首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Spatial genetic structure (SGS) is largely determined by colonization history, landscape and ecological characteristics of the species. Therefore, sympatric and ecologically similar species are expected to exhibit similar SGSs, potentially enabling prediction of the SGS of one species from that of another. On the other hand, due to interspecific interactions, ecologically similar species could have different SGSs. We explored the SGSs of the closely related Calopteryx splendens and Calopteryx virgo within Finland and related the genetic patterns to characteristics of the sampling localities. We observed different SGSs for the two species. Genetic differentiation even within short distances in C. splendens suggests genetic drift as an important driver. However, we also observed indication of previous gene flow (revealed by a negative relationship between genetic differentiation and increasing potential connectivity of the landscape). Interestingly, genetic diversity of C. splendens was negatively related to density of C. virgo, suggesting that interspecific interactions influence the SGS of C. splendens. In contrast, genetic differentiation between C. virgo subpopulations was low and only exhibited relationships with latitude, pointing to high gene flow, colonization history and range margin effects as the drivers of SGS. The different SGSs of the two ecologically similar species caution indirect inferences of SGS based on ecologically similar surrogate species.  相似文献   

2.
Reproductive strategies of closely related species distributed along successional gradients should differ as a consequence of the trade‐off between competition and colonization abilities. We compared male reproductive strategies of Quercus robur and Q. petraea, two partly interfertile European oak species with different successional status. In the studied even‐aged stand, trees of the late‐successional species (Q. petraea) grew faster and suffered less from intertree competition than trees of the early‐successional species (Q. robur). A large‐scale paternity study and a spatially explicit individual‐based mating model were used to estimate parameters of pollen production and dispersal as well as sexual barriers between species. Male fecundity was found to be dependent both on a tree's circumference and on its environment, particularly so for Q. petraea. Pollen dispersal was greater and more isotropic in Q. robur than in Q. petraea. Premating barriers to hybridization were strong in both species, but more so in Q. petraea than in Q. robur. Hence, predictions based on the competition–colonization trade‐off are well supported, whereas the sexual barriers themselves seem to be shaped by colonization dynamics.  相似文献   

3.
The selection of a host of high nutritional quality is of great importance to the development of offspring of larvipositing aphids, as is the avoidance of natural enemies. Little is known, however, about their ability to select host plants based on these factors. This article tests the preference of aphids Sitobion avenae (Fabricius) and Rhopalosiphum padi (L.) (both Hemiptera: Aphididae) for different winter wheat cultivars, Triticum aestivum (L.) (Poaceae), and their ability to detect and avoid predators in sacrifice of their most preferred host. In both species a preference was observed for nutritionally superior hosts. The preference of both species then exhibited a change towards a nutritionally inferior host after infestations of the harlequin ladybird, Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae), that had been consuming conspecific aphids. This investigation opens the door to the interesting prospect of the ability of aphids to make complex decisions regarding a compromise between high‐quality nutrition and avoidance of predation.  相似文献   

4.
Climate warming is predicted to affect species and trophic interactions worldwide, and alpine ecosystems are expected to be especially sensitive to changes. In this study, we used two ongoing climate warming (open‐top chambers) experiments at Finse, southern Norway, to examine whether warming had an effect on herbivory by leaf‐chewing insects in an alpine Dryas heath community. We recorded feeding marks on the most common vascular plant species in warmed and control plots at two experimental sites at different elevations and carried out a brief inventory of insect herbivores. Experimental warming increased herbivory on Dryas octopetala and Bistorta vivipara. Dryas octopetala also experienced increased herbivory at the lower and warmer site, indicating an overall positive effect of warming, whereas B. vivipara experienced an increased herbivory at the colder and higher site indicating a mixed effect of warming. The Lepidoptera Zygaena exulans and Sympistis nigrita were the two most common leaf‐chewing insects in the Dryas heath. Based on the observed patterns of herbivory, the insects life cycles and feeding preferences, we argue that Z. exulans is the most important herbivore on B. vivipara, and S. nigrita the most important herbivore on D. octopetala. We conclude that if the degree of insect herbivory increases in a warmer world, as suggested by this study and others, complex interactions between plants, insects, and site‐specific conditions make it hard to predict overall effects on plant communities.  相似文献   

