首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rapid global climate change is resulting in novel abiotic and biotic conditions and interactions. Identifying management strategies that maximize probability of long‐term persistence requires an understanding of the vulnerability of species to environmental changes. We sought to quantify the vulnerability of Kirtland's Warbler (Setophaga kirtlandii), a rare Neotropical migratory songbird that breeds almost exclusively in the Lower Peninsula of Michigan and winters in the Bahamian Archipelago, to projected environmental changes on the breeding and wintering grounds. We developed a population‐level simulation model that incorporates the influence of annual environmental conditions on the breeding and wintering grounds, and parameterized the model using empirical relationships. We simulated independent and additive effects of reduced breeding grounds habitat quantity and quality, and wintering grounds habitat quality, on population viability. Our results indicated the Kirtland's Warbler population is stable under current environmental and management conditions. Reduced breeding grounds habitat quantity resulted in reductions of the stable population size, but did not cause extinction under the scenarios we examined. In contrast, projected large reductions in wintering grounds precipitation caused the population to decline, with risk of extinction magnified when breeding habitat quantity or quality also decreased. Our study indicates that probability of long‐term persistence for Kirtland's Warbler will depend on climate change impacts to wintering grounds habitat quality and contributes to the growing literature documenting the importance of considering the full annual cycle for understanding population dynamics of migratory species.  相似文献   

2.
Climate change is expected to increase climate variability and the occurrence of extreme climatic events, with potentially devastating effects on aquatic ecosystems. However, little is known about the role of climate extremes in structuring aquatic communities or the interplay between climate and local abiotic and biotic factors. Here, we examine the relative influence of climate and local abiotic and biotic conditions on biodiversity and community structure in lake invertebrates. We sampled aquatic invertebrates and measured environmental variables in 19 lakes throughout California, USA, to test hypotheses of the relationship between climate, local biotic and environmental conditions, and the taxonomic and functional structure of aquatic invertebrate communities. We found that, while local biotic and abiotic factors such as habitat availability and conductivity were the most consistent predictors of alpha diversity, extreme climate conditions such as maximum summer temperature and dry‐season precipitation were most often associated with multivariate taxonomic and functional composition. Specifically, sites with high maximum temperatures and low dry‐season precipitation housed communities containing high abundances of large predatory taxa. Furthermore, both climate dissimilarity and abiotic dissimilarity determined taxonomic turnover among sites (beta diversity). These findings suggest that while local‐scale environmental variables may predict alpha diversity, climatic variability is important to consider when projecting broad‐scale aquatic community responses to the extreme temperature and precipitation events that are expected for much of the world during the next century.  相似文献   

3.
Understanding how trophic levels respond to changes in abiotic and biotic conditions is key for predicting how food webs will react to environmental perturbations. Different trophic levels may respond disproportionately to change, with lower levels more likely to react faster, as they typically consist of smaller‐bodied species with higher reproductive rates. This response could cause a mismatch between trophic levels, in which predators and prey will respond differently to changing abiotic or biotic conditions. This mismatch between trophic levels could result in altered top‐down and bottom‐up control and changes in interaction strength. To determine the possibility of a mismatch, we conducted a reciprocal‐transplant experiment involving Sarracenia purpurea food webs consisting of bacterial communities as prey and a subset of six morphologically similar protozoans as predators. We used a factorial design with four temperatures, four bacteria and protozoan biogeographic origins, replicated four times. This design allowed us to determine how predator and prey dynamics were altered by abiotic (temperature) conditions and biotic (predators paired with prey from either their local or non‐local biogeographic origin) conditions. We found that prey reached higher densities in warmer temperature regardless of their temperature of origin. Conversely, predators achieved higher densities in the temperature condition and with the prey from their origin. These results confirm that predators perform better in abiotic and biotic conditions of their origin while their prey do not. This mismatch between trophic levels may be especially significant under climate change, potentially disrupting ecosystem functioning by disproportionately affecting top‐down and bottom‐up control.  相似文献   

