首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The horizontal transmission of pathogenic and beneficial microbes has implications for health and development of socially living animals. Social group is repeatedly implicated as an important predictor of gut microbiome structure among primates, with individuals in neighboring social groups exhibiting distinct microbiomes. Here we examine whether group membership is a predictor of gut microbiome structure and diversity across three groups of white‐faced capuchins (Cebus capucinus imitator) inhabiting a seasonal Costa Rican forest. We collected 62 fecal samples from 18 adult females during four sampling bouts. Sampling bouts spanned the dry‐to‐wet‐to‐dry seasonal transitions. To investigate gut microbial composition, we sequenced the V4 region of the 16S rRNA gene. We used the DADA2 pipeline to assign amplicon sequence variants and the RDP database to classify taxa. Our findings are: 1) gut microbiomes of capuchins clustered by social group in the late dry season, but this pattern was less evident in other sampling bouts; 2) social group was a significant variable in a PERMANOVA test of beta diversity, but it accounted for less variation than season; 3) social group was not an important predictor of abundance for the ten most abundant microbial taxa in capuchins; 4) when examining log2‐fold abundances of microbes between social groups, there were significant differences in some pairwise comparisons. While this is suggestive of group‐wide differences, individual variation may have a strong impact and should be assessed in future studies. Overall, we found a minor impact of social group membership on the gut microbiota of wild white‐faced capuchins. Future research including home range overlap and resource use, as well as fine‐scale investigation of individual variation, will further elucidate patterns of socially structured microbes.  相似文献   

2.
We compared the diets of 3 groups of released captive-bred Varecia variegata variegata (RG1, RG2, RG3) in the Betampona Reserve to that recorded for a resident wild group, between 1998 and 2001. We investigated whether the released captive-bred Varecia, from differing captive backgrounds, could cope with seasonal changes in climate and consequently food availability, finding sufficient food to meet their nutritional requirements, and dietary choices and selection. We collected data on diet, including plant part, family, genus and, if known, species. In addition, we collected data on seasonal variation in dietary composition. Dietary overlap is significant at the familial level between RG1/RG3 and the wild group. There is some dietary overlap between RG2 and the wild group, but it is not significant. In general, RG1 and RG3 more closely followed the dietary choices and seasonal changes in diet exhibited by the wild group. We conclude that Varecia raised in free-ranging environments are better adapted to meet their nutritional requirements in the wild than those raised in cages are. However, even they struggle to deal with seasonal climatic changes and consequent changes in food availability. We suggest that future re-introduction efforts for primates include attempts to integrate released individuals rapidly into wild groups so that they can learn to cope with a seasonal environment through direct observation of wild conspecifics.  相似文献   

3.
Genetics, diet, and other environmental exposures are thought to be major factors in the development and composition of the intestinal microbiota of animals. However, the relative contributions of these factors in adult animals, as well as variation with time in a variety of important settings, are still not fully understood. We studied a population of inbred, female mice fed the same diet and housed under the same conditions. We collected fecal samples from 46 individual mice over two weeks, sampling four of these mice for periods as long as 236 days for a total of 190 samples, and determined the phylogenetic composition of their microbial communities after analyzing 1,849,990 high-quality pyrosequencing reads of the 16S rRNA gene V3 region. Even under these controlled conditions, we found significant inter-individual variation in community composition, as well as variation within an individual over time, including increases in alpha diversity during the first 2 months of co-habitation. Some variation was explained by mouse membership in different cage and vendor shipment groups. The differences among individual mice from the same shipment group and cage were still significant. Overall, we found that 23% of the variation in intestinal microbiota composition was explained by changes within the fecal microbiota of a mouse over time, 12% was explained by persistent differences among individual mice, 14% by cage, and 18% by shipment group. Our findings suggest that the microbiota of controlled populations of inbred laboratory animals may not be as uniform as previously thought, that animal rearing and handling may account for some variation, and that as yet unidentified factors may explain additional components of variation in the composition of the microbiota within populations and individuals over time. These findings have implications for the design and interpretation of experiments involving laboratory animals.  相似文献   

