lifetime reproductive success (LRS) by breeding as soon as they reach sexual maturity, yet many species delay breeding, either because there are insufficient available mates or breeding sites, or because delayed breeding yields higher LRS. Accipitriform species, such as Cooper's Hawk Accipiter cooperii, exhibit both delayed breeding and delayed plumage maturation. However, in certain circumstances, first‐year females in non‐definitive plumage do breed and apparently compete with older females for high‐quality breeding territories. We predicted that these young females are at a competitive disadvantage compared with older females and that older females would have both higher reproductive success and be able to acquire higher quality nesting territories. We conducted brood counts and measured prey delivery rates by male Cooper's Hawks in an expanding urban population located in Albuquerque, New Mexico (USA), to assess our prediction. We found that older females had higher reproductive success, fledging 1.6 more offspring than younger females, and that they occupied territories where males provisioned at higher rates of 0.37 more prey items per 2‐h period. Our results showed that older females fared better than first‐year females but it is unclear if this is the result of passive or active competition. Older females initiated nesting 14.3 days sooner than first‐year females and thus may have filled vacant, high‐quality territories before first‐year females began seeking mates. Additionally, first‐year females were never observed persistently to confront older females for breeding territories, but they did actively compete against each other. First‐year females may defer to older females who, in a direct competitive interaction, would be most likely to prevail. Thus, delayed plumage maturation in Cooper's Hawks may serve to focus competition for nesting territories within age classes.  相似文献   

20.
Numerous hypotheses have been proposed to explain variation in reproductive performance and local recruitment of animals. While most studies have examined the influence of one or a few social and ecological factors on fitness traits, comprehensive analyses jointly testing the relative importance of each of many factors are rare. We investigated how a multitude of environmental and social conditions simultaneously affected reproductive performance and local recruitment of the red-backed shrike Lanius collurio (L.). Specifically, we tested hypotheses relating to timing of breeding, parental quality, nest predation, nest site selection, territory quality, intraspecific density and weather. Using model selection procedures, predictions of each hypothesis were first analysed separately, before a full model was constructed including variables selected in the single-hypothesis tests. From 1988 to 1992, 50% of 332 first clutches produced at least one fledgling, while 38.7% of 111 replacement clutches were successful. Timing of breeding, nest site selection, predation pressure, territory quality and intraspecific density influenced nest success in the single-hypothesis tests. The full model revealed that nest success was negatively associated with laying date, intraspecific density, and year, while nest success increased with nest concealment. Number of fledglings per successful nest was only influenced by nest concealment: better-camouflaged nests produced more fledglings. Probability of local recruitment was related to timing of breeding, parental quality and territory quality in the single-hypothesis tests. The full models confirmed the important role of territory quality for recruitment probability. Our results suggest that reproductive performance, and particularly nest success, of the red-backed shrike is primarily affected by timing of breeding, nest site selection, and intraspecific density. This study highlights the importance of considering many factors at the same time, when trying to evaluate their relative contributions to fitness and life history evolution.Electronic supplementary material Supplementary material is available for this article at  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号