首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.
Because some native ungulates have lived without top predators for generations, it has been uncertain whether runaway predation would occur when predators are newly restored to these systems. We show that landscape features and vegetation, which influence predator detection and capture of prey, shape large-scale patterns of predation in a newly restored predator–prey system. We analysed the spatial distribution of wolf ( Canis lupus ) predation on elk ( Cervus elaphus ) on the Northern Range of Yellowstone National Park over 10 consecutive winters. The influence of wolf distribution on kill sites diminished over the course of this study, a result that was likely caused by territorial constraints on wolf distribution. In contrast, landscape factors strongly influenced kill sites, creating distinct hunting grounds and prey refugia. Elk in this newly restored predator–prey system should be able to mediate their risk of predation by movement and habitat selection across a heterogeneous risk landscape.  相似文献   

2.
Abstract: Numerous studies have documented how prey may use antipredator strategies to reduce the risk of predation from a single predator. However, when a recolonizing predator enters an already complex predator—prey system, specific antipredator behaviors may conflict and avoidance of one predator may enhance vulnerability to another. We studied the patterns of prey selection by recolonizing wolves (Canis lupus) and cougars (Puma concolor) in response to prey resource selection in the northern Madison Range, Montana, USA. Elk (Cervus elaphus) were the primary prey for wolves, and mule deer (Odocoileus hemionus) were the primary prey for cougars, but elk made up an increasingly greater proportion of cougar kills annually. Although both predators preyed disproportionately on male elk, wolves were most likely to prey on males in poor physical condition. Although we found that the predators partitioned hunting habitats, structural complexity at wolf kill sites increased over time, whereas complexity of cougar kill sites decreased. We concluded that shifts by prey to structurally complex refugia were attempts by formerly naïve prey to lessen predation risk from wolves; nevertheless, shifting to more structurally complex refugia might have made prey more vulnerable to cougars. After a change in predator exposure, use of refugia may represent a compromise to minimize overall risk. As agencies formulate management strategies relative to wolf recolonization, the potential for interactive predation effects (i.e., facilitation or antagonism) should be considered.  相似文献   

3.
The theory of predation risk effects predicts behavioral responses in prey when risk of predation is not homogenous in space and time. Prey species are often faced with a tradeoff between food and safety in situations where food availability and predation risk peak in the same habitat type. Determining the optimal strategy becomes more complex if predators with different hunting mode create contrasting landscapes of risk, but this has rarely been documented in vertebrates. Roe deer in southeastern Norway face predation risk from lynx, as well as hunting by humans. These two predators differ greatly in their hunting methods. The predation risk from lynx, an efficient stalk‐and‐ambush predator is expected to be higher in areas with dense understory vegetation, while predation risk from human hunters is expected to be higher where visual sight lines are longer. Based on field observations and airborne LiDAR data from 71 lynx predation sites, 53 human hunting sites, 132 locations from 15 GPS‐marked roe deer, and 36 roe deer pellet locations from a regional survey, we investigated how predation risk was related to terrain attributes and vegetation classes/structure. As predicted, we found that increasing cover resulted in a contrasting lower predation risk from humans and higher predation risk from lynx. Greater terrain ruggedness increased the predation risk from both predators. Hence, multiple predators may create areas of contrasting risk as well as double risk in the same landscape. Our study highlights the complexity of predator–prey relationship in a multiple predator setting. Synthesis In this study of risk effects in a multi‐predator context, LiDAR data were used to quantify cover in the habitat and relate it to vulnerability to predation in a boreal forest. We found that lynx and human hunters superimpose generally contrasting landscapes of fear on a common prey species, but also identified double‐risk zones. Since the benefit of anti‐predator responses depends on the combined risk from all predators, it is necessary to consider complete predator assemblages to understand the potential for and occurrence of risk effects across study systems.  相似文献   