4.
Generalist primates eat many food types and shift their diet with changes in food availability. Variation in foods eaten may not, however, match variation in nutrient intake. We examined dietary variation in a generalist‐feeder, the blue monkey (Cercopithecus mitis), to see how dietary food intake related to variation in available food and nutrient intake. We used 371 all‐day focal follows from 24 adult females (three groups) in a wild rainforest population to quantify daily diet over 9 months. We measured food availability using vegetation surveys and phenology monitoring. We analyzed >700 food and fecal samples for macronutrient content. Subjects included 445 food items (species‐specific plant parts and insect morphotypes) in their diet. Variation in fruit consumption (percentage of diet and total kcal) tracked variation in availability, suggesting fruit was a preferred food type. Fruits also constituted the majority of the diet (by calories) and some fruit species were eaten more than expected based on relative availability. In contrast, few species of young leaves were eaten more than expected. Also, subjects ate fewer young leaves (based on calories consumed) when fruit or young leaves were more available, suggesting that young leaves served as fallback foods. Despite the broad range of foods in the diet, group differences in fiber digestibility, and variation that reflected food availability, subjects and groups converged on similar nutrient intakes (grand mean ± SD: 637.1 ± 104.7 kcal overall energy intake, 293.3 ± 46.9 kcal nonstructural carbohydrate, 147.8 ± 72.4 kcal lipid, 107.8 ± 12.9 kcal available protein, and 88.1 ± 17.5 kcal structural carbohydrate; N = 24 subjects). Thus, blue monkeys appear to be food composition generalists and nutrient intake specialists, using flexible feeding strategies to regulate nutrient intake. Findings highlight the importance of simultaneously examining dietary composition at both levels of foods and nutrients to understand primate feeding ecology.  相似文献   

5.
Understanding variation in food requirements of wild animals is of central importance in population ecology and conservation, as it helps to identify where and when food may be limiting. Studies on diet variation or prey provisioning rates may give useful insights when direct information on prey availability is lacking. We assess spatial and temporal variation in the diet of an endangered predator, the Black Harrier Circus maurus. This raptor is endemic to southern Africa and specializes on small mammals but also feeds on birds and reptiles as alternative prey. Using data on 1679 prey identified in 953 pellets collected in inland and coastal regions from 2006 to 2015, we show that diet composition changed little throughout the breeding season in the coastal region, whereas there was a marked seasonal decline in the occurrence of small mammal prey in the inland region, with a concomitant increase in alternative prey. The proportion of small mammals in the diet declined with increasing maximum temperature, the latter being highest at the inland region late in the breeding season. Using camera recordings at nests in 2014, we further analysed daily patterns of prey provisioning to nestlings. A marked reduction in small mammal provisioning rates occurred during the middle of the day in the hotter inland region but not in the cooler coastal region. Reduced availability of the primary prey, small mammals, in hotter conditions, through a reduction in activity or overall abundance, could explain these patterns. Finally, we show a positive relationship between winter rainfall and interannual differences in the proportion of small mammals in the diet of Black Harriers breeding in the coastal region, suggesting relationships between diet and prey abundance that are mediated through rainfall. We discuss the need to consider spatial variation in food availability in conservation strategies.  相似文献   

6.

Background

Diet and environment impact the composition of mammalian intestinal microbiota; dietary or health disturbances trigger alterations in intestinal microbiota composition and render the host susceptible to enteric pathogens. To date no long term monitoring data exist on the fecal microbiota and pathogen load of carnivores either in natural environments or in captivity. This study investigates fecal microbiota composition and the presence of pathogenic Escherichia coli and toxigenic clostridia in wild and captive grizzly bears (Ursus arctos) and relates these to food resources consumed by bears.

Methodology/Principal Findings

Feces were obtained from animals of two wild populations and from two captive animals during an active bear season. Wild animals consumed a diverse diet composed of plant material, animal prey and insects. Captive animals were fed a regular granulated diet with a supplement of fruits and vegetables. Bacterial populations were analyzed using quantitative PCR. Fecal microbiota composition fluctuated in wild and in captive animals. The abundance of Clostridium clusters I and XI, and of C. perfringens correlated to regular diet protein intake. Enteroaggregative E. coli were consistently present in all populations. The C. sordellii phospholipase C was identified in three samples of wild animals and for the first time in Ursids.

