首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Synopsis We analyzed variation in allozymes and mating preferences in 12 populations across much of the range of the sailfin molly, Poecilia latipinna. Sailfin mollies can be sympatric with its sexual parasite Amazon mollies, P. formosa. Amazon mollies must co-exist and mate with bisexual males of closely related species (including sailfin mollies) to induce embryogenesis but inheritance is strictly maternal. Where sailfin and Amazon mollies are sympatric there is evidence of reproductive character displacement as males show a significantly stronger mating preference for sailfin molly females over Amazon mollies compared to preferences of males from allopatric populations. From the allozyme data we found a moderate amount of genetic variation across all populations but this variation did not reveal significant partitioning between sympatric and allopatric populations. Additionally, we found no evidence for isolation by distance as genetic distance was not significantly correlated with geographic distance. While allozyme variation also did not significantly correlate with male mating preferences, there was a significant correlation between male mating preferences and geographic distance. This correlation between mating preferences and geographic distance may have arisen from coevolution with Amazon mollies resulting in reproductive character displacement. Taken together, the distribution of genetic and behavioral variation among sympatric and allopatric populations suggests that behavioral evolution has outpaced evolution at the allozyme loci we examined in P. latipinna.  相似文献   

2.
Evolutionary divergence in behavioural traits related to mating may represent the initial stage of speciation. Direct selective forces are usually invoked to explain divergence in mate‐recognition traits, often neglecting a role for neutral processes or concomitant differentiation in ecological traits. We adopted a multi‐trait approach to obtain a deeper understanding of the mechanisms behind allopatric divergence in the Amazonian frog, Allobates femoralis. We tested the null hypothesis that geographic distance between populations correlates with genetic and phenotypic divergence, and compared divergence between mate‐recognition (acoustic) and ecological (coloration, body‐shape) traits. We quantified geographic variation in 39 phenotypic traits and a mitochondrial DNA marker among 125 individuals representing eight populations. Geographic variation in acoustic traits was pronounced and tracked the spatial genetic variation, which appeared to be neutral. Thus, the evolution of acoustic traits tracked the shared history of the populations, which is unexpected for pan‐Amazonian taxa or for mate‐recognition traits. Divergence in coloration appeared uncorrelated with genetic distance, and might be partly attributed to local selective pressures, and perhaps to Batesian mimicry. Divergence in body‐shape traits was low. The results obtained depict a complex evolutionary scenario and emphasize the importance of considering multiple traits when disentangling the forces behind allopatric divergence. ©2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 98 , 826–838.  相似文献   

3.
Hybrid zones are geographic regions where isolating barriers between divergent populations are challenged by admixture. Identifying factors that facilitate or inhibit hybridization in sympatry can illuminate the processes that maintain those reproductive barriers. We analysed patterns of hybridization and phenotypic variation across two newly discovered hybrid zones between three subspecies of barn swallow (Hirundo rustica). These subspecies differ in ventral coloration and wing length, traits that are targets of sexual and natural selection, respectively, and are associated with genome‐wide differentiation in allopatry. We tested the hypothesis that the degree of divergence in these traits is associated with the extent of hybridization in secondary contact. We applied measures of population structure based on >23,000 SNPs to confirm that named subspecies correspond to distinct genomic clusters, and assessed coincidence between geographic clines for ancestry and phenotype. Although gene flow was ongoing across both hybrid zones and pairwise FST between subspecies was extremely low, we found striking differences in the extent of hybridization. In the more phenotypically differentiated subspecies pair, clines for ancestry, wing length and ventral coloration were steep and coincident, suggestive of strong isolation and, potentially, selection associated with phenotype. In the less phenotypically differentiated pair, gene flow and phenotypic variation occurred over a wide geographic span, indicative of weaker isolation. Traits associated with genome‐wide differentiation in allopatry may thus also contribute to isolation in sympatry. We discuss potentially important additional roles for evolutionary history and ecology in shaping variation in the extent hybridization between closely related pairs of subspecies.  相似文献   