4.
5.
Climate change will affect grasslands in a number of ways, but the consequences of a warmer, drier world for grazers is uncertain. Predicting future grazer performance is complex since climate change affects both the quantity and quality of forage through a combination of processes that occur over a range of time scales. To better predict the consequences of climate change for grazer performance, a dataset was compiled of over a quarter million bison weights distributed across 22 US herds that span a large range of climates. Patterns of bison body mass among sites, age classes, and sexes were analyzed with respect to differences in geographic patterns of climate and interannual variation in climate. While short-term effects of climate variability are likely to depend on the magnitude and timing of precipitation during the year, grazers will be negatively affected by sustained hotter, drier conditions most likely associated with reductions in forage quality. Short-term, little effect of high temperatures on bison performance is observed, which suggests that the long-term effects of higher temperatures are likely to accrue over time as nitrogen availability in grasslands is reduced and forage quality declines. If relationships observed for bison are general for cattle, the economic consequences of higher temperatures due to decreased weight gain in US cattle could be on the order of US$1B per 1°C increase in temperature. Long-term monitoring of forage quality as well as native and domesticated grazer performance is recommended to better understand climate change effects on grazers.  相似文献   

6.
While collective decision‐making is recognised as a significant contributor to fitness in social species, the opposite outcome is also logically possible. We show that collective movement decisions guided by individual bison sharing faulty information about habitat quality promoted the use of ecological traps. The frequent, but short‐lived, associations of bison with different spatial knowledge led to a population‐wide shift from avoidance to selection of agricultural patches over 9 years in and around Prince Albert National Park, Canada. Bison were more likely to travel to an agricultural patch for the first time by following conspecifics already familiar with agricultural patches. Annual adult mortality increased by 12% due to hunting of bison on agricultural lands. Maladaptive social behaviour accordingly was a major force that contributed to a ~50% population decline in less than a decade. In human‐altered landscapes, social learning by group‐living species can lead to fitness losses, particularly in fusion‐fission societies.  相似文献   

7.
Most large‐bodied wildlife populations in sub‐Saharan Africa only survive in conservation areas, but are continuing to decline because external changes influence ecological processes within reserves, leading to a lack of functionality. However, failure to understand how landscape scale changes influence ecological processes limits our ability to manage protected areas. We used GPS movement data to calculate dry season home ranges for 14 zebra mares in the Okavango Delta and investigated the effects of a range of landscape characteristics (number of habitat patches, mean patch shape, mean index of juxtaposition, and interspersion) on home range size. Resource utilization functions (RUF) were calculated to investigate how specific landscape characteristics affected space use. Space use by all zebra was clustered. In the wetter (Central) parts of the Delta home range size was negatively correlated with the density of habitat patches, more complex patch shapes, low juxtaposition of habitats and an increased availability of floodplain and grassland habitats. In the drier (Peripheral) parts of the Delta, higher use by zebra was also associated with a greater availability of floodplain and grassland habitats, but a lower density of patches and simpler patch shapes. The most important landscape characteristic was not consistent between zebra within the same area of the Delta, suggesting that no single foraging strategy is substantially superior to others, and so animals using different foraging strategies may all thrive. The distribution and complexity of habitat patches are crucial in determining space use by zebra. The extent and duration of seasonal flooding is the principal process affecting habitat patch characteristics in the Okavango Delta, particularly the availability of floodplains, which are the habitat at greatest risk from climate change and anthropogenic disturbance to the Okavango's catchment basin. Understanding how the factors that determine habitat complexity may change in the future is critical to the conservation of large mammal populations. Our study shows the importance of maintaining flood levels in the Okavango Delta and how the loss of seasonal floodplains will be compounded by changes in habitat configuration, forcing zebra to change their relative space use and enlarge home ranges, leading to increased competition for key resources and population declines.  相似文献   

8.
The restricted area of space used by most mobile animals is thought to result from fitness‐rewarding decisions derived from gaining information about the environment. Yet, assessments of how animals deal with uncertainty using memory have been largely theoretical, and an empirically derived mechanism explaining restricted space use in animals is still lacking. Using a patch‐to‐patch movement analysis, we investigated predictions of how free‐ranging bison (Bison bison) living in a meadow‐forest matrix use memory to reduce uncertainty in energy intake rate. Results indicate that bison remembered pertinent information about location and quality of meadows, and they used this information to selectively move to meadows of higher profitability. Moreover, bison chose profitable meadows they had previously visited, and this choice was stronger after visiting a relatively poor quality meadow. Our work demonstrates a link between memory, energy gains and restricted space use while establishing a fitness‐based integration of movement, cognitive and spatial ecology.  相似文献   