Conclusion

This is the first longitudinal study monitoring the fecal microbiota of wild carnivores and comparing it to that of captive individuals of the same species. Location and diet affected fecal bacterial populations as well as the presence of enteric pathogens.  相似文献   

7.
The extent to which the gut microbiota may play a role in latitudinal clines of body mass variation (i.e., Bergmann's rule) remains largely unexplored. Here, we collected wild house mice from three latitudinal transects across North and South America and investigated the relationship between variation in the gut microbiota and host body mass by combining field observations and common garden experiments. First, we found that mice in the Americas follow Bergmann's rule, with increasing body mass at higher latitudes. Second, we found that overall differences in the gut microbiota were associated with variation in body mass controlling for the effects of latitude. Then, we identified specific microbial measurements that show repeated associations with body mass in both wild‐caught and laboratory‐reared mice. Finally, we found that mice from colder environments tend to produce greater amounts of bacteria‐driven energy sources (i.e., short‐chain fatty acids) without an increase in food consumption. Our findings provide motivation for future faecal transplant experiments directly testing the intriguing possibility that the gut microbiota may contribute to Bergmann's rule, a fundamental pattern in ecology.  相似文献   

8.
Host ecological factors and external environmental factors are known to influence the structure of gut microbial communities, but few studies have examined the impacts of environmental changes on microbiotas in free‐ranging animals. Rapid land‐use change has the potential to shift gut microbial communities in wildlife through exposure to novel bacteria and/or by changing the availability or quality of local food resources. The consequences of such changes to host health and fitness remain unknown and may have important implications for pathogen spillover between humans and wildlife. To better understand the consequences of land‐use change on wildlife microbiotas, we analyzed long‐term dietary trends, gut microbiota composition, and innate immune function in common vampire bats (Desmodus rotundus) in two nearby sites in Belize that vary in landscape structure. We found that vampire bats living in a small forest fragment had more homogenous diets indicative of feeding on livestock and shifts in microbiota heterogeneity, but not overall composition, compared to those living in an intact forest reserve. We also found that irrespective of sampling site, vampire bats which consumed relatively more livestock showed shifts in some core bacteria compared with vampire bats which consumed relatively less livestock. The relative abundance of some core microbiota members was associated with innate immune function, suggesting that future research should consider the role of the host microbiota in immune defense and its relationship to zoonotic infection dynamics. We suggest that subsequent homogenization of diet and habitat loss through livestock rearing in the Neotropics may lead to disruption to the microbiota that could have downstream impacts on host immunity and cross‐species pathogen transmission.  相似文献   

9.
Deciphering the dietary habits of a species is central to understanding its ecology, resource requirements, and the evolution of its life history traits. Detailed information on how primates use their environment to address their nutritional needs is available for many primate species. Such basic, but necessary data are, however, fragmented for secretive primates, especially regarding direct behavioral observations of individuals. In this study, we evaluated the impact of seasonality and demographic characteristics on diet and feeding habits in the only free‐ranging population of habituated mandrills (Mandrillus sphinx), a forest‐dwelling species inhabiting the dense humid forests of Central Africa. We collected fine‐grained quantitative data on feeding behavior of 57 individually‐recognized animals of both sexes and different age classes during a 17‐month period. We identified most consumed plant species and determined their abundance in the habitat of the studied mandrills. We showed that diet in this species was extremely diverse and included approximately 150 different plant species, but also mushrooms, invertebrates, and vertebrates. This omnivorous and highly diverse diet presented, however, a clear frugivorous tendency. While we identified three food items largely consumed throughout the year, we also found a strong seasonal signature on diet that was partly, but not only, related to food availability. Age and sex also influenced feeding habits with some feeding specializations according to the individual categories considered and their associated nutritional needs. Our quantitative data provide a basis for future studies examining the nutritional and mineral content of food items, which will further elucidate important aspects of the ecology of this little studied forest primate.  相似文献   

10.
11.

Aims

To evaluate mannan oligosaccharide (MOS) and threonine effects on performance, small intestine morphology and Salmonella spp. counts in Salmonella Enteritidis‐challenged birds.