4.
In Europe, lowland wet grasslands have become increasingly fragmented, and populations of waders in these fragments are subject to unsustainably high levels of nest predation. Patches of taller vegetation in these landscapes can support small mammals, which are the main source of prey for many predators. Providing such patches of habitat could potentially reduce levels of nest predation if predators preferentially target small mammals. However, predator attraction to patches of taller vegetation for foraging, shelter, perching and/or nesting could also result in local increases in predation rates, as a consequence of increased predator densities or spill‐over foraging into the surrounding area. Here we assess the influence of taller vegetation on wader nest predation rates, and the feasibility of managing vegetation structure to alter predator impacts. Between 2005 and 2011, the nest distribution and hatching success of Northern Lapwings Vanellus vanellus, which nest in the open, and Common Redshanks Tringa totanus, which conceal their nests in vegetation, were measured on a 487‐ha area of wet grassland in eastern England that is primarily managed for breeding waders. Predation rates of Lapwing nests increased significantly with distance from patches of taller vegetation, and decreased with increasing area of taller vegetation within 1 km of the nest, whereas neither variable influenced Redshank nest predation probability. These findings suggest that the distribution and activity of nest predators in lowland wet grassland landscapes may be influenced by the presence and distribution of areas of taller vegetation. For Lapwings at least, there may therefore be scope for landscape‐scale management of vegetation structure to influence levels of predation in these habitats.  相似文献   

5.
In order to estimate predation risk in nature, two basic components of predation need to be quantified: prey vulnerability, and density risk. Prey vulnerability can be estimated from clearance rates obtained from enclosure experiments with and without predators. Density risk is a function of predator density, and the spatial and temporal overlap of the predator and prey populations. In the current study we examine the importance of the vertical component of overlap in making accurate estimates of predation risk from the invertebrate predator Mesocyclops edax on rotifer versus crustacean prey. The results indicate that assumptions of uniform predator and prey densities cause a significant underestimation of predation risk for many crustacean prey due to the coincident vertical migration of these prey with the predator. The assumption of uniformity is more reasonable for estimating predation risk for most rotifer prey.  相似文献   

6.
We studied avoidance, by four amphibian prey species (Rana luteiventris, Ambystoma macrodactylum, Pseudacris regilla, Tarichia granulosa), of chemical cues associated with native garter snake (Thamnophis elegans) or exotic bullfrog (R. catesbeiana) predators. We predicted that avoidance of native predators would be most pronounced, and that prey species would differ in the intensity of their avoidance based on relative levels of vulnerability to predators in the wild. Adult R. luteiventris (presumably high vulnerability to predation) showed significant avoidance of chemical cues from both predators, A. macrodactylum (intermediate vulnerability to predation) avoided T. elegans only, while P. regilla (intermediate vulnerability to predation) and T. granulosa (low vulnerability to predation) showed no avoidance of either predator. We assessed if predator avoidance was innate and/or learned by testing responses of prey having disparate levels of prior exposure to predators. Wild‐caught (presumably predator‐exposed) post‐metamorphic juvenile R. luteiventris and P. regilla avoided T. elegans cues, while laboratory‐reared (predator‐naive) conspecifics did not; prior exposure to R. catesbeiana was not related to behavioural avoidance among adult or post‐metamorphic juvenile wild‐reared A. macrodactylum and P. regilla. These results imply that (i) some but not all species of amphibian prey avoid perceived risk from garter snake and bullfrog predators, (ii) the magnitude of this response probably differs according to prey vulnerability to predation in the wild, and (iii) avoidance tends to be largely learned rather than innate. Yet, the limited prevalence and intensity of amphibian responses to predation risk observed herein may be indicative of either a relatively weak predator–prey relationship and/or the limited importance of predator chemical cues in this particular system.  相似文献   