9.
Predicting changes in potential habitat for endangered species as a result of global warming requires considering more than future climate conditions; it is also necessary to evaluate biotic associations. Most distribution models predicting species responses to climate change include climate variables and occasionally topographic and edaphic parameters, rarely are biotic interactions included. Here, we incorporate biotic interactions into niche models to predict suitable habitat for species under altered climates. We constructed and evaluated niche models for an endangered butterfly and a threatened bird species, both are habitat specialists restricted to semiarid shrublands of southern California. To incorporate their dependency on shrubs, we first developed climate‐based niche models for shrubland vegetation and individual shrub species. We also developed models for the butterfly's larval host plants. Outputs from these models were included in the environmental variable dataset used to create butterfly and bird niche models. For both animal species, abiotic–biotic models outperformed the climate‐only model, with climate‐only models over‐predicting suitable habitat under current climate conditions. We used the climate‐only and abiotic–biotic models to calculate amounts of suitable habitat under altered climates and to evaluate species' sensitivities to climate change. We varied temperature (+0.6, +1.7, and +2.8 °C) and precipitation (50%, 90%, 100%, 110%, and 150%) relative to current climate averages and within ranges predicted by global climate change models. Suitable habitat for each species was reduced at all levels of temperature increase. Both species were sensitive to precipitation changes, particularly increases. Under altered climates, including biotic variables reduced habitat by 68–100% relative to the climate‐only model. To design reserve systems conserving sensitive species under global warming, it is important to consider biotic interactions, particularly for habitat specialists and species with strong dependencies on other species.  相似文献   

10.
Termites have a large influence on ecosystem functioning. Understanding what drives termite activity patterns improves understanding of nutrient cycling, productivity, and heterogeneity in savannas. We present a mechanistic framework that relates the interactive effects of rainfall, grassland structure, large herbivore presence, and soil factors to termite activity. To test this framework, we used grass litterbags to monitor termite activity at ten sites across Hluhluwe‐iMfolozi Park, South Africa. We assessed the effects of abiotic and biotic factors on termite activity at two scales: the large (landscape) scale, variation in bait removal among 300 m2 plots that were distributed across the park and at the small (within‐plot) scale (1–300 m2). Half of our sites were located inside large herbivore exclosures to test for the effect of mammalian herbivore presence. At the landscape scale, termite grass removal declined towards higher rainfall and in the presence of mammalian herbivores. Removal did not depend on soil factors. At the small scale, removal declined with increasing grass height, particularly in the 1 m surrounding the bait bag. Resource quality did not affect bait removal. We suggest that competition for forage drives the negative effect of mammalian herbivores on termites, whereas lower bait removal in taller swards may be due to direct negative effects from rainfall, fire and/or competition with free‐living microbes. Ultimately, we suggest that the impact of termites on nutrient cycling is most pronounced when abiotic (rainfall) and biotic conditions (mammalian herbivory) limit grass removal by fire and decomposition by free‐living microbes.  相似文献   

11.
Habitat degradation and fragmentation are major drivers of amphibian declines. The loss of environmental features that allow for movement between water sources may be particularly detrimental for amphibians in arid environments. Climate changes will increase the importance of microhabitats to amphibians. Enhancing areas to facilitate movement may be a necessary conservation strategy for many animal species that depend on wetlands, including federally threatened Chiricahua leopard frogs (Lithobates chiricahuensis). Habitat preferences of this frog species are not well understood. We sought to better understand fine‐scale habitat selection, to inform conservation of Chiricahua leopard frogs. We conducted our study on the Ladder Ranch, a privately owned working bison ranch in New Mexico, USA that supports a large proportion of the remaining Chiricahua leopard frogs in the state. We attached radio transmitters to 44 frogs during summer 2014. We located each frog daily for up to 8 weeks (median = 30 days). We assessed fine‐scale habitat selection by comparing characteristics at each frog location and a random location 5 m away using conditional logistic regression. Frogs preferred features that likely reduce desiccation, even after accounting for the presence of water. Frogs selected areas with more low‐lying cover, especially aquatic vegetation and woody debris, a tree overstory, and a mud substrate. We recommend managing potential movement corridors for Chiricahua leopard frogs by ensuring the presence of muddy creek bottoms, woody debris, riparian overstory, low‐lying ground cover, and pools. Microclimates created by these features seem especially valuable given warming temperatures and modified precipitation regimes, resulting in decreased surface water, soil moisture, and vegetation cover. Retaining or creating preferred habitat features and microclimates in areas between water sources may increase connectivity among isolated populations of Chiricahua leopard frogs and could improve persistence and recovery of other water‐obligate species in arid landscapes.  相似文献   