Methods and Results

One‐day‐old chicks (1d) were distributed into five treatments: nonchallenged animals fed basal diet (RB‐0), animals fed basal diet and infected with Salmonella Enteritidis (RB‐I), animals fed high level of threonine and infected (HT‐I), birds fed basal diet with MOS and infected (MOS‐I), birds fed high level of threonine and MOS and infected (HT+MOS‐I). Birds were inoculated at 2d with Salmonella Enteritidis, except RB‐0 birds. Chicks fed higher dietary threonine and MOS showed performance similar to RB‐0 and intestinal morphology recovery at 8 dpi. Salmonella counts and the number of Salmonella‐positive animals were lower in HT+MOS‐I compared with other challenged groups.

Conclusion

Mannan oligosaccharides and threonine act synergistically, resulting in improved intestinal environment and recovery after Salmonella inoculation.

Significance and Impact of the Study

Nutritional approaches may be useful to prevent Salmonella infection in the first week and putative carcass contamination at slaughter. This is the first report on the possible synergistic effect of mannan oligosaccharides and threonine, and further studies should be performed including performance, microbiota evaluation, composition of intestinal mucins and immune assessment.  相似文献   

12.
Studies of primate diets usually focus on differences that distinguish species or populations. However, variation in diet can occur at a more local level of groups within a population, especially in a non-homogeneous habitat. I compared dietary variation in food composition and toughness across groups of 2 lemur species in Beza Mahafaly special reserve, Madagascar. Beza Mahafaly contains an 80-ha reserve (Parcel 1) that, while small, hosts a dense population of Lemur catta (ring-tailed lemurs) and Propithecus verreauxi verreauxi (sifakas). Microhabitats in the eastern vs. western sides of the parcel are structurally and floristically distinct. Sifakas in this parcel have small, discrete home ranges and are morphological folivores. For these reasons, I expected that the 6 groups studied would eat a different menu of food plants but with similar toughness values. Ring-tailed lemurs have comparatively large, overlapping home ranges, and I expected that the 5 study groups would eat similar foods. Despite living in different microhabitats across the parcel, sifakas exhibit high dietary uniformity both in dietary plant species composition and the toughness of the foods. Food selection in sifakas operates on two distinct levels. Sifaka groups share many key food species that appear independent of local abundances, but the ranking of the foods within each group appears related to availability. Ring-tailed lemur groups are more heterogeneous in the composition of their diets relative to sifakas, though the time spent feeding on individual foods reveals a marked preference for the fruits of Tamarindus indica by all groups. Food toughness is consistent across the parcel with the exception of the most western group. Ring-tailed lemurs are highly specific feeders, but indiscriminate nibblers. Sifakas are targeted, balanced feeders. There does not appear to be a consistent microhabitat effect operating across species. Differences within sifaka and ring-tailed lemur populations in food composition and toughness, however, correspond to an east-west microhabitat gradient. Measures of dietary flexibility must take into account not only the plant species consumed and the different parts eaten but also their associated food properties and proportion of time spent feeding on them.  相似文献   

13.
王娟  高泽中  蒋一婷  万冬梅 《生态学报》2021,41(20):7939-7945
肠道微生物是庞大而多样的微生物群落,通过促进营养摄取、宿主防御、免疫调节等,在维持机体健康方面起着至关重要的作用。宿主外部或内部环境的任何变化都会影响肠道微生物的组成,鸟类具有复杂的生活史和多样化的食性,飞翔生活使它们的生理活动面临更大的选择性压力,导致肠道微生物菌群的变化更加复杂。近年来,随着基因测序技术的发展以及对鸟类肠道微生物研究的日益重视,导致了鸟类肠道微生物研究呈指数增长。但目前的研究主要以家禽为主,野生鸟类肠道微生物报道则相对较少。野生鸟类肠道微生物结构变化及其维持机制等的研究仍处于起步阶段,有较大的研究空间。从植食性、肉食性、杂食性三种食性的鸟类肠道微生物组成及特点、影响因素等方面对前人的文献进行了全面梳理,以期为野生鸟类肠道微生物研究提供参考。总的来说,植食性鸟类肠道微生物多样性最低,以高丰度的变形菌门(Proteobacteria)、厚壁菌门(Firmicutes)为主;而杂食性鸟类肠道微生物多样性最高。遗传、生活史特征、人类活动、城市化、圈养行为等对鸟类肠道微生物的组成具有显著性的影响。  相似文献   