4.
Characterizing the patterns of hybridization between closely related species is crucial to understand the role of gene flow in speciation. In particular, systems comprising multiple contacts between sister species offer an outstanding opportunity to investigate how reproductive isolation varies with environmental conditions, demography and geographic contexts of divergence. The flat periwinkles, Littorina obtusata and L. fabalis (Gastropoda), are two intertidal sister species with marked ecological differences compatible with late stages of speciation. Although hybridization between the two was previously suggested, its extent across the Atlantic shores of Europe remained largely unknown. Here, we combined genetic (microsatellites and mtDNA) and morphological data (shell and male genital morphology) from multiple populations of flat periwinkles in north‐western Iberia to assess the extent of current and past hybridization between L. obtusata and L. fabalis under two contrasting geographic settings of divergence (sympatry and allopatry). Hybridization signatures based on both mtDNA and microsatellites were stronger in sympatric sites, although evidence for recent extensive admixture was found in a single location. Misidentification of individuals into species based on shell morphology was higher in sympatric than in allopatric sites. However, despite hybridization, species distinctiveness based on this phenotypic trait together with male genital morphology remained relatively high. The observed variation in the extent of hybridization among locations provides a rare opportunity for future studies on the consequences of different levels of gene flow for reinforcement, thus informing about the mechanisms underlying the completion of speciation.  相似文献   

5.
Studying recent adaptive radiations in isolated insular systems avoids complicating causal events and thus may offer clearer insight into mechanisms generating biological diversity. Here, we investigate evolutionary relationships and genomic differentiation within the recent radiation of Alcolapia cichlid fish that exhibit extensive phenotypic diversification, and which are confined to the extreme soda lakes Magadi and Natron in East Africa. We generated an extensive RAD data set of 96 individuals from multiple sampling sites and found evidence for genetic admixture between species within Lake Natron, with the highest levels of admixture between sympatric populations of the most recently diverged species. Despite considerable environmental separation, populations within Lake Natron do not exhibit isolation by distance, indicating panmixia within the lake, although individuals within lineages clustered by population in phylogenomic analysis. Our results indicate exceptionally low genetic differentiation across the radiation despite considerable phenotypic trophic variation, supporting previous findings from smaller data sets; however, with the increased power of densely sampled SNPs, we identify genomic peaks of differentiation (FST outliers) between Alcolapia species. While evidence of ongoing gene flow and interspecies hybridization in certain populations suggests that Alcolapia species are incompletely reproductively isolated, the identification of outlier SNPs under diversifying selection indicates the radiation is undergoing adaptive divergence.  相似文献   

6.
Unusual patterns of mtDNA diversity can reveal interesting aspects of a species’ biology. However, making such inferences requires discerning among the many alternative scenarios that could underlie any given mtDNA pattern. Next‐generation sequencing methods provide large, multilocus data sets with increased power to resolve unusual mtDNA patterns. A mtDNA‐based phylogeography of the Savannah sparrow (Passerculus sandwichensis) previously identified two sympatric, but divergent (~2%) clades within the nominate subspecies group and a third clade that consisted of birds sampled from northwest Mexico. We revisited the phylogeography of this species using a population genomic data set to resolve the processes leading to the evolution of sympatric and divergent mtDNA lineages. We identified two genetic clusters in the genomic data set corresponding to (a) the nominate subspecies group and (b) northwestern Mexico birds. Following divergence, the nominate clade maintained a large, stable population, indicating that divergent mitochondrial lineages arose within a panmictic population. Simulations based on parameter estimates from this model further confirmed that this demographic history could produce observed levels of mtDNA diversity. Patterns of divergent, sympatric mtDNA lineages are frequently interpreted as admixture of historically isolated lineages. Our analyses reject this interpretation for Savannah sparrows and underscore the need for genomic data sets to resolve the evolutionary mechanisms behind anomalous, locus‐specific patterns.  相似文献   

7.
Reinforcement of species boundaries may alter mate recognition in a way that also affects patterns of mate preference among conspecific populations. In the fly Drosophila subquinaria, females sympatric with the closely related species D. recens reject mating with heterospecific males as well as with conspecific males from allopatric populations. Here, we assess geographic variation in behavioral isolation within and among populations of D. subquinaria and use cline theory to understand patterns of selection on reinforced discrimination and its consequences for sexual isolation within species. We find that selection has fixed rejection of D. recens males in sympatry, while significant genetic variation in this behavior occurs within allopatric populations. In conspecific matings sexual isolation is also asymmetric and stronger in populations that are sympatric with D. recens. The clines in behavioral discrimination within and between species are similar in shape and are maintained by strong selection in the face of gene flow, and we show that some of their genetic basis may be either shared or linked. Thus, while reinforcement can drive extremely strong phenotypic divergence, the long‐term consequences for incipient speciation depend on gene flow, genetic linkage of discrimination traits, and the cost of these behaviors in allopatry.  相似文献   