12.
Mounting evidence shows that organisms have already begun to respond to global climate change. Advances in our knowledge of how climate shapes species distributional patterns has helped us better understand the response of birds to climate change. However, the distribution of birds across the landscape is also driven by biotic and abiotic components, including habitat characteristics. We therefore developed statistical models of 147 bird species distributions in the eastern United States, using climate, elevation, and the distributions of 39 tree species to predict contemporary bird distributions. We used randomForest, a robust regression‐based decision tree ensemble method to predict contemporary bird distributions. These models were then projected onto three models of climate change under high and low emission scenarios for both climate and the projected change in suitable habitat for the 39 tree species. The resulting bird species models indicated that breeding habitat will decrease by at least 10% for 61–79 species (depending on model and emissions scenario) and increase by at least 10% for 38–52 species in the eastern United States. Alternatively, running the species models using only climate/elevation (omitting tree species), we found that the predictive power of these models was significantly reduced (p<0.001). When these climate/elevation‐only models were projected onto the climate change scenarios, the change in suitable habitat was more extreme in 60% of the species. In the end, the strong associations with vegetation tempers a climate/elevation‐only response to climate change and indicates that refugia of suitable habitat may persist for these bird species in the eastern US, even after the redistribution of tree species. These results suggest the importance of interacting biotic processes and that further fine‐scale research exploring how climate change may disrupt species specific requirements is needed.  相似文献   

13.
  1. Herbivores consider the variation of forage qualities (nutritional content and digestibility) as well as quantities (biomass) when foraging. Such selection patterns may change based on the scale of foraging, particularly in the case of ungulates that forage at many scales.
  2. To test selection for quality and quantity in free‐ranging herbivores across scales, however, we must first develop landscape‐wide quantitative estimates of both forage quantity and quality. Stoichiometric distribution models (StDMs) bring opportunity to address this because they predict the elemental measures and stoichiometry of resources at landscape extents.
  3. Here, we use StDMs to predict elemental measures of understory white birch quality (% nitrogen) and quantity (g carbon/m2) across two boreal landscapes. We analyzed global positioning system (GPS) collared moose (n = 14) selection for forage quantity and quality at the landscape, home range, and patch extents using both individual and pooled resource selection analyses. We predicted that as the scale of resource selection decreased from the landscape to the patch, selection for white birch quantity would decrease and selection for quality would increase.
  4. Counter to our prediction, pooled‐models showed selection for our estimates of quantity and quality to be neutral with low explanatory power and no scalar trends. At the individual‐level, however, we found evidence for quality and quantity trade‐offs, most notably at the home‐range scale where resource selection models explain the largest amount of variation in selection. Furthermore, individuals did not follow the same trade‐off tactic, with some preferring forage quantity over quality and vice versa.
  5. Such individual trade‐offs show that moose may be flexible in attaining a limiting nutrient. Our findings suggest that herbivores may respond to forage elemental compositions and quantities, giving tools like StDMs merit toward animal ecology applications. The integration of StDMs and animal movement data represents a promising avenue for progress in the field of zoogeochemistry.
  相似文献   

14.
Successful species interactions require that both partners share a similar cue. For many species, spring warming acts as a shared signal to synchronize mutualist behaviors. Spring flowering plants and the ants that disperse their seeds respond to warming temperatures so that ants forage when plants drop seeds. However, where warm‐adapted ants replace cold‐adapted ants, changes in this timing might leave early seeds stranded without a disperser. We investigate plant seed dispersal south and north of a distinct boundary between warm‐ and cold‐adapted ants to determine if changes in the ant species influence local plant dispersal. The warm‐adapted ants forage much later than the cold‐adapted ants, and so we first assess natural populations of early and late blooming plants. We then transplant these plants south and north of the ant boundary to test whether distinct ant climate requirements disrupt the ant–plant mutualism. Whereas the early blooming plant's inability to synchronize with the warm‐adapted ant leaves its populations clumped and patchy and its seedlings clustered around the parents in natural populations, when transplanted into the range of the cold‐adapted ant, effective seed dispersal recovers. In contrast, the mutualism persists for the later blooming plant regardless of location because it sets seed later in spring when both warm‐ and cold‐adapted ant species forage, resulting in effective seed dispersal. These results indicate that the climate response of species interactions, not just the species themselves, is integral in understanding ecological responses to a changing climate. Data linking phenological synchrony and dispersal are rare, and these results suggest a viable mechanism by which a species' range is limited more by biotic than abiotic interactions – despite the general assumption that biotic influences are buried within larger climate drivers. These results show that biotic partner can be as fundamental a niche requirement as abiotic resources.  相似文献   

