首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Type I interferons (IFNs) play a critical role in antiviral immune responses, but can be deleterious to the host during some bacterial infections. Listeria monocytogenes (Lm) induces a type I IFN response by activating cytosolic antiviral surveillance pathways. This is beneficial to the bacteria as mice lacking the type I IFN receptor (IFNAR1?/?) are resistant to systemic infection by Lm. The mechanisms by which type I IFNs promote Lm infection are unclear. Here, we show that IFNAR1 is required for dissemination of Lm within infection foci in livers of infected mice and for efficient cell‐to‐cell spread in vitro in macrophages. IFNAR1 promotes ActA polarization and actin‐based motility in the cytosol of host cells. Our studies suggest type I IFNs directly impact the intracellular life cycle of Lm and provide new insight into the mechanisms used by bacterial pathogens to exploit the type I IFN response.  相似文献   

2.
Resistance of bacteria to phages may be gained by alteration of surface proteins to which phages bind, a mechanism that is likely to be costly as these molecules typically have critical functions such as movement or nutrient uptake. To address this potential trade-off, we combine a systematic study of natural bacteria and phage populations with an experimental evolution approach. We compare motility, growth rate and susceptibility to local phages for 80 bacteria isolated from horse chestnut leaves and, contrary to expectation, find no negative association between resistance to phages and bacterial motility or growth rate. However, because correlational patterns (and their absence) are open to numerous interpretations, we test for any causal association between resistance to phages and bacterial motility using experimental evolution of a subset of bacteria in both the presence and absence of naturally associated phages. Again, we find no clear link between the acquisition of resistance and bacterial motility, suggesting that for these natural bacterial populations, phage-mediated selection is unlikely to shape bacterial motility, a key fitness trait for many bacteria in the phyllosphere. The agreement between the observed natural pattern and the experimental evolution results presented here demonstrates the power of this combined approach for testing evolutionary trade-offs.  相似文献   

3.
Coevolution with parasites has been implicated as an important factor driving the evolution of host diversity. Studies to date have focussed on gross effects of parasites: how host diversity differs in the presence vs. absence of parasites. But parasite-imposed selection is likely to show rapid variation through time. It is unclear whether short-term fluctuations in the strength of parasite-imposed selection tend to affect host diversity, because increases in host diversity are likely to be constrained by both the supply of genetic variation and ecological processes. We followed replicate populations of coevolving, initially isogenic, bacteria and phages through time, measuring host diversity (with respect to bacterial colony morphologies), host density and rates of parasite evolution. Both host density and time-lagged rates of parasite evolution were good independent predictors of the magnitude of bacterial within- and between-population diversities. Rapid parasite evolution and low host density decreased host within-population diversity, but increased between-population diversity. This study demonstrates that short-term changes in the rate of parasite evolution can predictably drive patterns of host diversity.  相似文献   

4.
噬菌体作为一种侵染细菌的病毒,能够特异性识别宿主细菌。近年来,抗生素的过度使用导致耐药细菌的出现,噬菌体有望成为对抗耐药细菌的新武器。在细菌与噬菌体长期共进化过程中,二者都演化出一系列抵御策略。本文从抑制噬菌体吸附、阻止噬菌体DNA进入、切割噬菌体基因组、流产感染以及群体感应对噬菌体的调控等方面,对细菌抵抗噬菌体的机制以及噬菌体应对细菌的策略进行了综述,同时还列举了细菌和噬菌体相互抵抗机制的检测方法,以期为噬菌体在细菌控制中的应用以及探究细菌抵抗噬菌体的机制提供理论依据。  相似文献   

5.
Parasite host range plays a pivotal role in the evolution and ecology of hosts and the emergence of infectious disease. Although the factors that promote host range and the epidemiological consequences of variation in host range are relatively well characterized, the effect of parasite host range on host resistance evolution is less well understood. In this study, we tested the impact of parasite host range on host resistance evolution. To do so, we used the host bacterium Pseudomonas fluorescens SBW25 and a diverse suite of coevolved viral parasites (lytic bacteriophage Φ2) with variable host ranges (defined here as the number of host genotypes that can be infected) as our experimental model organisms. Our results show that resistance evolution to coevolved phages occurred at a much lower rate than to ancestral phage (approximately 50% vs. 100%), but the host range of coevolved phages did not influence the likelihood of resistance evolution. We also show that the host range of both single parasites and populations of parasites does not affect the breadth of the resulting resistance range in a naïve host but that hosts that evolve resistance to single parasites are more likely to resist other (genetically) more closely related parasites as a correlated response. These findings have important implications for our understanding of resistance evolution in natural populations of bacteria and viruses and other host–parasite combinations with similar underlying infection genetics, as well as the development of phage therapy.  相似文献   