5.
Because of introgressive hybridization, closely related species can be more similar to each other in areas of range overlap (parapatry or sympatry) than in areas where they are geographically isolated from each other (allopatry). Here, we report the reverse situation based on nuclear genetic divergence between two fir species, Abies chensiensis and Abies fargesii, in China, at sites where they are parapatric relative to where they are allopatric. We examined genetic divergence across 126 amplified fragment length polymorphism (AFLP) markers in a set of 172 individuals sampled from both allopatric and parapatric populations of the two species. Our analyses demonstrated that AFLP divergence was much greater between the species when comparisons were made between parapatric populations than between allopatric populations. We suggest that selection in parapatry may have largely contributed to this increased divergence.  相似文献   

6.
Co‐occurrence of closely related species is often explained through resource partitioning, where key morphological or life‐history traits evolve under strong divergent selection. In bumble bees (genus Bombus), differences in tongue lengths, nest sites, and several life‐history traits are the principal factors in resource partitioning. However, the buff‐tailed and white‐tailed bumble bee (Bombus terrestris and B. lucorum respectively) are very similar in morphology and life history, but their ranges nevertheless partly overlap, raising the question how they are ecologically divergent. What little is known about the environmental factors determining their distributions stems from studies in Central and Western Europe, but even less information is available about their distributions in Eastern Europe, where different subspecies occur. Here, we aimed to disentangle the broad habitat requirements and associated distributions of these species in Romania and Bulgaria. First, we genetically identified sampled individuals from many sites across the study area. We then not only computed species distributions based on presence‐only data, but also expanded on these models using relative abundance data. We found that B. terrestris is a more generalist species than previously thought, but that B. lucorum is restricted to forested areas with colder and wetter climates, which in our study area are primarily found at higher elevations. Both vegetation parameters such as annual mean Leaf Area Index and canopy height, as well as climatic conditions, were important in explaining their distributions. Although our models based on presence‐only data suggest a large overlap in their respective distributions, results on their relative abundance suggest that the two species replace one another across an environmental gradient correlated to elevation. The inclusion of abundance enhances our understanding of the distribution of these species, supporting the emerging recognition of the importance of abundance data in species distribution modeling.  相似文献   

7.
Understanding the direct and indirect effects of elevated [CO2] and temperature on insect herbivores and how these factors interact are essential to predict ecosystem‐level responses to climate change scenarios. In three concurrent glasshouse experiments, we measured both the individual and interactive effects of elevated [CO2] and temperature on foliar quality. We also assessed the interactions between their direct and plant‐mediated effects on the development of an insect herbivore of eucalypts. Eucalyptus tereticornis saplings were grown at ambient or elevated [CO2] (400 and 650 μmol mol?1 respectively) and ambient or elevated ( + 4 °C) temperature for 10 months. Doratifera quadriguttata (Lepidoptera: Limacodidae) larvae were feeding directly on these trees, on their excised leaves in a separate glasshouse, or on excised field‐grown leaves within the temperature and [CO2] controlled glasshouse. To allow insect gender to be determined and to ensure that any sex‐specific developmental differences could be distinguished from treatment effects, insect development time and consumption were measured from egg hatch to pupation. No direct [CO2] effects on insects were observed. Elevated temperature accelerated larval development, but did not affect leaf consumption. Elevated [CO2] and temperature independently reduced foliar quality, slowing larval development and increasing consumption. Simultaneously increasing both [CO2] and temperature reduced these shifts in foliar quality, and negative effects on larval performance were subsequently ameliorated. Negative nutritional effects of elevated [CO2] and temperature were also independently outweighed by the direct positive effect of elevated temperature on larvae. Rising [CO2] and temperature are thus predicted to have interactive effects on foliar quality that affect eucalypt‐feeding insects. However, the ecological consequences of these interactions will depend on the magnitude of concurrent temperature rise and its direct effects on insect physiology and feeding behaviour.  相似文献   