8.
Habitat modifications such as deforestation and the increase of agricultural activities, have led to uncommon faunal interactions. In Colombia, this condition have caused the secondary contact of subspecies of Ramphocelus flammigerus populations from Cauca valley and the Pacific coast; and some specimens with rumps of intermediate colors of the subspecies have been found and are thought as hybrids. The objective of this study was to assess the presence of morphological evidence that may suggest hybridization and may explain the origin of individuals with intermediate coloration. We predict that if subspecies hybridize, they will be more similar in morphology when coexisting than when separated. Alternatively, coexisting subspecies might diverge in sympatry, because of selection to reduce competition for resources (character displacement). For this, a survey in 15 localities was undertaken: 10 allopatric areas (five for each subspecies), and five sympatric areas. Mist nets were used to capture individuals and a total of seven morphological characters were measured. To identify the patterns of morphological variation, we compared morphology of subspecies, sympatric and allopatric populations and individuals of intermediate colors. Consequently, we performed discriminant analysis and test for differences between groups by using 95% confidence intervals for log-ratio tests. A total of 112 individuals were captured (46 intermediate-colored individuals, 20 R. f. flammigerus, and 46 R.f. icteronotus. Discriminant analyses showed that subspecies were well differentiated, and intermediate individuals overlapped with them. Log-ratio test, based on Mahalanobis distances, showed that intermediate individuals were morphologically more similar to both subspecies than subspecies themselves. In addition, log-ratio tests showed that subspecies sympatric populations were similar but allopatric ones were different, and that individuals of intermediate colors were more similar to sympatric than to allopatric populations of the two subspecies. Therefore, morphological evidence supports the predictions of a hybridization hypothesis among the subspecies of R. flammigerus. In conclusion, the analysis of morphological variation in R. flammigerus suggests that hybridization between subspecies is occurring and that a process of genetic introgression is probably in progress.  相似文献   

9.
Divergent selection is the main driving force in sympatric ecological speciation and may also play a strong role in divergence between allopatric populations. Characterizing the genome‐wide impact of divergent selection often constitutes a first step in unravelling the genetic bases underlying adaptation and ecological speciation. The Midas cichlid fish (Amphilophus citrinellus) species complex in Nicaragua is a powerful system for studying evolutionary processes. Independent colonizations of isolated young crater lakes by Midas cichlid populations from the older and great lakes of Nicaragua resulted in the repeated evolution of adaptive radiations by intralacustrine sympatric speciation. In this study we performed genome scans on two repeated radiations of crater lake species and their great lake source populations (1030 polymorphic AFLPs, n ~ 30 individuals per species). We detected regions under divergent selection (0.3% in the crater lake Xiloá flock and 1.7% in the older crater lake Apoyo radiation) that might be responsible for the sympatric diversifications. We find no evidence that the same genomic regions have been involved in the repeated evolution of parallel adaptations across crater lake flocks. However, there is some genetic parallelism apparent (seven out of 51 crater lake to great lake outlier loci are shared; 13.7%) that is associated with the allopatric divergence of both crater lake flocks. Interestingly, our results suggest that the number of outlier loci involved in sympatric and allopatric divergence increases over time. A phylogeny based on the AFLP data clearly supports the monophyly of both crater lake species flocks and indicates a parallel branching order with a primary split along the limnetic‐benthic axis in both radiations.  相似文献   

10.
Sister taxa with distinct phenotypes often occupy contrasting environments in parapatric ranges, yet we generally do not know whether trait divergence reflects spatially varying selection. We conducted a reciprocal transplant experiment to test whether selection favors “native phenotypes” in two subspecies of Clarkia xantiana (Onagraceae), an annual plant in California. For four quantitative traits that differ between subspecies, we estimated phenotypic selection in subspecies’ exclusive ranges and their contact zone in two consecutive years. We predicted that in the arid, pollinator‐scarce eastern region, selection favors phenotypes of the native subspecies parviflora: small leaves, slow leaf growth, early flowering, and diminutive flowers. In the wetter, pollinator‐rich, western range of subspecies xantiana, we expected selection for opposite phenotypes. We investigated pollinator contributions to selection by comparing naturally pollinated and pollen‐supplemented individuals. For reproductive traits and for subspecies xantiana, selection generally matched expectations. The contact zone sometimes showed distinctive selection, and in ssp. parviflora selection sometimes favored nonnative phenotypes. Pollinators influenced selection on flowering time but not on flower size. Little temporal variation in selection occurred, possibly because of plastic trait responses across years. Though there were exceptions and some causes of selection remain obscure, phenotypic differentiation between subspecies appears to reflect spatially variable selection.  相似文献   