7.
1.?For large predators living in seasonal environments, patterns of predation are likely to vary among seasons because of related changes in prey vulnerability. Variation in prey vulnerability underlies the influence of predators on prey populations and the response of predators to seasonal variation in rates of biomass acquisition. Despite its importance, seasonal variation in predation is poorly understood. 2.?We assessed seasonal variation in prey composition and kill rate for wolves Canis lupus living on the Northern Range (NR) of Yellowstone National Park. Our assessment was based on data collected over 14 winters (1995-2009) and five spring-summers between 2004 and 2009. 3.?The species composition of wolf-killed prey and the age and sex composition of wolf-killed elk Cervus elaphus (the primary prey for NR wolves) varied among seasons. 4.?One's understanding of predation depends critically on the metric used to quantify kill rate. For example, kill rate was greatest in summer when quantified as the number of ungulates acquired per wolf per day, and least during summer when kill rate was quantified as the biomass acquired per wolf per day. This finding contradicts previous research that suggests that rates of biomass acquisition for large terrestrial carnivores tend not to vary among seasons. 5.?Kill rates were not well correlated among seasons. For example, knowing that early-winter kill rate is higher than average (compared with other early winters) provides little basis for anticipating whether kill rates a few months later during late winter will be higher or lower than average (compared with other late winters). This observation indicates how observing, for example, higher-than-average kill rates throughout any particular season is an unreliable basis for inferring that the year-round average kill rate would be higher than average. 6.?Our work shows how a large carnivore living in a seasonal environment displays marked seasonal variation in predation because of changes in prey vulnerability. Patterns of wolf predation were influenced by the nutritional condition of adult elk and the availability of smaller prey (i.e. elk calves, deer). We discuss how these patterns affect our overall understanding of predator and prey population dynamics.  相似文献   

8.
ABSTRACT Minimizing risk of predation from multiple predators can be difficult, particularly when the risk effects of one predator species may influence vulnerability to a second predator species. We decomposed spatial risk of predation in a 2-predator, 2-prey system into relative risk of encounter and, given an encounter, conditional relative risk of being killed. Then, we generated spatially explicit functions of total risk of predation for each prey species (elk [Cervus elaphus] and mule deer [Odocoileus hemionus]) by combining risks of encounter and kill. For both mule deer and elk, topographic and vegetation type effects, along with resource selection by their primary predator (cougars [Puma concolor] and wolves [Canis lupus], respectively), strongly influenced risk of encounter. Following an encounter, topographic and vegetation type effects altered the risk of predation for both ungulates. For mule deer, risk of direct predation was largely a function of cougar resource selection. However, for elk, risk of direct predation was not only a function of wolf occurrence, but also of habitat attributes that increased elk vulnerability to predation following an encounter. Our analysis of stage-based (i.e., encounter and kill) predation indicates that the risk effect of elk shifting to structurally complex habitat may ameliorate risk of direct predation by wolves but exacerbate risk of direct predation by cougars. Information on spatiotemporal patterns of predation will be become increasingly important as state agencies in the western United States face pressure to integrate predator and prey management.  相似文献   

9.
Interspecific interactions are an integral aspect of ecosystem functioning that may be disrupted in an increasingly anthropocentric world. Industrial landscape change creates a novel playing field on which these interactions take place, and a key question for wildlife managers is whether and how species are able to coexist in such working landscapes. Using camera traps deployed in northern Alberta, we surveyed boreal predators to determine whether interspecific interactions affected occurrences of black bears (Ursus americanus), coyotes (Canis latrans), and lynx (Lynx canadensis) within a landscape disturbed by networks of seismic lines (corridors cut for seismic exploration of oil and gas reserves). We tested hypotheses of species interactions across one spatial‐only and two spatiotemporal (daily and weekly) scales. Specifically, we hypothesized that (1) predators avoid competition with the apex predator, gray wolf (Canis lupus), (2) they avoid competition with each other as intraguild competitors, and (3) they overlap with their prey. All three predators overlapped with wolves on at least one scale, although models at the daily and weekly scale had substantial unexplained variance. None of the predators showed avoidance of intraguild competitors or overlap with prey. These results show patterns in predator space use that are consistent with both facilitative interactions or shared responses to unmeasured ecological cues. Our study provides insight into how predator species use the working boreal landscape in relation to each other, and highlights that predator management may indirectly influence multiple species through their interactions.  相似文献   

