首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Identifying natural populations that might be considered separate units using morphology, genotype or both is important in understanding the process of speciation and for conservation. We examined the relationships between the only two subspecies of the most numerous Arctic seabird, the Little Auk Alle alle, using both morphological (wing and head‐bill lengths) and genetic data (482 base pairs of the mitochondrial control region and seven nuclear microsatellite loci). We found significant morphological differences between the subspecies, A. a. polaris being significantly larger than the nominate A. a. alle. However, we did not find the subspecies to be differentiated at either mitochondrial DNA or at microsatellite loci. Consequently, one evolutionary significant unit is proposed. The similarity of the two subspecies at neutral genetic markers may be due to contemporary gene flow between populations, as well as large population sizes both in the present and in the past, combined with recent post‐glacial colonization of the Artic.  相似文献   

2.
Fungi are ideal model organisms for dissecting the genomic bases of adaptive divergence in eukaryotes. They have simple morphologies and small genomes, occupy contrasting, well‐identified ecological niches and tend to have short generation times, and many are amenable to experimental approaches. Fungi also display diverse lifestyles, from saprotrophs to pathogens or mutualists, and they play extremely important roles in both ecosystems and human activities, as wood decayers, mycorrhizal fungi, lichens, endophytes, plant and animal pathogens, and in fermentation or drug production. We review here recent insights into the patterns and mechanisms of adaptive divergence in fungi, including sources of divergence, genomic variation and, ultimately, speciation. We outline the various ecological sources of divergent selection and genomic changes, showing that gene loss and changes in gene expression and in genomic architecture are important adaptation processes, in addition to the more widely recognized processes of amino acid substitution and gene duplication. We also review recent findings regarding the interspecific acquisition of genomic variation and suggesting an important role for introgression, hybridization and horizontal gene transfers (HGTs). We show that transposable elements can mediate several of these genomic changes, thus constituting important factors for adaptation. Finally, we review the consequences of divergent selection in terms of speciation, arguing that genetic incompatibilities may not be as widespread as generally thought and that pleiotropy between adaptation and reproductive isolation is an important route of speciation in fungal pathogens.  相似文献   

3.
In ectotherms, variation in life history traits among populations is common and suggests local adaptation. However, geographic variation itself is not a proof for local adaptation, as genetic drift and gene flow may also shape patterns of quantitative variation. We studied local and regional variation in means and phenotypic plasticity of larval life history traits in the common frog Rana temporaria using six populations from central Sweden, breeding in either open‐canopy or partially closed‐canopy ponds. To separate local adaptation from genetic drift, we compared differentiation in quantitative genetic traits (QST) obtained from a common garden experiment with differentiation in presumably neutral microsatellite markers (FST). We found that R. temporaria populations differ in means and plasticities of life history traits in different temperatures at local, and in FST at regional scale. Comparisons of differentiation in quantitative traits and in molecular markers suggested that natural selection was responsible for the divergence in growth and development rates as well as in temperature‐induced plasticity, indicating local adaptation. However, at low temperature, the role of genetic drift could not be separated from selection. Phenotypes were correlated with forest canopy closure, but not with geographical or genetic distance. These results indicate that local adaptation can evolve in the presence of ongoing gene flow among the populations, and that natural selection is strong in this system.  相似文献   

4.
The capacity of restored plant populations to adapt to new environmental challenges depends on within‐population genetic variation. We examined how much genetic and environmentally based variation for fitness‐associated traits exists within populations of two native grasses commonly used for restoration in California. We were also interested in understanding how phenotypic expression of genetic variation for these traits varies with growth environment. Thirty maternal families of Elymus glaucus (Blue wild rye) and Nassella pulchra (Purple needlegrass) were sampled from both coastal and interior populations and reciprocally transplanted into three replicated common gardens with and without interspecific competition at each site. Reproductive output of families differed both among years and with competition treatments. Phenotypic expression of genetic variation in culm production differed among populations and was very low when families were grown with interspecific competition. Without interspecific competition, the degree of genetic determination peaked in year two in both species (8.4 and 15.1% in E. glaucus and N. pulchra, respectively). Significant genetic differences in reproduction and phenotypic plasticity were found among N. pulchra subpopulations sampled less than 3 km apart, further highlighting the importance of thoroughly sampling available genetic variation in populations used for restoration. The variable and generally low expression of genetic variation indicates that rates of adaptation in restored populations of these native grasses may vary temporally and may be especially slow within competitive environments.  相似文献   

