首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sparsely distributed species attract conservation concern, but insufficient information on population trends challenges conservation and funding prioritization. Occupancy‐based monitoring is attractive for these species, but appropriate sampling design and inference depend on particulars of the study system. We employed spatially explicit simulations to identify minimum levels of sampling effort for a regional occupancy monitoring study design, using white‐headed woodpeckers (Picoides albolvartus), a sparsely distributed, territorial species threatened by habitat decline and degradation, as a case study. We compared the original design with commonly proposed alternatives with varying targets of inference (i.e., species range, space use, or abundance) and spatial extent of sampling. Sampling effort needed to achieve adequate power to observe a long‐term population trend (≥80% chance to observe a 2% yearly decline over 20 years) with the previously used study design consisted of annually monitoring ≥120 transects using a single‐survey approach or ≥90 transects surveyed twice per year using a repeat‐survey approach. Designs that shifted inference toward finer‐resolution trends in abundance and extended the spatial extent of sampling by shortening transects, employing a single‐survey approach to monitoring, and incorporating a panel design (33% of units surveyed per year) improved power and reduced error in estimating abundance trends. In contrast, efforts to monitor coarse‐scale trends in species range or space use with repeat surveys provided extremely limited statistical power. Synthesis and applications. Sampling resolutions that approximate home range size, spatially extensive sampling, and designs that target inference of abundance trends rather than range dynamics are probably best suited and most feasible for broad‐scale occupancy‐based monitoring of sparsely distributed territorial animal species.  相似文献   

2.
Grasslands are globally extensive; they exist in many different climates, at high and low elevations, on nutrient‐rich and nutrient‐poor soils. Grassland distributions today are closely linked to human activities, herbivores, and fire, but many have been converted to urban areas, forests, or agriculture fields. Roughly 80% of fires globally occur in grasslands each year, making fire a critical process in grassland dynamics. Yet, little is known about the long‐term history of fire in grasslands. Here, we analyze sedimentary archives to reconstruct grassland fire histories during the Holocene. Given that grassland locations change over time, we compare several charcoal‐based fire reconstructions based on alternative classification schemes: (a) sites from modern grassland locations; (b) sites that were likely grasslands during the mid‐Holocene; and (c) sites based on author‐derived classifications. We also compare fire histories from grassland sites, forested sites, and all sites globally over the past 12,000 years. Forested versus grassland sites show different trends: grassland burning increased from the early to mid‐Holocene, reaching a maximum about 8000–6000 years ago, and subsequently declined, reaching a minimum around 4000 years ago. In contrast, biomass burning in forests increased during the Holocene until about 2000 years ago. Continental grassland fire history reconstructions show opposing Holocene trends in North versus South America, whereas grassland burning in Australia was highly variable in the early Holocene and much more stable after the mid‐Holocene. The sharp differences in continental as well as forest versus grassland Holocene fire history trajectories have important implications for our understanding of global biomass burning and its emissions, the global carbon cycle, biodiversity, conservation, and land management.  相似文献   

3.
Several lines of evidence point to European managed grassland ecosystems being a sink of carbon. In this study, we apply ORCHIDEE‐GM a process‐based carbon cycle model that describes specific management practices of pastures and the dynamics of carbon cycling in response to changes in climatic and biogeochemical drivers. The model is used to simulate changes in the carbon balance [i.e., net biome production (NBP)] of European grasslands over 1991–2010 on a 25 km × 25 km grid. The modeled average trend in NBP is 1.8–2.0 g C m?2 yr?2 during the past two decades. Attribution of this trend suggests management intensity as the dominant driver explaining NBP trends in the model (36–43% of the trend due to all drivers). A major change in grassland management intensity has occurred across Europe resulting from reduced livestock numbers. This change has ‘inadvertently’ enhanced soil C sequestration and reduced N2O and CH4 emissions by 1.2–1.5 Gt CO2‐equivalent, offsetting more than 7% of greenhouse gas emissions in the whole European agricultural sector during the period 1991–2010. Land‐cover change, climate change and rising CO2 also make positive and moderate contributions to the NBP trend (between 24% and 31% of the trend due to all drivers). Changes in nitrogen addition (including fertilization and atmospheric deposition) are found to have only marginal net effect on NBP trends. However, this may not reflect reality because our model has only a very simple parameterization of nitrogen effects on photosynthesis. The sum of NBP trends from each driver is larger than the trend obtained when all drivers are varied together, leaving a residual – nonattributed – term (22–26% of the trend due to all drivers) indicating negative interactions between drivers.  相似文献   