10.
Population increases of primary prey can negatively impact alternate prey populations via demographic and behavioural responses of a shared predator through apparent competition. Seasonal variation in prey selection patterns by predators also can affect secondary and incidental prey by reducing spatial separation. Global warming and landscape changes in Alberta's bitumen sands have resulted in prey enrichment, which is changing the large mammal predator–prey system and causing declines in woodland caribou Rangifer tarandus caribou populations. We assessed seasonal patterns of prey use and spatial selection by wolves Canis lupus in two woodland caribou ranges in northeastern Alberta, Canada, that have undergone prey enrichment following recent white‐tailed deer Odocoileus virginianus invasion. We determined whether risk of predation for caribou (incidental prey) and the proportion of wolf‐caused‐caribou mortalities varied with season. We found that wolves showed seasonal variation in primary prey use, with deer and beaver Castor canadensis being the most common prey items in wolf diet in winter and summer, respectively. These seasonal dietary patterns were reflected in seasonal wolf spatial resource selection and resulted in contrasting spatial relationships between wolves and caribou. During winter, wolf selection for areas used by deer maintained strong spatial separation between wolves and caribou, whereas wolf selection for areas used by beaver in summer increased the overlap with caribou. Changing patterns in wolf resource selection were reflected by caribou mortality patterns, with 76.2% of 42 adult female caribou mortalities occurring in summer. Understanding seasonal patterns of predation following prey enrichment in a multiprey system is essential when assessing the effect of predation on an incidental prey species. Our results support the conclusion that wolves are proximately responsible for woodland caribou population declines throughout much of their range.  相似文献   

11.
1. Studies of the impact of predator diversity on biological pest control have shown idiosyncratic results. This is often assumed to be as a result of differences among systems in the importance of predator–predator interactions such as facilitation and intraguild predation. The frequency of such interactions may be altered by prey availability and structural complexity. A direct assessment of interactions among predators is needed for a better understanding of the mechanisms affecting prey abundance by complex predator communities. 2. In a field cage experiment, the effect of increased predator diversity (single species vs. three‐species assemblage) and the presence of weeds (providing structural complexity) on the biological control of cereal aphids were tested and the mechanisms involved were investigated using molecular gut content analysis. 3. The impact of the three‐predator species assemblages of aphid populations was found to be similar to those of the single‐predator species treatments, and the presence or absence of weeds did not alter the patterns observed. This suggests that both predator facilitation and intraguild predation were absent or weak in this system, or that these interactions had counteracting effects on prey suppression. Molecular gut content analysis of predators provided little evidence for the latter hypothesis: predator facilitation was not detected and intraguild predation occurred at a low frequency. 4. The present study suggests additive effects of predators and, therefore, that predator diversity per se neither strengthens nor weakens the biological control of aphids in this system.  相似文献   

12.
Predation is thought to play a selective role in the emergence of behavioural traits in prey. Differences in behaviour between prey demographics may, therefore, be driven by predation with select components of the population being less vulnerable to predators. While under controlled conditions prey demography has been shown to have consequences for predation success, investigations linking these implications to natural prey population demographics are scarce. Here we assess predator–prey dynamics between notonectid predators (backswimmers) and Lovenula raynerae (Copepoda), key faunal groups in temperate ephemeral pond ecosystems. Using a combination of field and experimental approaches we test for the development and mechanism of predation‐induced sex‐skewed ratios. A natural population of L. raynerae was tracked over time in relation to their predator (notonectid) and prey (Cladocera) numbers. In the laboratory, L. raynerae sex ratios were also assessed over time but in the absence of predation pressure. Predation success and prey performance experiments evaluating differences between L. raynerae male, female, gravid female and copulating pairs exposed to notonectid predation were then examined. Under natural conditions, a female dominated copepod population developed over time and was correlated to predation pressure, while under predator‐free conditions non sex‐skewed prey population demographics persisted. Predator–prey laboratory trials showed no difference in vulnerability and escape performance for male, female and gravid female copepods, but pairs in copula were significantly more vulnerable to predation. This vulnerability was not shared by both sexes, with only female copepods ultimately escaping from successful predation on a mating pair. These results suggest that contact periods during copula may contribute to the development of sex‐skewed copepod ratios over time in ecosystems dominated by hexapod predators. This is discussed within the context of vertebrate and invertebrate predation and how these dissimilar types of predation are likely to have acted as selective pressures for copepod mating systems.  相似文献   