5.
6.
Genomic phylogeography plays an important role in describing evolutionary processes and their geographic, ecological, or cultural drivers. These drivers are often poorly understood in marine environments, which have fewer obvious barriers to mixing than terrestrial environments. Taxonomic uncertainty of some taxa (e.g., cetaceans), due to the difficulty in obtaining morphological data, can hamper our understanding of these processes. One such taxon, the short‐finned pilot whale, is recognized as a single global species but includes at least two distinct morphological forms described from stranding and drive hunting in Japan, the “Naisa” and “Shiho” forms. Using samples (n = 735) collected throughout their global range, we examine phylogeographic patterns of divergence by comparing mitogenomes and nuclear SNP loci. Our results suggest three types within the species: an Atlantic Ocean type, a western/central Pacific and Indian Ocean (Naisa) type, and an eastern Pacific Ocean and northern Japan (Shiho) type. mtDNA control region differentiation indicates these three types form two subspecies, separated by the East Pacific Barrier: Shiho short‐finned pilot whale, in the eastern Pacific Ocean and northern Japan, and Naisa short‐finned pilot whale, throughout the remainder of the species' distribution. Our data further indicate two diverging populations within the Naisa subspecies, in the Atlantic Ocean and western/central Pacific and Indian Oceans, separated by the Benguela Barrier off South Africa. This study reveals a process of divergence and speciation within a globally‐distributed, mobile marine predator, and indicates the importance of the East Pacific Barrier to this evolutionary process.  相似文献   

7.
Phenotypic divergence among natural populations can be explained by natural selection or by neutral processes such as drift. Many examples in the literature compare putatively neutral (FST) and quantitative genetic (QST) differentiation in multiple populations to assess their evolutionary signature and identify candidate traits involved with local adaptation. Investigating these signatures in closely related or recently diversified species has the potential to shed light on the divergence processes acting at the interspecific level. Here, we conducted this comparison in two subspecies of snapdragon plants (eight populations of Antirrhinum majus pseudomajus and five populations of A. m. striatum) in a common garden experiment. We also tested whether altitude was involved with population phenotypic divergence. Our results identified candidate phenological and morphological traits involved with local adaptation. Most of these traits were identified in one subspecies but not the other. Phenotypic divergence increased with altitude for a few biomass‐related traits, but only in A. m. striatum. These traits therefore potentially reflect A. m. striatum adaptation to altitude. Our findings imply that adaptive processes potentially differ at the scale of A. majus subspecies.  相似文献   

8.
9.
10.
11.
Because of introgressive hybridization, closely related species can be more similar to each other in areas of range overlap (parapatry or sympatry) than in areas where they are geographically isolated from each other (allopatry). Here, we report the reverse situation based on nuclear genetic divergence between two fir species, Abies chensiensis and Abies fargesii, in China, at sites where they are parapatric relative to where they are allopatric. We examined genetic divergence across 126 amplified fragment length polymorphism (AFLP) markers in a set of 172 individuals sampled from both allopatric and parapatric populations of the two species. Our analyses demonstrated that AFLP divergence was much greater between the species when comparisons were made between parapatric populations than between allopatric populations. We suggest that selection in parapatry may have largely contributed to this increased divergence.  相似文献   