11.
Interactions between species can alter selection on sexual displays used in mate choice within species. Here we study the epicuticular pheromones of two Drosophila species that overlap partially in geographic range and are incompletely reproductively isolated. Drosophila subquinaria shows a pattern of reproductive character displacement against Drosophila recens, and partial behavioral isolation between conspecific sympatric versus allopatric populations, whereas D. recens shows no such variation in mate choice. First, using manipulative perfuming experiments, we show that females use pheromones as signals for mate discrimination both between species and among populations of D. subquinaria. Second, we show that patterns of variation in epicuticular compounds, both across populations and between species, are consistent with those previously shown for mating probabilities: pheromone compositions differ between populations of D. subquinaria that are allopatric versus sympatric with D. recens, but are similar across populations of D. recens regardless of overlap with D. subquinaria. We also identify differences in pheromone composition among allopatric regions of D. subquinaria. In sum, our results suggest that epicuticular compounds are key signals used by females during mate recognition, and that these traits have diverged among D. subquinaria populations in response to reinforcing selection generated by the presence of D. recens.  相似文献   

12.
Within the plant kingdom, many genera contain sister lineages with contrasting outcrossing and inbreeding mating systems that are known to hybridize. The evolutionary fate of these sister lineages is likely to be influenced by the extent to which they exchange genes. We measured gene flow between outcrossing Geum rivale and selfing Geum urbanum, sister species that hybridize in contemporary populations. We generated and used a draft genome of G. urbanum to develop dd‐RAD data scorable in both species. Coalescent analysis of RAD data from allopatric populations indicated that the species diverged 2–3 Mya, and that historical gene flow between them was extremely low (1 migrant every 25 generations). Comparison of genetic divergence between species in sympatry and allopatry, together with an analysis of allele frequencies in potential parental and hybrid populations, provided no evidence of contemporary introgression in sympatric populations. Cluster‐ and species‐specific marker analyses revealed that, apart from four early‐generation hybrids, individuals in sympatric populations fell into two genetically distinct groups that corresponded exactly to their morphological species classification with maximum individual admixture estimates of only 1–3%. However, we did observe joint segregation of four putatively introgressed SNPs across two scaffolds in the G. urbanum population that was associated with significant morphological variation, interpreted as tentative evidence for rare, recent interspecific gene flow. Overall, our results indicate that despite the presence of hybrids in contemporary populations, genetic exchange between G. rivale and G. urbanum has been extremely limited throughout their evolutionary history.  相似文献   

13.
In butterflyfishes (Chaetodontidae), color pattern evolves rapidly and is often the only morphological trait separating closely related species. Vivid coloration is frequently assumed to provide critical signals for mate recognition and mate choice, but few direct experimental tests are available. Here we analyze the relationship between color pattern change, mate choice, and genetic differentiation in a group of three very closely related allopatric butterflyfishes. We found that in only one member of this group, Chaetodon multicinctus, is color pattern evolution associated with mate preference and genetic divergence. For its two sister species, C. punctatofasciatus and C. pelewensis, color pattern change has not resulted in assortative mating (based on laboratory pairing experiments and field observations) or in significant mtDNA or allozyme differentiation. In a contact zone on reefs in the Solomon Islands and Papua New Guinea, hybridization between the two forms has nearly homogenized color pattern differences. Outside these areas, however, color pattern remains distinct. Genetic variation is homogeneous over a much larger geographic scale. Sequence variation in the tRNA-proline end of the mitochondrial control region and allozyme variation was distributed widely within C. punctatofasciatus and C. pelewensis, which suggests few constraints to mitochondrial or nuclear gene flow across the color pattern boundary. These contrasting patterns strongly suggest that selection is maintaining color pattern differences in allopatry in the face of potentially homogenizing levels of gene flow. The mating pattern data show that this selection is not operating on mate recognition in the strictest sense, but probably on some other aspect of the social system of these territorial fish. In this case, divergence in mating preference can follow color pattern evolution, but is not contemporaneous with it.  相似文献   