13.
Although spatial heterogeneity of prey and landscapes are known to contribute to variation around predator‐prey functional response models, few studies have quantified these effects. We illustrate a new approach using data from winter movement paths of GPS‐collared wolves in the Rocky Mountains of Canada and time‐to‐event models with competing risks for measuring the effect of prey and landscape characteristics on the time‐to‐kill, which is the reciprocal of attack rate (aN) in a Holling's functional response. We evaluated 13 a priori models representing hypothesized mechanisms influencing attack rates in a heterogeneous landscape with two prey types. Models ranged from variants on Holling's disc equation, including search rate and prey density, to a full model including prey density and patchiness, search rates, satiation, and landscape features, which were measured along the wolf's movement path. Movement rates of wolves while searching explained more of the variation in time‐to‐kill than prey densities. Wolves did not compensate for low prey density by increasing movement rates and there was little evidence that spatial aggregation of prey influenced attack rates in this multi‐prey system. The top model for predicting time‐to‐kill included only search rate and landscape features. Wolves killed prey more quickly in flat terrain, likely due to increased vulnerability from accumulated snow, whereas attack rates were lower when wolves hunted near human‐made features presumably due to human disturbance. Understanding the sources of variation in attack rates provides refinements to functional response models that can lead to more effective predator–prey management in human‐dominated landscapes.  相似文献   

14.
In theory, predators should attempt to match the distribution of their prey, and prey to avoid areas of high predation risk. However, there is a scarcity of empirical knowledge on predator and prey spatial use when both are moving freely in their natural environment. In the current study, we use information collated on a predators’ diet, its population structure, as well as predator and prey relative abundance, and track the movements of predator and prey simultaneously to compare habitat use and evaluate predation pressure. The study was conducted in elasmobranch protected areas of coastal Tasmania, Australia. The species considered were the broadnose sevengill shark Notorynchus cepedianus, the apex predator in the area, and five chondrichthyan prey species. Notorynchus cepedianus and its prey show similar seasonality in the use of these coastal areas: more abundant in warmer months and absent in winter. Predator and prey also showed high spatial overlap and similar habitat use patterns. These similar movement patterns of predator and prey combined with the additional ecological information (diet, population structure of predator, relative abundance of predator and prey) suggests that N. cepedianus move into coastal areas to exploit seasonally abundant prey. Also, while in protected areas, chondrichthyans are subjected to high predation pressure. Overall, results illustrate the value of simultaneously recording and integrating multiple types of information to explore predator–prey relationships and predation pressure.  相似文献   