4.
Estimating the abundance and breeding success of territorial songbirds is challenging. Various types of surveys and analyses are available, but all receive some criticism in the literature, and most methods are rarely compared with results obtained using intensive monitoring efforts. We assessed the efficacy of transect and point-count surveys to estimate the abundance of male Bobolinks (Dolichonyx oryzivorus) and detect evidence of nesting and fledging by comparing the results of those surveys to results from more intensive monitoring (i.e., spot mapping and nest monitoring). We monitored 36 fields (254 ha) of late-harvest hay, restored grassland, and fallow fields in the Luther Marsh Wildlife Management Area and on four farms in southern Ontario, Canada, in 2018. Compared to the number of territories identified based on spot mapping (197), distance sampling analysis of transect survey data provided a more accurate estimate of the abundance of male Bobolinks (230, 95% CI: 187, 282) than N-mixture models of transect (668, 95% CI: 332, 1342) and point-count (337, 95% CI: 203, 559) data. Three visits to survey transects and five to point counts did not effectively detect evidence of Bobolink breeding (i.e., nesting or fledging) in fields compared to spot mapping and nest monitoring. Distance sampling analysis of transect data appears promising for estimating the number of Bobolink territories in an area, e.g., those impacted by conservation programs. If estimates of the number of nesting Bobolinks and frequency of fledging are of interest, spot mapping and nest monitoring could be implemented at a subset of sampled fields. Our results suggest that additional studies to evaluate model-based estimates of abundance with the best available information (e.g., from spot mapping of marked or unmarked populations and nest monitoring) would be useful to ensure that robust estimates are provided to support population estimates and conservation actions.  相似文献   

5.
WILEY M. KITCHENS 《Ibis》2012,154(3):554-565
The degradation of habitats due to human activities is a major topic of interest for the conservation and management of wild populations. There is growing evidence that the Florida Everglades ecosystem continues to suffer from habitat degradation. After a period of recovery in the 1990s, the Snail Kite Rostrhamus sociabilis population suffered a substantial decline in 2001 and has not recovered since. Habitat degradation has been suggested as one of the primary reasons for this lack of recovery. As a consequence of the continued degradation of the Everglades, we hypothesized that this would have led to increased movement of juvenile Kites over time, as a consequence of the need to find more favourable habitat. We used multistate mark‐recapture models to compare between‐site movement probabilities of juvenile Snail Kites in the 1990s (1992–95; which corresponds to the period before the decline) and 2000s (2003–06; after the decline). Our analyses were based on an extensive radiotelemetry study (266 birds tracked monthly over the entire state of Florida for a total period of 6 years) and considered factors such as sex and age of marked individuals. There was evidence of increased movement of juvenile Snail Kites during the post‐decline period from most of the wetland regions used historically by Kites. Higher movement rates may contribute to an increase in the probability of mortality of young individuals and could contribute to the observed declines.  相似文献   