8.
9.
Evolutionary rates in the adaptive radiation of beetles on plants   总被引:3,自引:0,他引:3  
Herbivorous insects and other small consumers are often specialized both in use of particular host taxa and in use of particular host tissues. Such consumers also often seem to show consistent differences in the rates of evolution of these two dimensions of host use, implying common processes, but this has been little studied. Here we quantify these rates of change in host use evolution in a major radiation of herbivorous insects, the Chrysomeloidea, whose diversity has been attributed to their use of flowering plants. We find a significant difference in the rates of evolutionary change in these two dimensions of host use, with host taxon associations most labile. There are apparently similar differences in rates of host use evolution in other parasite groups, suggesting the generality of this pattern. Divergences in parasite form associated with use of different host tissues may facilitate resource partitioning among successive adaptive radiations on particular host taxa.  相似文献   

10.
To understand how comprehensive plant defense phenotypes will respond to global change, we investigated the legacy effects of elevated CO2 on the relationships between chemical resistance (constitutive and induced via mechanical damage) and regrowth tolerance in four milkweed species (Asclepias). We quantified potential resistance and tolerance trade‐offs at the physiological level following simulated mowing, which are relevant to milkweed ecology and conservation. We examined the legacy effects of elevated CO2 on four hypothesized trade‐offs between the following: (a) plant growth rate and constitutive chemical resistance (foliar cardenolide concentrations), (b) plant growth rate and mechanically induced chemical resistance, (c) constitutive resistance and regrowth tolerance, and (d) regrowth tolerance and mechanically induced resistance. We observed support for one trade‐off between plant regrowth tolerance and mechanically induced resistance traits that was, surprisingly, independent of CO2 exposure. Across milkweed species, mechanically induced resistance increased by 28% in those plants previously exposed to elevated CO2. In contrast, constitutive resistance and the diversity of mechanically induced chemical resistance traits declined in response to elevated CO2 in two out of four milkweed species. Finally, previous exposure to elevated CO2 uncoupled the positive relationship between plant growth rate and regrowth tolerance following damage. Our data highlight the complex and dynamic nature of plant defense phenotypes under environmental change and question the generality of physiologically based defense trade‐offs.  相似文献   

11.
12.
The invasive erect prickly pear cactus (Opuntia stricta) has reduced rangeland quality and altered plant communities throughout much of the globe. In central Kenya's Laikipia County, olive baboons (Papio anubis) frequently consume O. stricta fruits and subsequently disperse the seeds via defecation. Animal‐mediated seed dispersal can increase germination and subsequent survival of plants. However, consumption of seeds (seed predation) by rodents may offset the potential benefits of seed dispersal for cactus establishment by reducing the number of viable seeds. We investigated foraging preferences of a common and widely distributed small mammal—the fringe‐tailed gerbil (Gerbilliscus robustus), between O. stricta seeds deposited in baboon faeces versus control O. stricta seeds. In addition to providing evidence of seed predation on O. stricta by G. robustus, our data show that seed removal was higher (shorter time to use) for seeds within faeces than for control seeds. G. robustus clearly prefers seeds within faeces compared to control seeds. These results suggest that high abundances of rodents may limit successful establishment of O. stricta seeds, possibly disrupting seed dispersal via endozoochory by baboons.  相似文献   

13.
The effects of climate change on species interactions are poorly understood. Investigating the mechanisms by which species interactions may shift under altered environmental conditions will help form a more predictive understanding of such shifts. In particular, components of climate change have the potential to strongly influence floral volatile organic compounds (VOCs) and, in turn, plant–pollinator interactions. In this study, we experimentally manipulated drought and herbivory for four forb species to determine effects of these treatments and their interactions on (1) visual plant traits traditionally associated with pollinator attraction, (2) floral VOCs, and (3) the visitation rates and community composition of pollinators. For all forbs tested, experimental drought universally reduced flower size and floral display, but there were species‐specific effects of drought on volatile emissions per flower, the composition of compounds produced, and subsequent pollinator visitation rates. Moreover, the community of pollinating visitors was influenced by drought across forb species (i.e. some pollinator species were deterred by drought while others were attracted). Together, these results indicate that VOCs may provide more nuanced information to potential floral visitors and may be relatively more important than visual traits for pollinator attraction, particularly under shifting environmental conditions.  相似文献   