15.
The impact of increasing vertebrate predator numbers on bird populations is widely debated among the general public, game managers and conservationists across Europe. However, there are few systematic reviews of whether predation limits the population sizes of European bird species. Views on the impacts of predation are particularly polarised in the UK, probably because the UK has a globally exceptional culture of intensive, high‐yield gamebird management where predator removal is the norm. In addition, most apex predators have been exterminated or much depleted in numbers, contributing to a widely held perception that the UK has high numbers of mesopredators. This has resulted in many high‐quality studies of mesopredator impacts over several decades. Here we present results from a systematic review of predator trends and abundance, and assess whether predation limits the population sizes of 90 bird species in the UK. Our results confirm that the generalist predators Red Fox (Vulpes vulpes) and Crows (Corvus corone and C. cornix) occur at high densities in the UK compared with other European countries. In addition, some avian and mammalian predators have increased numerically in the UK during recent decades. Despite these high and increasing densities of predators, we found little evidence that predation limits populations of pigeons, woodpeckers and passerines, whereas evidence suggests that ground‐nesting seabirds, waders and gamebirds can be limited by predation. Using life‐history characteristics of prey species, we found that mainly long‐lived species with high adult survival and late onset of breeding were limited by predation. Single‐brooded species were also more likely to be limited by predation than multi‐brooded species. Predators that depredate prey species during all life stages (i.e. from nest to adult stages) limited prey numbers more than predators that depredated only specific life stages (e.g. solely during the nest phase). The Red Fox and non‐native mammals (e.g. the American Mink Neovison vison) were frequently identified as numerically limiting their prey species. Our review has identified predator–prey interactions that are particularly likely to result in population declines of prey species. In the short term, traditional predator‐management techniques (e.g. lethal control or fencing to reduce predation by a small number of predator species) could be used to protect these vulnerable species. However, as these techniques are costly and time‐consuming, we advocate that future research should identify land‐use practices and landscape configurations that would reduce predator numbers and predation rates.  相似文献   

16.
17.
Spatial variation in habitat riskiness has a major influence on the predator–prey space race. However, the outcome of this race can be modulated if prey shares enemies with fellow prey (i.e., another prey species). Sharing of natural enemies may result in apparent competition, and its implications for prey space use remain poorly studied. Our objective was to test how prey species spend time among habitats that differ in riskiness, and how shared predation modulates the space use by prey species. We studied a one‐predator, two‐prey system in a coastal dune landscape in the Netherlands with the European hare (Lepus europaeus) and European rabbit (Oryctolagus cuniculus) as sympatric prey species and red fox (Vulpes vulpes) as their main predator. The fine‐scale space use by each species was quantified using camera traps. We quantified residence time as an index of space use. Hares and rabbits spent time differently among habitats that differ in riskiness. Space use by predators and habitat riskiness affected space use by hares more strongly than space use by rabbits. Residence time of hare was shorter in habitats in which the predator was efficient in searching or capturing prey species. However, hares spent more time in edge habitat when foxes were present, even though foxes are considered ambush predators. Shared predation affected the predator–prey space race for hares positively, and more strongly than the predator–prey space race for rabbits, which were not affected. Shared predation reversed the predator–prey space race between foxes and hares, whereas shared predation possibly also released a negative association and promoted a positive association between our two sympatric prey species. Habitat riskiness, species presence, and prey species’ escape mode and foraging mode (i.e., central‐place vs. noncentral‐place forager) affected the prey space race under shared predation.  相似文献   

18.
Small mammal populations often exhibit large-scale spatial synchrony, which is purportedly caused by stochastic weather-related environmental perturbations, predation or dispersal. To elucidate the relative synchronizing effects of environmental perturbations from those of dispersal movements of small mammalian prey or their predators, we investigated the spatial dynamics of Microtus vole populations in two differently structured landscapes which experience similar patterns of weather and climatic conditions. Vole and predator abundances were monitored for three years on 28 agricultural field sites arranged into two 120-km-long transect lines in western Finland. Sites on one transect were interconnected by continuous agricultural farmland (continuous landscape), while sites on the other were isolated from one another to a varying degree by mainly forests (fragmented landscape). Vole populations exhibited large-scale (>120 km) spatial synchrony in fluctuations, which did not differ in degree between the landscapes or decline with increasing distance between trapping sites. However, spatial variation in vole population growth rates was higher in the fragmented than in the continuous landscape. Although vole-eating predators were more numerous in the continuous agricultural landscape than in the fragmented, our results suggest that predators do not exert a great influence on the degree of spatial synchrony of vole population fluctuations, but they may contribute to bringing out-of-phase prey patches towards a regional density level. The spatial dynamics of vole populations were similar in both fragmented and continuous landscapes despite inter-landscape differences in both predator abundance and possibilities of vole dispersal. This implies that the primary source of synchronization lies in a common weather-related environment.  相似文献   