14.
During speciation‐with‐gene‐flow, effective migration varies across the genome as a function of several factors, including proximity of selected loci, recombination rate, strength of selection, and number of selected loci. Genome scans may provide better empirical understanding of the genome‐wide patterns of genetic differentiation, especially if the variance due to the previously mentioned factors is partitioned. In North American lake whitefish (Coregonus clupeaformis), glacial lineages that diverged in allopatry about 60,000 years ago and came into contact 12,000 years ago have independently evolved in several lakes into two sympatric species pairs (a normal benthic and a dwarf limnetic). Variable degrees of reproductive isolation between species pairs across lakes offer a continuum of genetic and phenotypic divergence associated with adaptation to distinct ecological niches. To disentangle the complex array of genetically based barriers that locally reduce the effective migration rate between whitefish species pairs, we compared genome‐wide patterns of divergence across five lakes distributed along this divergence continuum. Using restriction site associated DNA (RAD) sequencing, we combined genetic mapping and population genetics approaches to identify genomic regions resistant to introgression and derive empirical measures of the barrier strength as a function of recombination distance. We found that the size of the genomic islands of differentiation was influenced by the joint effects of linkage disequilibrium maintained by selection on many loci, the strength of ecological niche divergence, as well as demographic characteristics unique to each lake. Partial parallelism in divergent genomic regions likely reflected the combined effects of polygenic adaptation from standing variation and independent changes in the genetic architecture of postzygotic isolation. This study illustrates how integrating genetic mapping and population genomics of multiple sympatric species pairs provide a window on the speciation‐with‐gene‐flow mechanism.  相似文献   

15.
Phenotypic differentiation plays an important role in the formation and maintenance of reproductive barriers. In some cases, variation in a few key aspects of phenotype can promote and maintain divergence; hence, the identification of these traits and their associations with patterns of genomic divergence is crucial for understanding the patterns and processes of population differentiation. We studied hybridization between the alba and personata subspecies of the white wagtail (Motacilla alba), and quantified divergence and introgression of multiple morphological traits and 19,437 SNP loci on a 3,000 km transect. Our goal was to identify traits that may contribute to reproductive barriers and to assess how variation in these traits corresponds to patterns of genome‐wide divergence. Variation in only one trait—head plumage patterning—was consistent with reproductive isolation. Transitions in head plumage were steep and occurred over otherwise morphologically and genetically homogeneous populations, whereas cline centres for other traits and genomic ancestry were displaced over 100 km from the head cline. Field observational data show that social pairs mated assortatively by head plumage, suggesting that these phenotypes are maintained by divergent mating preferences. In contrast, variation in all other traits and genetic markers could be explained by neutral diffusion, although weak ecological selection cannot be ruled out. Our results emphasize that assortative mating may maintain phenotypic differences independent of other processes shaping genome‐wide variation, consistent with other recent findings that raise questions about the relative importance of mate choice, ecological selection and selectively neutral processes for divergent evolution.  相似文献   

16.
Variation in the metabolic costs associated with organismal maintenance may play a key role in determining fitness, and thus these differences among individuals are likely to be subject to natural selection. Although the evolvability of maintenance metabolism depends on its underlying genetic architecture, relatively little is known about the nature of genetic variation that underlies this trait. To address this, we measured variation in routine metabolic rate (?O2routine), an index of maintenance metabolism, within and among three populations of Atlantic killifish, Fundulus heteroclitus, including a population from a region of genetic admixture between two subspecies. Polygenic association tests among individuals from the admixed population identified 54 single nucleotide polymorphisms (SNPs) that were associated with ?O2routine, and these SNPs accounted for 43% of interindividual variation in this trait. However, genetic associations with ?O2routine involved different SNPs if females and males were analysed separately, and there was a sex‐dependent effect of mitochondrial genotype on variation in routine metabolism. These results imply that there are sex‐specific genetic mechanisms, and potential mitonuclear interactions, that underlie variation in ?O2routine. Additionally, there was evidence for epistatic interactions between 17% of the possible pairs of trait‐associated SNPs, suggesting that epistatic effects on ?O2routine are common. These data demonstrate not only that phenotypic variation in this ecologically important trait has a polygenic basis with considerable epistasis among loci, but also that these underlying genetic mechanisms, and particularly the role of mitochondrial genotype, may be sex‐specific.  相似文献   