6.
Aim We assess changes in plant species richness and changes in species dissimilarity at local scale in Swiss grassland between the time periods 2001–2004 and 2006–2009. Further, we provide an ecological interpretation of the observed taxonomic homogenization of vascular plants. Location Switzerland. Methods Changes in species richness and changes in Simpson dissimilarity index of vascular plants in grassland (meadows and pastures) were examined. The analyses were based on species lists recorded on 339 10‐m2 sample plots from a systematic sample covering the entire Switzerland. Each sample plot had been surveyed once in 2001–2004 and once in 2006–2009 with 5 years between the first and the second survey. Changes in species dissimilarity were interpreted by comparing the relative contribution of several indicator species groups. Results Mean species richness of vascular plants in grassland increased during the study period. In contrast, species dissimilarity of plants decreased, suggesting local‐scale floristic homogenization of grassland in Switzerland. It was mostly because of the spread of common species, namely the species that are tolerant to high nutrient levels, the species of low conservation value and the species adapted to moderate temperature levels that led to taxonomic homogenization. Target species for conservation did only marginally affect taxonomic homogenization. In contrast to the predictions from studies of taxonomic homogenization on larger scales, the taxonomic homogenization of grassland at local scale was not explained by the spread of neophytic species. Main conclusions The biotic diversity of grassland in Switzerland changed considerably between 2001–2004 and 2006–2009. The observed taxonomic homogenization was merely because of the spread of common species. Local‐scale changes in land use regimes implemented by agri‐environmental schemes and other conservation efforts on parts of the entire grassland area were, apparently, not enough to prevent the total grassland from recent taxonomic homogenization.  相似文献   

7.
Although it is common for nestlings to exhibit a strong bias for fledging in the morning, the mechanisms underlying this behavior are not well understood. Avoiding predation risk has been proposed as a likely mechanism by a number of researchers. We used video surveillance records from studies of grassland birds nesting in North Dakota, Minnesota, and Wisconsin to determine the diel pattern of nest predation and fledging patterns of four ground‐nesting obligate grassland passerines (Grasshopper Sparrow (Ammodramus savannarum), Savannah Sparrow (Passerculus sandwichensis), Bobolink (Dolichonyx oryzivorus), and Eastern Meadowlark (Sturnella magna)). We used the nest predation pattern as a surrogate for predation activity to test whether nestlings minimized predation risk by avoiding fledging when predation activity was high and preferentially fledging when predation risk was low. Predation activity was significantly lower starting 3 hr before sunrise and ending 3 hr after sunrise, followed by a transition to a period of significantly higher activity lasting for 4 hr, before declining to an average activity level for the rest of the diel period. There was little evidence that the four grassland bird species avoided fledging during the high‐risk period and Savannah Sparrow fledged at higher rates during that period. All four species had hours during the low‐risk period where they fledged at higher rates, but only Grasshopper Sparrow fledged preferentially during that period. Bobolink and Eastern Meadowlark had multiple hours with high fledging rates throughout the daytime period, resulting in no relationship between probability of fledging and predation risk. Given the species variability in fledging pattern seen in our study, it is unlikely that there is a universal response to any driver that affects time of fledging. Further study is needed to understand the complex interplay between species ecology and drivers such as physiology, energetics, and predation in affecting grassland bird fledging behavior.  相似文献   

8.
Understanding and predicting patterns of spatial organization across ecological communities is central to the field of landscape ecology, and a similar line of inquiry has begun to evolve sub‐tidally among seascape ecologists. Much of our current understanding of the processes driving marine community patterns, particularly in the tropics, has come from small‐scale, spatially‐discrete data that are often not representative of the broader seascape. Here we expand the spatial extent of seascape ecology studies and combine spatially‐expansive in situ digital imagery, oceanographic measurements, spatial statistics, and predictive modeling to test whether predictable patterns emerge between coral reef benthic competitors across scales in response to intra‐island gradients in physical drivers. We do this around the entire circumference of a remote, uninhabited island in the central Pacific (Jarvis Island) that lacks the confounding effects of direct human impacts. We show, for the first time, that competing benthic groups demonstrate predictable scaling patterns of organization, with positive autocorrelation in the cover of each group at scales < ~1 km. Moreover, we show how gradients in subsurface temperature and surface wave power drive spatially‐abrupt transition points in group dominance, explaining 48–84% of the overall variation in benthic cover around the island. Along the western coast, we documented ten times more sub‐surface cooling‐hours than any other part of the coastline, with events typically resulting in a drop of 1–4°C over a period of < 5 h. These high frequency temperature fluctuations are indicative of upwelling induced by internal waves and here result in localized nitrogen enrichment (NO2 + NO3) that promotes hard coral dominance around 44% of the island's perimeter. Our findings show that, in the absence of confounding direct human impacts, the spatial organization of coral reef benthic competitors are predictable and somewhat bounded across the seascape by concurrent gradients in physical drivers.  相似文献   