15.
Distribution models are increasingly being used to understand how landscape and climatic changes are affecting the processes driving spatial and temporal distributions of plants and animals. However, many modeling efforts ignore the dynamic processes that drive distributional patterns at different scales, which may result in misleading inference about the factors influencing species distributions. Current occupancy models allow estimation of occupancy at different scales and, separately, estimation of immigration and emigration. However, joint estimation of local extinction, colonization, and occupancy within a multi‐scale model is currently unpublished. We extended multi‐scale models to account for the dynamic processes governing species distributions, while concurrently modeling local‐scale availability. We fit the model to data for lark buntings and chestnut‐collared longspurs in the Great Plains, USA, collected under the Integrated Monitoring in Bird Conservation Regions program. We investigate how the amount of grassland and shrubland and annual vegetation conditions affect bird occupancy dynamics and local vegetation structure affects fine‐scale occupancy. Buntings were prevalent and longspurs rare in our study area, but both species were locally prevalent when present. Buntings colonized sites with preferred habitat configurations, longspurs colonized a wider range of landscape conditions, and site persistence of both was higher at sites with greener vegetation. Turnover rates were high for both species, quantifying the nomadic behavior of the species. Our model allows researchers to jointly investigate temporal dynamics of species distributions and hierarchical habitat use. Our results indicate that grassland birds respond to different covariates at landscape and local scales suggesting different conservation goals at each scale. High turnover rates of these species highlight the need to account for the dynamics of nomadic species, and our model can help inform how to coordinate management efforts to provide appropriate habitat configurations at the landscape scale and provide habitat targets for local managers.  相似文献   

16.
When group members possess differing information about the environment, they may disagree on the best movement decision. Such conflicts result in group break‐ups, and are therefore a fundamental driver of fusion–fission group dynamics. Yet, a paucity of empirical work hampers our understanding of how adaptive evolution has shaped plasticity in collective behaviours that promote and maintain fusion–fission dynamics. Using movement data from GPS‐collared bison, we found that individuals constantly associated with other animals possessing different spatial knowledge, and both personal and conspecific information influenced an individual's patch choice decisions. During conflict situations, bison used group familiarity coupled with their knowledge of local foraging options and recently sampled resource quality when deciding to follow or leave a group – a tactic that led to energy‐rewarding movements. Natural selection has shaped collective behaviours for coping with social conflicts and resource heterogeneity, which maintain fusion–fission dynamics and play an essential role in animal distribution.  相似文献   

17.
Species’ ranges are complex often exhibiting multidirectional shifts over space and time. Despite the strong fingerprint of recent historical climate change on species’ distributions, biotic factors such as loss of vegetative habitat and the presence of potential competitors constitute important yet often overlooked drivers of range dynamics. Furthermore, short‐term changes in environmental conditions can influence the underlying processes of local extinction and local colonization that drive range shifts, yet are rarely considered at broad scales. We used dynamic state‐space occupancy models to test multiple hypotheses of the relative importance of major drivers of range shifts of Golden‐winged Warblers (Vermivora chrysoptera) and Blue‐winged Warblers (V. cyanoptera) between 1983 and 2012 across North America: warming temperatures; habitat changes; and occurrence of congeneric species, used here as proxy for biotic interactions. Dynamic occupancies for both species were most influenced by spatial relative to temporal variation in temperature and habitat. However, temporal variation in temperature anomalies and biotic interactions remained important. The two biotic factors considered, habitat change and biotic interactions, had the largest relative effect on estimated extinction rates followed by abiotic temperature anomalies. For the Golden‐winged Warbler, the predicted presence of the Blue‐winged Warbler, a hypothesized competitor, most influenced extinction probabilities, contributing to evidence supporting its role in site‐level species replacement. Given the overall importance of biotic factors on range‐wide dynamic occupancies, their consideration alongside abiotic factors should not be overlooked. Our results suggest that warming compounds the negative effect of habitat loss emphasizing species’ need for habitat to adapt to a changing climate. Notably, even closely related species exhibited individual responses to abiotic and biotic factors considered.  相似文献   