14.
Competing hypotheses explaining species’ use of resources have been advanced. Resource limitations in habitat and/or food are factors that affect assemblages of species. These limitations could drive the evolution of morphological and/or behavioural specialization, permitting the coexistence of closely related species through resource partitioning and niche differentiation. Alternatively, when resources are unlimited, fluctuations in resources availability will cause concomitant shifts in resource use regardless of species identity. Here, we used next‐generation sequencing to test these hypotheses and characterize the diversity, overlap and seasonal variation in the diet of three species of insectivorous bats of the genus Pteronotus. We identified 465 prey (MOTUs) in the guano of 192 individuals. Lepidoptera and Diptera represented the most consumed insect orders. Diet of bats exhibited a moderate level of overlap, with the highest value between Pteronotus parnellii and Pteronotus personatus in the wet season. We found higher dietary overlap between species during the same seasons than within any single species across seasons. This suggests that diets of the three species are driven more by prey availability than by any particular predator‐specific characteristic. P. davyi and P. personatus increased their dietary breadth during the dry season, whereas P. parnellii diet was broader and had the highest effective number of prey species in all seasons. This supports the existence of dietary flexibility in generalist bats and dietary niche overlapping among groups of closely related species in highly seasonal ecosystems. Moreover, the abundance and availability of insect prey may drive the diet of insectivores.  相似文献   

15.
Animals harbour diverse communities of symbiotic bacteria, which differ dramatically among host individuals. This heterogeneity poses an immunological challenge: distinguishing between mutualistic and pathogenic members of diverse and host‐specific microbial communities. We propose that Major Histocompatibility class II (MHC) genotypes contribute to recognition and regulation of gut microbes, and thus, MHC polymorphism contributes to microbial variation among hosts. Here, we show that MHC IIb polymorphism is associated with among‐individual variation in gut microbiota within a single wild vertebrate population of a small fish, the threespine stickleback. We sampled stickleback from Cedar Lake, on Vancouver Island, and used next‐generation sequencing to genotype the sticklebacks’ gut microbiota (16S sequencing) and their MHC class IIb exon 2 sequences. The presence of certain MHC motifs was associated with altered relative abundance (increase or decrease) of some microbial Families. The effect sizes are modest and entail a minority of microbial taxa, but these results represent the first indication that MHC genotype may affect gut microbiota composition in natural populations (MHC‐microbe associations have also been found in a few studies of lab mice). Surprisingly, these MHC effects were frequently sex‐dependent. Finally, hosts with more diverse MHC motifs had less diverse gut microbiota. One implication is that MHC might influence the efficacy of therapeutic strategies to treat dysbiosis‐associated disease, including the outcome of microbial transplants between healthy and diseased patients. We also speculate that macroparasite‐driven selection on MHC has the potential to indirectly alter the host gut microbiota, and vice versa.  相似文献   

16.
Intestinal methanogenesis is one of the major pathways for consumption of hydrogen produced by bacterial fermentation and is considered to affect the efficiency of host energy harvest; however, little information is available regarding the hydrogenotrophic pathways of nonhuman primates in the wild, in general, and of howler monkeys, in particular. Microbial fermentation of plant structural carbohydrates is an important feature in wild howlers owing to the high fiber and low available energy content of leaves, which make up the primary component of their diet. In contrast, captive howlers may consume greater quantities of fruits and vegetables that are higher in water, lower in fiber, and, along with commercial monkey chow commonly added to captive monkey diets, more readily digestible than the natural diet. In this study, we analyzed the composition of methanogens and sulfate-reducing bacteria (SRB) from fecal samples of black howler monkeys (Alouatta pigra) in the wild and in captivity. The hydrogenotrophic microbiota of three groups of monkeys was evaluated by PCR-denaturing gradient gel electrophoresis (DGGE) fingerprinting, small clone library construction, and quantitative real-time PCR. Abundance of methanogens was lower than SRB in all howler monkey groups studied. DGGE banding patterns were highly similar within each wild and captive group but distinct among groups. Desulfovibrionales-enriched DGGE showed reduced microbial diversity in the captive animals compared with their wild counterparts. Taken together, the data demonstrate that environmental or dietary changes of the host imposed by captivity likely influence the composition of intestinal hydrogenotrophs in black howler monkeys.  相似文献   