9.
10.
The relative roles of top‐down (consumer‐driven) and bottom‐up (resource‐driven) forcing in exploited marine ecosystems have been much debated. Examples from a variety of marine systems of exploitation‐induced, top‐down trophic forcing have led to a general view that human‐induced predator perturbations can disrupt entire marine food webs, yet other studies that have found no such evidence provide a counterpoint. Though evidence continues to emerge, an unresolved debate exists regarding both the relative roles of top‐down versus bottom‐up forcing and the capacity of human exploitation to instigate top‐down, community‐level effects. Using time‐series data for 104 reef communities spanning tropical to temperate Australia from 1992 to 2013, we aimed to quantify relationships among long‐term trophic group population density trends, latitude, and exploitation status over a continental‐scale biogeographic range. Specifically, we amalgamated two long‐term monitoring databases of marine community dynamics to test for significant positive or negative trends in density of each of three key trophic levels (predators, herbivores, and algae) across the entire time series at each of the 104 locations. We found that trophic control tended toward bottom‐up driven in tropical systems and top‐down driven in temperate systems. Further, alternating long‐term population trends across multiple trophic levels (a method of identifying trophic cascades), presumably due to top‐down trophic forcing, occurred in roughly fifteen percent of locations where the prerequisite significant predator trends occurred. Such alternating trophic trends were significantly more likely to occur at locations with increasing predator densities over time. Within these locations, we found a marked latitudinal gradient in the prevalence of long‐term, alternating trophic group trends, from rare in the tropics (<5% of cases) to relatively common in temperate areas (~45%). Lastly, the strongest trends in predator and algal density occurred in older no‐take marine reserves; however, exploitation status did not affect the likelihood of alternating long‐term trophic group trends occurring. Our data suggest that the type and degree of trophic forcing in this system are likely related to one or more covariates of latitude, and that ecosystem resiliency to top‐down control does not universally vary in this system based on exploitation level.  相似文献   

11.
Research focused on evaluating how human food subsidies influence the foraging ecology of scavenger species is scarce but essential for elucidating their role in shaping behavioral patterns, population dynamics, and potential impacts on ecosystems. We evaluate the potential role of humans in shaping the year‐round distribution and habitat use of individuals from a typical scavenger species, the yellow‐legged gull (Larus michahellis), breeding at southwestern Spain. To do this, we combined long‐term, nearly continuous GPS‐tracking data with spatially explicit information on habitat types and distribution of human facilities, as proxied by satellite imagery of artificial night lights. Overall, individuals were mainly associated with freshwater habitats (mean proportion, 95% CI: 40.6%, 36.9%–44.4%) followed by the marine‐related systems (40.3, 37.7%–42.8%), human‐related habitats (13.5%, 13.2%–13.8%), and terrestrial systems (5.5%, 4.6%–6.5%). However, these relative contributions to the overall habitat usage largely changed throughout the annual cycle as a likely response to ecological/physiological constraints imposed by varying energy budgets and environmental constraints resulting from fluctuations in the availability of food resources. Moreover, the tight overlap between the year‐round spatial distribution of gulls and that of human facilities suggested that the different resources individuals relied on were likely of anthropogenic origin. We therefore provide evidence supporting the high dependence of this species on human‐related food resources throughout the annual cycle. Owing to the ability of individuals to disperse and reach transboundary areas of Spain, Portugal, or Morocco, international joint efforts aimed at restricting the availability of human food resources would be required to manage this overabundant species and the associated consequences for biodiversity conservation (e.g., competitive exclusion of co‐occurring species) and human interests (e.g., airports or disease transmission).  相似文献   