18.
Patterns of resource selection by animals may be influenced by sex, and often change over a 24‐h period. We used a dry sclerophyll landscape managed for commercial timber production to investigate the effects of sex and diel period on habitat selection by the swamp wallaby (Wallabia bicolor). We predicted that selection would be (i) affected by both sex and diel period; and (ii) positively related to lateral cover during the day, but to food resources at night. Non‐metric multidimentional scaling indicated that some of the available habitats differed markedly with respect to visibility (an indicator of lateral cover), fern cover, forb cover, wallaby density and a forage quality index, providing the basis for non‐random habitat selection. At the landscape scale, wallabies showed strong selection for 5‐year‐old regenerating sites, selected against 10‐year‐old regenerating sites and unharvested forest, and avoided recently harvested (3–10 months post‐harvest) sites completely. At the scale of individual home ranges, a pooled male and female sample demonstrated selection for unharvested forest over recently harvested sites during both diurnal and nocturnal periods. A separate analysis showed that both sex and diel period influenced the selection of 5‐ and 10‐year‐old sites and the surrounding unharvested forest. Using a novel approach, we demonstrated that diurnal habitat selection by both sexes was negatively correlated with visibility, representing stronger selection for areas with more lateral cover. Nocturnal selection by females was positively correlated with values of a forage quality index, but this was not the case for males. We hypothesise that the observed patterns of selection were driven by the need to find food and avoid predators, but were also affected by the different reproductive strategies of males and females. Our results demonstrate the importance of incorporating factors such as sex and diel period into analyses of habitat selection.  相似文献   

19.

Aim

Although the negative effects of habitat fragmentation have been widely documented at the landscape scale, much less is known about its impacts on species distributions at the biogeographical scale. We hypothesize that fragmentation influences the large‐scale distribution of area‐ and edge‐sensitive species by limiting their occurrence in regions with fragmented habitats , despite otherwise favourable environmental conditions. We test this hypothesis by assessing the interplay of climate and landscape factors influencing the distribution of the calandra lark, a grassland specialist that is highly sensitive to habitat fragmentation.

Location

Iberia Peninsula, Europe.

Methods

Ecological niche modelling was used to investigate the relative influence of climate/topography, landscape fragmentation and spatial structure on calandra lark distribution. Modelling assumed explicitly a hierarchically structured effect among explanatory variables, with climate/topography operating at broader spatial scales than landscape variables. An eigenvector‐based spatial filtering approach was used to cancel bias introduced by spatial autocorrelation. The information theoretic approach was used in model selection, and variation partitioning was used to isolate the unique and shared effects of sets of explanatory variables.

Results

Climate and topography were the most influential variables shaping the distribution of calandra lark, but incorporating landscape metrics contributed significantly to model improvement. The probability of calandra lark occurrence increased with total habitat area and declined with the number of patches and edge density. Variation partitioning showed a strong overlap between variation explained by climate/topography and landscape variables. After accounting for spatial structure in species distribution, the explanatory power of environmental variables remained largely unchanged.

Main conclusions

We have shown here that landscape fragmentation can influence species distributions at the biogeographical scale. Incorporating fragmentation metrics into large‐scale ecological niche models may contribute for a better understanding of mechanism driving species distributions and for improving predictive modelling of range shifts associated with land use and climate changes.
  相似文献   

20.
The allometric relationships of body size play a principle role in determining how large herbivores respond to the marked spatial and temporal heterogeneity of the savanna biome. Using location data collected over an 8‐year period from five distinct study sites, we investigated the influence of environmental variation (using phenological and rainfall data) on the ranging behaviour of the African elephant (Loxodonta africana), a species that exhibits pronounced sexual dimorphism. Both sexes expanded their annual ranges during years of high rainfall and contracted their ranges during periods of resource scarcity, concurring with the hypothesis that abiotic factors dictate the distribution of large generalist herbivores at the landscape scale. However, female elephant did not exhibit the same consistent response to rainfall at the seasonal scale. Furthermore, male elephant demonstrated a reduction in their daily displacement distances during the dry winter season, and altered their movement rates on the basis of seasonal rainfall. These results suggest that male elephant are able to consistently adapt their movement behaviour according to forage quality and abundance. Smaller‐bodied female elephant on the other hand, are unlikely to exhibit the same flexibility in their ranging behaviour because of their higher relative nutritional demands, lower tolerance to fibrous forage and the social and energetic constraints of group living with juveniles. Our study highlights the major role that body size and sociality plays in the decision making of sexually dimorphic herbivores. These differences can have important implications for effective conservation and management, particularly with regard to demographic (e.g. survival) and ecological (e.g. habitat use) factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号