19.
Norman Owen‐Smith 《Oikos》2015,124(11):1417-1426
Simple models coupling the dynamics of single predators to single prey populations tend to generate oscillatory dynamics of both predator and prey, or extirpation of the prey followed by that of the predator. In reality, such oscillatory dynamics may be counteracted by prey refugia or by opportunities for prey switching by the predator in multi‐prey assemblages. How these mechanisms operate depends on relative prey vulnerability, a factor ignored in simple interactive models. I outline how compositional, temporal, demographic and spatial heterogeneities help explain the contrasting effects of top predators on large herbivore abundance and population dynamics in species‐rich African savanna ecosystems compared with less species‐diverse northern temperate or subarctic ecosystems. Demographically, mortality inflicted by predation depends on the relative size and life history stage of the prey. Because all animals eventually die and are consumed by various carnivores, the additive component of the mortality inflicted is somewhat less than the predation rate. Prey vulnerability varies annually and seasonally, and between day and night. Spatial variation in the risk of predation depends on vegetation cover as well as on the availability of food resources. During times of food shortage, herbivores become prompted to occupy more risky habitats retaining more food. Predator concentrations dependent on the abundance of primary prey species may restrict the occurrence of other potential prey species less resistant to predation. The presence of multiple herbivore species of similar size in African savannas allows the top predator, the lion, to shift its prey selection flexibly dependent on changing prey vulnerability. Hence top–down and bottom–up influences on herbivore populations are intrinsically entangled. Models coupling the population dynamics of predators and prey need to accommodate the changing influences of prey demography, temporal variation in environmental conditions, and spatial variation in the relative vulnerability of alternative prey species to predation. Synthesis While re‐established predators have had major impacts on prey populations in northern temperate regions, multiple large herbivore species typically coexist along with diverse carnivores in African savanna ecosystems. In order to explain these contrasting outcomes, certain functional heterogeneities must be recognised, including relative vulnerability of alternative prey, temporal variation in the risk of predation, demographic differences in susceptibility to predation, and spatial contrasts in exposure to predation. Food shortfalls prompt herbivores to exploit more risky habitats, meaning that top–down and bottom–up influences on prey populations are intrinsically entangled. Models coupling the interactive dynamics of predator and prey populations need to incorporate these varying influences on relative prey vulnerability.  相似文献   

20.
John L. Quinn  Will Cresswell 《Oikos》2012,121(8):1328-1334
Theory and empirical evidence suggest that predator activity makes prey more wary and less vulnerable to predation. However if at least some prey in the population are energetically or spatially constrained, then predators may eventually increase local prey vulnerability because of the cumulative costs of anti‐predation behaviour. We tested whether repeated attacks by a predator might increase prey vulnerability in a system where redshanks on a saltmarsh are attacked regularly by sparrowhawks from adjacent woodland. Cumulative attack number led to a reduction in redshank numbers and flock size (but had no effect on how close redshanks fed to predator‐concealing cover) because some redshanks moved to safer but less profitable habitats, leaving smaller flocks on the saltmarsh. This effect held even though numbers of redshank on the saltmarsh increased with time of day. As a result of the change in flock size, predicted attack‐success increased up to 1.6‐fold for the sparrowhawk, while individual risk of capture for the redshank increased up to 4.5‐fold among those individuals remaining on the saltmarsh. The effect did not arise simply because hawks were more likely to attack smaller flocks because attack rate was not dependent on flock size or abundance. Our data demonstrate that when some individual prey are constrained in their ability to feed on alternative, safer foraging sites, their vulnerability to predation increases as predator attacks accumulate, although those, presumably better quality individuals that leave the immediate risky area will have lower vulnerability, so that the mean vulnerability across the entire population may not have changed substantially. This suggests that the selective benefits of multiple low‐cost attacks by predators on prey could potentially lead to 1) locally heightened trait‐mediated interactions, 2) locally reduced interference among competing predators, and 3) the evolution of active prey manipulation by predators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号