12.
13.
Many prior studies have uncovered evidence for local adaptation using reciprocal transplant experiments. However, these studies are rarely conducted for a long enough time to observe succession and competitive dynamics in a community context, limiting inferences for long‐lived species. Furthermore, the genetic basis of local adaptation and genetic associations with climate has rarely been identified. Here, we report on a long‐term (6‐year) experiment conducted under natural conditions focused on Andropogon gerardii, the dominant grass of the North American Great Plains tallgrass ecosystem. We focus on this foundation grass that comprises 80% of tallgrass prairie biomass and is widely used in 20,000 km2 of restoration. Specifically, we asked the following questions: (a) Whether ecotypes are locally adapted to regional climate in realistic ecological communities. (b) Does adaptive genetic variation underpin divergent phenotypes across the climate gradient? (c) Is there evidence of local adaptation if the plants are exposed to competition among ecotypes in mixed ecotype plots? Finally, (d) are local adaptation and genetic divergence related to climate? Reciprocal gardens were planted with 3 regional ecotypes (originating from dry, mesic, wet climate sources) of Andropogon gerardii across a precipitation gradient (500–1,200 mm/year) in the US Great Plains. We demonstrate local adaptation and differentiation of ecotypes in wet and dry environments. Surprisingly, the apparent generalist mesic ecotype performed comparably under all rainfall conditions. Ecotype performance was underpinned by differences in neutral diversity and candidate genes corroborating strong differences among ecotypes. Ecotype differentiation was related to climate, primarily rainfall. Without long‐term studies, wrong conclusions would have been reached based on the first two years. Further, restoring prairies with climate‐matched ecotypes is critical to future ecology, conservation, and sustainability under climate change.  相似文献   

14.
Reproductive timing is a key life‐history trait that impacts the pool of available mates, the environment experienced during flowering, and the expression of other traits through genetic covariation. Selection on phenology, and its consequences on other life‐history traits, has considerable implications in the context of ongoing climate change and shifting growing seasons. To test this, we grew field‐collected seed from the wildflower Mimulus guttatus in a greenhouse to assess the standing genetic variation for flowering time and covariation with other traits. We then created full‐sib families through phenological assortative mating and grew offspring in three photoperiod treatments representing seasonal variation in daylength. We find substantial quantitative genetic variation for the onset of flowering time, which covaried with vegetative traits. The assortatively‐mated offspring varied in their critical photoperiod by over two hours, so that families differed in their probability of flowering across treatments Allocation to flowering and vegetative growth changed across the daylength treatments, with consistent direction and magnitude of covariation among flowering time and other traits. Our results suggest that future studies of flowering time evolution should consider the joint evolution of correlated traits and shifting seasonal selection to understand how environmental variation influences life histories.  相似文献   

15.
Phenotypic variation among individuals and species is a fundamental principle of natural selection. In this review, we focus on numerous experiments involving the model species Daphnia (Crustacea) and categorize the factors, especially secondary ones, affecting intraspecific variations in inducible defense. Primary factors, such as predator type and density, determine the degree to which inducible defense expresses and increases or decreases. Secondary factors, on the other hand, act together with primary factors to inducible defense or without primary factors on inducible defense. The secondary factors increase intraspecies variation in inducible defense, and thus, the level of adaptation of organisms varies within species. Future research will explore the potential for new secondary factors, as well as the relative importance between factors needs to be clarified.  相似文献   

16.
Phenotypic divergence is often unrelated to genotypic divergence. An extreme example is rapid phenotypic differentiation despite genetic similarity. Another extreme is morphological stasis despite substantial genetic divergence. These opposite patterns have been viewed as reflecting opposite properties of the lineages. In this study, phenotypic radiation accompanied by both rapid divergence and long‐term conservatism is documented in the inferred molecular phylogeny of the micro land snails Cavernacmella (Assimineidae) on the Ogasawara Islands. The populations of Cavernacmella on the Sekimon limestone outcrop of Hahajima Island showed marked divergence in shell morphology. Within this area, one lineage diversified into types with elongated turret shells, conical shells and flat disc‐like shells without substantial genetic differentiation. Additionally, a co‐occurring species with these types developed a much larger shell size. Moreover, a lineage adapted to live inside caves in this area. In contrast, populations in the other areas exhibited no morphological differences despite high genetic divergence among populations. Accordingly, the phenotypic evolution of Cavernacmella in Ogasawara is characterized by a pattern of long‐term stasis and periodic bursts of change. This pattern suggests that even lineages with phenotypic conservatism could shift to an alternative state allowing rapid phenotypic divergence.  相似文献   