14.
Over the past decade, functional traits that influence plant performance and thus, population, community, and ecosystem biology have garnered increasing attention. Generally lacking, however, has been consideration of how ubiquitous arbuscular mycorrhizas influence plant allometric and stoichiometric functional traits. We assessed how plant dependence on and responsiveness to mycorrhizas influence plant functional traits of a warm‐season, C4 grass, Andropogon gerardii Vitman, and the contrasting, cool‐season, C3 grass, Elymus canadensis L. We grew both host species with and without inoculation with mycorrhizal fungi, across a broad gradient of soil phosphorus availabilities. Both host species were facultatively mycotrophic, able to grow without mycorrhizas at high soil phosphorus availability. A. gerardii was most dependent upon mycorrhizas and E. canadensis was weakly dependent, but highly responsive to mycorrhizas. The high dependence of A. gerardii on mycorrhizas resulted in higher tissue P and N concentrations of inoculated than noninoculated plants. When not inoculated, E. canadensis was able to take up both P and N in similar amounts to inoculated plants because of its weak dependence on mycorrhizas for nutrient uptake and its pronounced ability to change root‐to‐shoot ratios. Unlike other highly dependent species, A. gerardii had a high root‐to‐shoot ratio and was able to suppress colonization by mycorrhizal fungi at high soil fertilities. E. canadensis, however, was unable to suppress colonization and had a lower root‐to shoot ratio than A. gerardii. The mycorrhiza‐related functional traits of both host species likely influence their performance in nature: both species attained the maximum responsiveness from mycorrhizas at soil phosphorus availabilities similar to those of tallgrass prairies. Dependence upon mycorrhizas affects performance in the absence of mycorrhizas. Responsiveness to mycorrhizal fungi is also a function of the environment and can be influenced by both mycorrhizal fungus species and soil fertility.  相似文献   

15.
  • Relative growth rate (RGR) plays an important role in plant adaptation to the light environment through the growth potential/survival trade‐off. RGR is a complex trait with physiological and biomass allocation components. It has been argued that herbivory may influence the evolution of plant strategies to cope with the light environment, but little is known about the relation between susceptibility to herbivores and growth‐related functional traits.
  • Here, we examined in 11 evergreen tree species from a temperate rainforest the association between growth‐related functional traits and (i) species’ shade‐tolerance, and (ii) herbivory rate in the field. We aimed at elucidating the differential linkage of shade and herbivory with RGR via growth‐related functional traits.
  • We found that RGR was associated negatively with shade‐tolerance and positively with herbivory rate. However, herbivory rate and shade‐tolerance were not significantly related. RGR was determined mainly by photosynthetic rate (Amax) and specific leaf area (SLA). Results suggest that shade tolerance and herbivore resistance do not covary with the same functional traits. Whereas shade‐tolerance was strongly related to Amax and to a lesser extent to leaf mass ratio (LMR) and dark respiration (Rd), herbivory rate was closely related to allocation traits (SLA and LMR) and slightly associated with protein content.
  • The effects of low light on RGR would be mediated by Amax, while the effects of herbivory on RGR would be mediated by SLA. Our findings suggest that shade and herbivores may differentially contribute to shape RGR of tree species through their effects on different resource‐uptake functional traits.
  相似文献   

16.
  1. Plants live in environments where they are constantly, and often simultaneously, exposed to different types of biotic and abiotic stress, such as insect herbivory and water availability. How plants are adapted to abiotic conditions may determine how a surplus or shortage of water affects plant resistance to insect herbivory. Moreover, this effect may vary depending on the feeding mode of the herbivore.
  2. We explored how three closely related Rorippa plant species that vary in adaptations to different water levels, resist herbivory by four different insects (aphids: Myzus persicae, Lipaphis erysimi, and caterpillars: Pieris brassicae, Plutella xylostella) under waterlogging or drought conditions. We hypothesized that plants that are differently adapted to water availability will be disparately affected by water availability in their resistance to insect herbivory.
  3. On the semi-aquatic plant species Rorippa amphibia, both aphid species reached a larger colony size under drought conditions. This indicates that R. amphibia was compromised in resistance to aphid feeding when under drought conditions, to which it is less well adapted. Water conditions did not affect aphid performance on the flood-plain species Rorippa palustris. On the terrestrial plant species Rorippa sylvestris, aphids performed worse on waterlogged than drought-treated plants. Neither caterpillar species was significantly affected by the water availability of their food plant.
  4. Our findings suggest that water availability can have distinct effects on plant–insect interactions. We propose that plant adaptations to water conditions can be a major predictor towards explaining the variation of effects that water availability can have on plant–insect interactions.
  相似文献   