12.
Grazing‐induced changes in plant quality have been suggested to drive the negative delayed density dependence exhibited by many herbivore species, but little field evidence exists to support this hypothesis. We tested a key premise of the hypothesis that reciprocal feedback between vole grazing pressure and the induction of anti‐herbivore silicon defenses in grasses drives observed population cycles in a large‐scale field experiment in northern England. We repeatedly reduced population densities of field voles (Microtus agrestis) on replicated 1‐ha grassland plots at Kielder Forest, northern England, over a period of 1 year. Subsequently, we tested for the impact of past density on vole life history traits in spring, and whether these effects were driven by induced silicon defenses in the voles’ major over‐winter food, the grass Deschampsia caespitosa. After several months of density manipulation, leaf silicon concentrations diverged and averaged 22% lower on sites where vole density had been reduced, but this difference did not persist beyond the period of the density manipulations. There were no significant effects of our density manipulations on vole body mass, spring population growth rate, or mean date for the onset of spring reproduction the following year. These findings show that grazing by field voles does induce increased silicon defenses in grasses at a landscape scale. However, at the vole densities encountered, levels of plant damage appear to be below those needed to induce changes in silicon levels large and persistent enough to affect vole performance, confirming the threshold effects we have previously observed in laboratory‐based studies. Our findings do not support the plant quality hypothesis for observed vole population cycles in northern England, at least over the range of vole densities that now prevail here.  相似文献   

13.
The Selous Game Reserve in Tanzania is believed to contain Africa's largest population of lions (Panthera leo), making it a popular destination for trophy hunters and photographic tourists. However, a lack of recent data has raised concerns about the conservation status of this iconic population, so we collected two types of population data between 2006 and 2009. First, we identified 112 individual animals in an 800 km2 study area in the photographic tourism part of Selous, giving a density of 0.14 individuals km?2. This density estimate was similar to results using the same method from 1997 to 1999, but the adult sex ratio has decreased from 1 male : 1.3 female in 1997 to 1 male : 3 females in 2009. Second, using buffalo calf distress calls, we conducted call‐up surveys to census lions in three hunting sectors in the west, east and south of Selous and in the northern photographic area. Estimated adult lion densities varied from 0.02 to 0.10 km?2, allowing an overall population estimate of 4,300 (range: 1,700–6,900). Our results highlight the value of call‐ups in surveying cryptic hunted carnivores but stress the importance of long‐term projects for calibrating the responses to call‐ups and for measuring trends in demography and population size.  相似文献   

14.
Most high value grasslands of south‐eastern Australia are restricted to small fragmented areas of public land. However, a significant proportion of native grassland is privately owned, managed with grazing rather than fire and is rarely monitored. Hence, a better understanding of grassland management and conservation on the private estate is required. Eco‐markets are policy instruments that incentivise private landholders to effectively manage and conserve native vegetation. However, short funding cycles restrict the capacity of monitoring programs to assess long‐term vegetation changes. In this study, 17 native grassland remnants on private land managed with livestock grazing were monitored before and during a 4‐year eco‐market and 6 years after it ended to determine how composition had changed over 10 years of monitoring. Numerous grassland attributes were either maintained or improved over the 10‐year period, which coincided with one of the most severe and long‐lasting droughts in recent history (i.e. the Millennium drought). In addition, several threatened species were identified as part of the program. A decline in exotic forb richness, native grass cover and native forb richness suggests there is also some impact of the Millennium drought on plant mortality as evidenced by altered litter dynamics. Inherent variability year‐to‐year for most measures of grassland attributes over the monitoring period indicates that climatic conditions have a strong influence on grassland dynamics. Our ability to determine the driver(s) of grassland composition was limited by monitoring program design. Future eco‐market monitoring programs should have adequate resources allocated to enable effective monitoring designs, that incorporate reference information and control sites, and should aim to be long‐term (i.e. >10 years). This will provide clearer insights into the drivers of grassland dynamics and allow for refinement of management options for conservation of this threatened community.  相似文献   