17.
《Current biology : CB》2019,29(12):2098-2103.e5
  1. Download : Download high-res image (221KB)
  2. Download : Download full-size image
  相似文献   

18.
Trichomes, or leaf hairs, are epidermal extensions that take a variety of forms and perform many functions in plants, including herbivore defence. In this study, I document genetically determined variation, within‐generation plasticity, and a direct role of trichomes in herbivore defence for Mimulus guttatus. After establishing the relationship between trichomes and herbivory, I test for transgenerational effects of wounding on trichome density and herbivore resistance. Patterns of interannual variation in herbivore density and the high cost of plant defence makes plant–herbivore interactions a system in which transgenerational phenotypic plasticity (TPP) is apt to evolve. Here, I demonstrate that parental damage alters offspring trichome density and herbivore resistance in nature. Moreover, this response varies between populations. This is among the first studies to demonstrate that TPP contributes to variation in nature, and also suggests that selection can modify TPP in response to local conditions.  相似文献   

19.
Recent theory predicts that increased phenotypic plasticity can facilitate adaptation as traits respond to selection. When genetic adaptation alters the social environment, socially mediated plasticity could cause co‐evolutionary feedback dynamics that increase adaptive potential. We tested this by asking whether neural gene expression in a recently arisen, adaptive morph of the field cricket Teleogryllus oceanicus is more responsive to the social environment than the ancestral morph. Silent males (flatwings) rapidly spread in a Hawaiian population subject to acoustically orienting parasitoids, changing the population's acoustic environment. Experimental altering crickets’ acoustic environments during rearing revealed broad, plastic changes in gene expression. However, flatwing genotypes showed increased socially mediated plasticity, whereas normal‐wing genotypes exhibited negligible expression plasticity. Increased plasticity in flatwing crickets suggests a coevolutionary process coupling socially flexible gene expression with the abrupt spread of flatwing. Our results support predictions that phenotypic plasticity should rapidly evolve to be more pronounced during early phases of adaptation.  相似文献   

20.
By studying systems in their earliest stages of differentiation, we can learn about the evolutionary forces acting within and among populations and how those forces could contribute to reproductive isolation. Such an understanding would help us to better discern and predict how selection leads to the maintenance of multiple morphs within a species, rather than speciation. The postglacial adaptive radiation of the threespine stickleback (Gasterosteus aculeatus) is one of the best‐studied cases of evolutionary diversification and rapid, repeated speciation. Following deglaciation, marine stickleback have continually invaded freshwater habitats across the northern hemisphere and established resident populations that diverged innumerable times from their oceanic ancestors. Independent freshwater colonization events have yielded broadly parallel patterns of morphological differences in freshwater and marine stickleback. However, there is also much phenotypic diversity within and among freshwater populations. We studied a lesser‐known freshwater “species pair” found in southwest Washington, where male stickleback in numerous locations have lost the ancestral red sexual signal and instead develop black nuptial coloration. We measured phenotypic variation in a suite of traits across sites where red and black stickleback do not overlap in distribution and at one site where they historically co‐occurred. We found substantial phenotypic divergence between red and black morphs in noncolor traits including shape and lateral plating, and additionally find evidence that supports the hypothesis of sensory drive as the mechanism responsible for the evolutionary switch in color from red to black. A newly described third “mixed” morph in Connor Creek, Washington, differs in head shape and size from the red and black morphs, and we suggest that their characteristics are most consistent with hybridization between anadromous and freshwater stickleback. These results lay the foundation for future investigation of the underlying genetic basis of this phenotypic divergence as well as the evolutionary processes that may drive, maintain, or limit divergence among morphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号