17.
《植物生态学报》2017,41(10):1033
Aims Plant-herbivore interaction is a hot topic in the study of biodiversity and ecosystem functions. Herbivores can negatively affect seedling growth and therefore can alter the dynamics of plant recruitment. However, previous studies do not fully reveal the relative importance of different plant functional traits on herbivory intensity and rarely link herbivory to the relative abundance of plant species.Methods Here, we measured 11 plant functional traits and the relative abundance of seedlings of 16 common woody species in the subtropical forests on 29 islands in Thousand Island Lake, East China. We then used multivariate regression and variance partitioning to test the contribution of functional traits and the relative abundance to interspecific differences of insect herbivory intensity.Important findings Our study found that both plant functional traits (e.g. carbon nitrogen ratio, leaf thickness) and the relative abundance of woody species played important roles in herbivory intensity, and they jointly contributed 54% of the variance of the interspecific differences. Among these factors, species with higher defensive ability, lower nutrient content and higher relative abundance had lower herbivory intensity. We suggest to consider both individual level traits (functional traits) and community level attributes (the relative abundance) in future herbivory studies.  相似文献   

18.
1. Understanding the degree to which populations and communities are limited by both bottom‐up and top‐down effects is still a major challenge for ecologists, and manipulation of plant quality, for example, can alter herbivory rates in plants. In addition, biotic defence by ants can directly influence the populations of herbivores, as demonstrated by increased rates of herbivory or increased herbivore density after ant exclusion. The aim of this study was to evaluate bottom‐up and top‐down effects on herbivory rates in a mutualistic ant‐plant. 2. In this study, the role of Azteca alfari ants as biotic defence in individuals of Cecropia pachystachya was investigated experimentally with a simultaneous manipulation of both bottom‐up (fertilisation) and top‐down (ant exclusion) factors. Four treatments were used in a fully factorial design, with 15 replicates for each treatment: (i) control plants, without manipulation; (ii) fertilised plants, ants not manipulated; (iii) unfertilised plants and excluded ants and (iv) fertilised plants and ants excluded. 3. Fertilisation increased the availability of foliar nitrogen in C. pachystachya, and herbivory rates by chewing insects were significantly higher in fertilised plants with ants excluded. 4. Herbivory, however, was more influenced by bottom‐up effects – such as the quality of the host plant – than by top‐down effects caused by ants as biotic defences, reinforcing the crucial role of leaf nutritional quality for herbivory levels experienced by plants. Conditionality in ant defence under increased nutritional quality of leaves through fertilisation might explain increased levels of herbivory in plants with higher leaf nitrogen.  相似文献   

19.
20.
As saltmarsh habitat continues to disappear, understanding the factors that influence the population dynamics of saltmarsh breeding birds is an important step in the conservation of these declining species. Using 5 yrs (2011–2015) of demographic data, we evaluated and compared apparent adult survival and nest survival of Seaside (Ammodramus maritimus) and Saltmarsh (A. caudacutus) sparrows at the Edwin B. Forsythe National Wildlife Refuge in New Jersey, USA. We determined the effect of site management history (unditched vs. ditched marshes) on adult and nest survival to aid in prioritizing future management or restoration actions. Apparent adult survival (61.6%, 95% CI: 52.5–70.0%) of Seaside Sparrows averaged > 1.5 times greater than that of Saltmarsh Sparrows (39.9%, 95% CI: 34.0–46.2%). Nest survival and predation and flooding rates did not differ between species, and predation was the primary cause of nest failure for both species. Apparent adult survival and nest survival did not differ between unditched and ditched marshes for either species, indicating that marsh ditching history may not affect the quality of breeding habitat for these species. Because predation was the primary cause of nest failure for both species in New Jersey, we suggest that future studies should focus on identifying predator communities in salt marshes and the potential for implementing predator‐control programs to limit population declines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号