6.
Shigella flexneri is an intracellular pathogen that disseminates in colonic epithelial cells through actin‐based motility and formation of membrane protrusions at cell–cell contacts, that project into adjacent cells and resolve into vacuoles, from which the pathogen escapes, thereby achieving cell‐to‐cell spread. Actin nucleation at the bacterial pole relies on the recruitment of the nucleation‐promoting factor N‐WASP, which activates the actin nucleator ARP2/3. In cells, the vast majority of N‐WASP exists as a complex with WIP. The involvement of WIP in N‐WASP‐dependent actin‐based motility of various pathogens, including vaccinia virus and S. flexneri, has been highly controversial. Here, we show that WIPF2 was the only WIP family member expressed in the human colonic epithelial cell line HT‐29, and its depletion impaired S. flexneri dissemination. WIPF2 depletion increased the number of cytosolic bacteria lacking actin tails (non‐motile) and decreased the velocity of motile bacteria. This correlated with a decrease in the recruitment of N‐WASP to the bacterial pole, and among N‐WASP‐positive bacteria, a decrease in actin tail‐positive bacteria, suggesting that WIPF2 is required for N‐WASP recruitment and activation at the bacterial pole. In addition, when motile bacteria formed protrusions, WIPF2 depletion decreased the number of membrane protrusions that successfully resolved into vacuoles.  相似文献   

7.
8.
9.
Host–parasite evolutionary interactions are typically considered in a pairwise species framework. However, natural infections frequently involve multiple parasites. Altering parasite diversity alters ecological and evolutionary dynamics as parasites compete and hosts resist multiple infection. We investigated the effects of parasite diversity on host–parasite population dynamics and evolution using the pathogen Pseudomonas aeruginosa and five lytic bacteriophage parasites. To manipulate parasite diversity, bacterial populations were exposed for 24 hours to either phage monocultures or diverse communities containing up to five phages. Phage communities suppressed host populations more rapidly but also showed reduced phage density, likely due to interphage competition. The evolution of resistance allowed rapid bacterial recovery that was greater in magnitude with increases in phage diversity. We observed no difference in the extent of resistance with increased parasite diversity, but there was a profound impact on the specificity of resistance; specialized resistance evolved to monocultures through mutations in a diverse set of genes. In summary, we demonstrate that parasite diversity has rapid effects on host–parasite population dynamics and evolution by selecting for different resistance mutations and affecting the magnitude of bacterial suppression and recovery. Finally, we discuss the implications of phage diversity for their use as biological control agents.  相似文献   

10.
11.
Fifty years after Ehrlich and Raven's seminal paper, the idea of co‐evolution continues to grow as a key concept in our understanding of organic evolution. This concept has not only provided a compelling synthesis between evolutionary biology and community ecology, but has also inspired research that extends beyond its original scope. In this article, we identify unresolved questions about the co‐evolutionary process and advocate for the integration of co‐evolutionary research from molecular to interspecific interactions. We address two basic questions: (i) What is co‐evolution and how common is it? (ii) What is the unit of co‐evolution? Both questions aim to explore the heart of the co‐evolutionary process. Despite the claim that co‐evolution is ubiquitous, we argue that there is in fact little evidence to support the view that reciprocal natural selection and coadaptation are common in nature. We also challenge the traditional view that co‐evolution only occurs between traits of interacting species. Co‐evolution has the potential to explain evolutionary processes and patterns that result from intra‐ and intermolecular biochemical interactions within cells, intergenomic interactions (e.g. nuclear‐cytoplasmic) within species, as well as intergenomic interactions mediated by phenotypic traits between species. Research that bridges across these levels of organization will help to advance our understanding of the importance of the co‐evolutionary processes in shaping the diversity of life on Earth.  相似文献   

12.
13.
Jesús M. Avils 《Oikos》2019,128(3):338-346
Avian brood parasitism is a potent selective agent modulating host behaviors and morphology, although its role in determining diversification of avian breeding strategies remains elusive. Hitherto, the study of selection of brood parasites on host breeding strategies has been based on single reproductive trait approaches, which neglect that evolutionary responses to brood parasites may involve co‐ordinated changes in several aspects of reproduction. Here I consider covariation among reproductive traits to test whether parental breeding strategies of hosts of brown headed cowbird (BHC hereafter) in North America and the common cuckoo (CC hereafter) in Europe, two parasites with contrasting level of virulence, have evolved in response to brood parasitism. The effect of parasitism on avian breeding strategies differed between continents. Long term exposure to BHC parasitism selected for a lower breeding investment in North America, but not so CC parasitism in Europe. These results suggest a key role of parasite virulence on the evolution of avian breeding strategies and that brood parasitism has selected for a co‐ordinated breeding strategy of reducing parasitism costs by shortening and fractioning reproductive events within a single season in North America.  相似文献   

14.
Bacterial recombination is believed to be a major factor explaining the prevalence of multi-drug-resistance (MDR) among pathogenic bacteria. Despite extensive evidence for exchange of resistance genes from retrospective sequence analyses, experimental evidence for the evolutionary benefits of bacterial recombination is scarce. We compared the evolution of MDR between populations of Acinetobacter baylyi in which we manipulated both the recombination rate and the initial diversity of strains with resistance to single drugs. In populations lacking recombination, the initial presence of multiple strains resistant to different antibiotics inhibits the evolution of MDR. However, in populations with recombination, the inhibitory effect of standing diversity is alleviated and MDR evolves rapidly. Moreover, only the presence of DNA harbouring resistance genes promotes the evolution of resistance, ruling out other proposed benefits for recombination. Together, these results provide direct evidence for the fitness benefits of bacterial recombination and show that this occurs by mitigation of functional interference between genotypes resistant to single antibiotics. Although analogous to previously described mechanisms of clonal interference among alternative beneficial mutations, our results actually highlight a different mechanism by which interactions among co-occurring strains determine the benefits of recombination for bacterial evolution.  相似文献   