17.
1. The competitive interactions of closely related species have long been considered important determinants of community composition and a major cause of phenotypic diversification. However, while patterns such as character displacement are well documented, less is known about how local adaptation influences diversifying selection from interspecific competition. 2. We examined body size and head shape variation among allopatric and sympatric populations of two salamander species, the widespread Plethodon cinereus and the geographically restricted P. nettingi. We quantified morphology from 724 individuals from 20 geographical localities throughout the range of P. nettingi. 3. Plethodon nettingi was more robust in cranial morphology relative to P. cinereus, and sympatric localities were more robust relative to allopatric localities. Additionally, there was significantly greater sympatric head shape divergence between species relative to allopatric communities, and sympatric localities of P. cinereus exhibited greater morphological variation than sympatric P. nettingi. 4. The sympatric morphological divergence and increase in cranial robustness of one species (P. nettingi) were similar to observations in other Plethodon communities, and were consistent with the hypothesis of interspecific competition. These findings suggest that interspecific competition in Plethodon may play an important role in phenotypic diversification in this group. 5. The increase in among-population variance in sympatric P. cinereus suggests a species-specific response to divergent natural selection that is influenced in part by other factors. We hypothesize that enhanced morphological flexibility and ecological tolerance allow P. cinereus to more rapidly adapt to local environmental conditions, and initial differences among populations have allowed the evolutionary response of P. cinereus to vary across replicate sympatric locations, resulting in distinct evolutionary trajectories of morphological change.  相似文献   

18.
Learning and other forms of phenotypic plasticity have been suggested to enhance population divergence. Mate preferences can develop by learning, and species recognition might not be entirely genetic. We present data on female mate preferences of the banded demoiselle (Calopteryx splendens) that suggest a role for learning in population divergence and species recognition. Populations of this species are either allopatric or sympatric with a phenotypically similar congener (C. virgo). These two species differ mainly in the amount of wing melanization in males, and wing patches thus mediate sexual isolation. In sympatry, sexually experienced females discriminate against large melanin wing patches in heterospecific males. In contrast, in allopatric populations within the same geographic region, females show positive (“open‐ended”) preferences for such large wing patches. Virgin C. splendens females do not discriminate against heterospecific males. Moreover, physical exposure experiments of such virgin females to con‐ or hetero‐specific males significantly influences their subsequent mate preferences. Species recognition is thus not entirely genetic and it is partly influenced by interactions with mates. Learning causes pronounced population divergence in mate preferences between these weakly genetically differentiated populations, and results in a highly divergent pattern of species recognition at a small geographic scale.  相似文献   

19.
The breeding distribution of Painted Buntings (Passerina ciris) is comprised of two allopatric populations separated by a 550-km distributional gap in the southeastern United States. Curiously, the boundary between the two recognized P. ciris subspecies does not separate the two allopatric breeding populations but instead runs roughly through the center of the interior population. Genetic relationships among these subspecies, and the allopatric breeding populations of Painted Bunting, have not been assessed. Given the recent decline in overall abundance of this species, such an assessment is warranted. We sampled birds from 15 localities (138 individuals) and identified 35 distinct haplotypes, six belonging to the Atlantic Coast population and 26 to the interior population, with three shared by both populations. AMOVA results showed that a significantly greater portion of the total genetic variance is explained when grouping birds by the interior and Atlantic Coast populations rather than by subspecies. Furthermore, our data indicate that the Atlantic Coast and interior populations represent independently evolving taxa, with no measureable gene flow between them. Although recently diverged (26,000–115,000 years ago), these isolated bunting populations represent incipient species. For development of conservation strategies, we suggest that the Atlantic Coast and interior populations be recognized as separate management units.  相似文献   

20.
Characterizing the current population structure of potentially invasive species provides a critical context for identifying source populations and for understanding why invasions are successful. Non‐native populations inevitably lose genetic diversity during initial colonization events, but subsequent admixture among independently introduced lineages may increase both genetic variation and adaptive potential. Here we characterize the population structure of the gypsy moth (Lymantria dispar Linnaeus), one of the world's most destructive forest pests. Native to Eurasia and recently introduced to North America, the current distribution of gypsy moth includes forests throughout the temperate region of the northern hemisphere. Analyses of microsatellite loci and mitochondrial DNA sequences for 1738 individuals identified four genetic clusters within L. dispar. Three of these clusters correspond to the three named subspecies; North American populations represent a distinct fourth cluster, presumably a consequence of the population bottleneck and allele frequency change that accompanied introduction. We find no evidence that admixture has been an important catalyst of the successful invasion and range expansion in North America. However, we do find evidence of ongoing hybridization between subspecies and increased genetic variation in gypsy moth populations from Eastern Asia, populations that now pose a threat of further human‐mediated introductions. Finally, we show that current patterns of variation can be explained in terms of climate and habitat changes during the Pleistocene, a time when temperate forests expanded and contracted. Deeply diverged matrilines in Europe imply that gypsy moths have been there for a long time and are not recent arrivals from Asia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号