17.
Animals often have a limited time to perform different fitness‐enhancing activities, such as the trade‐off between socializing versus foraging in group‐living species. Many previous studies have focused on how ecological and social factors influence activity budget at the individual or group level in various species. However, few primate studies have focused on multiple study groups living within a similar habitat. Here, we analyse group, season and sex effects on the individual activity budget of wild vervet monkeys (Chlorocebus pygerythrus) living in four groups with overlapping home ranges. Generally, our findings support previous studies on primates. Our results indicate that intragroup competition may force larger groups to spend more time feeding and less time resting. We also found that seasonal variation, and therefore food availability, has a strong influence on the monkeys’ activity budget. Females, which are the philopatric sex in vervet monkeys, spent more time socializing while, in general, males spent more time resting. However, we did not find any difference on the time spent socializing between groups. Since there is evidence that not only time constraints and habitat quality but also group size influence individual behaviours and ultimately group living, we advise that future studies should focus on multiple groups of the same species living in the same habitat in order to better understand how all these variables are interlinked.  相似文献   

18.
19.
Many raptor species are considered to be generalists, taking a range of prey species. However, longitudinal dietary records are often scarce, although necessary for characterizing niche width of species at population and individual levels. Quantifying raptor diets at large spatio‐temporal scales is often necessary for refining conservation efforts, although it can be particularly difficult and may involve a great effort by conventional means. Therefore, we adopted the analysis of stable isotopes in tissues of predators and their potential food sources as a complementary methodology for assessing animals' diet. We examined the isotopic composition (δ13C and δ15N) of White‐tailed Eagles Haliaeetus albicilla from Germany, Finland and Greenland to detect patterns of dietary variation and quantify diet composition. The isotopic analysis included liver and muscle samples from Eagles of the three populations together with 16 potential food sources in the German population. Our results suggested dietary differences between German and Greenlandic Eagles, in accordance with the availability of freshwater and marine habitats in each population. Within the German population, we found seasonal shifts in isotopic ratios, suggesting the birds responded to temporal changes in food availabilities, and age‐related isotopic differences, indicating different diets in adults and juveniles. Isotopic values of liver and muscle tissues collected from the same animal showed intra‐individual short‐term changes in the German and Finnish but not Greenlandic population. This suggests that local feeding niches of this generalist predator may vary with local food supplies, which determines the niche width (from generalist to specialist) at the individual level. Our results also revealed that game mammal carcasses constitute an important food source (29.5% of diet) for the German Eagle population during the winter half‐year corresponding to the hunting season. This result is of relevance to management and conservation because the White‐tailed Eagle and other raptor species are affected by the ingestion of lead ammunition from shot mammalian carcasses.  相似文献   

20.
Microbiota inhabiting the gastrointestinal (GI) tract of animals has important impacts on many host physiological processes. Although host diet is a major factor influencing the composition of the gut micro‐organismal community, few comparative studies have considered how differences in diet influence community composition across the length of the GI tract. We used 16S sequencing to compare the microbiota along the length of the GI tract in Abert's (Sciurus aberti) and fox squirrels (S. niger) living in the same habitat. While fox squirrels are generalist omnivores, the diet of Abert's squirrels is unusually high in plant fiber, particularly in winter when they extensively consume fiber‐rich inner bark of ponderosa pine (Pinus ponderosa). Consistent with previous studies, microbiota of the upper GI tract of both species consisted primarily of facultative anaerobes and was less diverse than that of the lower GI tract, which included mainly obligate anaerobes. While we found relatively little differentiation between the species in the microbiota of the upper GI tract, the community composition of the lower GI tract was clearly delineated. Notably, the Abert's squirrel lower GI community was more stable in composition and enriched for microbes that play a role in the degradation of plant fiber. In contrast, overall microbial diversity was higher in fox squirrels. We hypothesize that these disparities reflect differences in diet quality and diet breadth between the species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号