15.
Bacterial antibiotic resistance is typically quantified by the minimum inhibitory concentration (MIC), which is defined as the minimal concentration of antibiotic that inhibits bacterial growth starting from a standard cell density. However, when antibiotic resistance is mediated by degradation, the collective inactivation of antibiotic by the bacterial population can cause the measured MIC to depend strongly on the initial cell density. In cases where this inoculum effect is strong, the relationship between MIC and bacterial fitness in the antibiotic is not well defined. Here, we demonstrate that the resistance of a single, isolated cell—which we call the single‐cell MIC (scMIC)—provides a superior metric for quantifying antibiotic resistance. Unlike the MIC, we find that the scMIC predicts the direction of selection and also specifies the antibiotic concentration at which selection begins to favor new mutants. Understanding the cooperative nature of bacterial growth in antibiotics is therefore essential in predicting the evolution of antibiotic resistance.  相似文献   

16.
Antagonistic interactions between host and parasites are often embedded in networks of interacting species, in which hosts may be attacked by competing parasites species, and parasites may infect more than one host species. To better understand the evolution of host defenses and parasite counterdefenses in the context of a multihost, multiparasite system, we studied two sympatric species, of congeneric fungus‐growing ants (Attini) species and their symbiotic fungal cultivars, which are attacked by multiple morphotypes of parasitic fungi in the genus, Escovopsis. To assess whether closely related ant species and their cultured fungi are evolving defenses against the same or different parasitic strains, we characterized Escovopsis that were isolated from colonies of sympatric Apterostigma dentigerum and A. pilosum. We assessed in vitro and in vivo interactions of these parasites with their hosts. While the ant cultivars are parasitized by similar Escovopsis spp., the frequency of infection by these pathogens differs between the two ant species. The ability of the host fungi to suppress Escovopsis growth, as well as ant defensive responses toward the parasites, differs depending on the parasite strain and on the host ant species.  相似文献   

17.
18.
Quorum sensing is a common mechanism used by bacteria to coordinate population behavior, and is involved in a variety of biological processes, such as bioluminescence, virulence factor synthesis, antibiotic production, and biofilm formation. To engineer the LuxI enzyme of the LuxI-LuxR quorum-sensing system, we developed a high throughput genetic selection to identify LuxI mutants with improved OHHL (3-oxo-hexanoyl homoserine lactone) synthesis in E. coli. Using this genetic selection, we created LuxI mutants with improved OHHL synthesis rates and yields through directed evolution, identifying three LuxI mutants after two generations. An in vivo semi-quantitative method allowed for verification of the genetic screen and OHHL yields were quantified using HPLC-MS/MS, revealing an 80-fold increase in a mutant culture compared to the wildtype culture. In addition to OHHL, the yields of C6HSL (hexanoyl homoserine lactone) and C8HSL (octanoyl homoserine lactone) were also improved, and a slight change in substrate specificity towards C6HSL production was observed. Based on alignment with the crystal structure of EsaI, a homolog of LuxI, two mutations are most likely involved in enhancing the interactions between the enzyme and the substrates. The high throughput genetic selection and the semi-quantitative method can be conveniently modified for the directed evolution of LuxI homologs. The identification of these LuxI mutants has implications in synthetic biology, where they can be used for the construction of artificial genetic circuits. In addition, development of drugs that specifically target quorum sensing to attenuate the pathogenesis of gram-negative infectious bacteria might also benefit from the insights into the molecular mechanism of quorum sensing revealed by the amino acid substitutions.  相似文献   

19.
Living systems may have evolved probabilistic bet hedging strategies that generate cell‐to‐cell phenotypic diversity in anticipation of environmental catastrophes, as opposed to adaptation via a deterministic response to environmental changes. Evolution of bet hedging assumes that genotypes segregating in natural populations modulate the level of intraclonal diversity, which so far has largely remained hypothetical. Using a fluorescent Pmet17‐GFP reporter, we mapped four genetic loci conferring to a wild yeast strain an elevated cell‐to‐cell variability in the expression of MET17, a gene regulated by the methionine pathway. A frameshift mutation in the Erc1p transmembrane transporter, probably resulting from a release of laboratory strains from negative selection, reduced Pmet17‐GFP expression variability. At a second locus, cis‐regulatory polymorphisms increased mean expression of the Mup1p methionine permease, causing increased expression variability in trans. These results demonstrate that an expression quantitative trait locus (eQTL) can simultaneously have a deterministic effect in cis and a probabilistic effect in trans. Our observations indicate that the evolution of transmembrane transporter genes can tune intraclonal variation and may therefore be implicated in both reactive and anticipatory strategies of adaptation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号