15.
Estimates of population parameters for the short‐finned pilot whale, Globicephala macrorhynchus, are scarce in literature, contributing to an International Union for Conservation of Nature (IUCN) status of Data Deficient. In this study, photo‐identification data collected over 7 yr from Madeira were used to estimate for the first time survivorship, capture probability, and abundance in this species using mark‐recapture methodology. The Cormack‐Jolly‐Seber model estimated that the adult island‐associated (i.e., resident and regular visitor) whales had a constant survival rate of 0.960 (95% CI: 0.853–0.990) and an annual capture probability varying between 0.372 (CI: 0.178–0.619) and 0.843 (CI: 0.619–0.947). A parameterization of the Jolly‐Seber model estimated that 140 island‐associated whales (CI: 131–151) used the area throughout the course of the study. Based on a closed population model, the most precise (lower CV) annual estimate of the total number of pilot whales using the southern and eastern waters of Madeira (~900 km2) in a 3 mo period covering summer/autumn was 334 animals (CI: 260–437). No trend was observed. Despite including biases, the approach used in this study provided plausible estimates of population parameters, which can contribute to the regional conservation strategies.  相似文献   

16.
Pygoscelis penguins are experiencing general population declines in their northernmost range whereas there are reported increases in their southernmost range. These changes are coincident with decadal‐scale trends in remote sensed observations of sea ice concentrations (SIC) and sea surface temperatures (SST) during the chick‐rearing season (austral summer). Using SIC, SST, and bathymetry, we identified separate chick‐rearing niche spaces for the three Pygoscelis penguin species and used a maximum entropy approach (MaxEnt) to spatially and temporally model suitable chick‐rearing habitats in the Southern Ocean. For all Pygoscelis penguin species, the MaxEnt models predict significant changes in the locations of suitable chick‐rearing habitats over the period of 1982–2010. In general, chick‐rearing habitat suitability at specific colony locations agreed with the corresponding increases or decreases in documented population trends over the same time period. These changes were the most pronounced along the West Antarctic Peninsula where there has been a rapid warming event during at least the last 50 years.  相似文献   

17.
Migratory species can travel tens of thousands of kilometers each year, spending different parts of their annual cycle in geographically distinct locations. Understanding the drivers of population change is vital for conserving migratory species, yet the challenge of collecting data over entire geographic ranges has hindered attempts to identify the processes leading to observed population changes. Here, we use remotely sensed environmental data and bird count data to investigate the factors driving variability in abundance in two subspecies of a long‐distance migratory shorebird, the bar‐tailed godwit Limosa lapponica. We compiled a spatially and temporally explicit dataset of three environmental variables to identify the conditions experienced by each subspecies in each stage of their annual cycle (breeding, non‐breeding and staging). We used a Bayesian N‐mixture model to analyze 18 years of monthly count data from 21 sites across Australia and New Zealand in relation to the remote sensing data. We found that the abundance of one subspecies L. l. menzbieri in their non‐breeding range was related to climate conditions in breeding grounds, and detected sustained population declines between 1995 and 2012 in both subspecies (L. l. menzbieri, –6.7% and L. l. baueri, –2.1% year–1). To investigate the possible causes of the declines, we quantified changes in habitat extent at 22 migratory staging sites in the Yellow Sea, East Asia, over a 25‐year period and found –1.7% and –1.2% year–1 loss of habitat at staging sites used by L. l. menzbieri and L. l baueri, respectively. Our results highlight the need to identify environmental and anthropogenic drivers of population change across all stages of migration to allow the formulation of effective conservation strategies across entire migratory ranges.  相似文献   

18.
Despite the importance of body size for individual fitness, population dynamics and community dynamics, the influence of climate change on growth and body size is inadequately understood, particularly for long‐lived vertebrates. Although temporal trends in body size have been documented, it remains unclear whether these changes represent the adverse impact of climate change (environmental stress constraining phenotypes) or its mitigation (via phenotypic plasticity or evolution). Concerns have also been raised about whether climate change is indeed the causal agent of these phenotypic shifts, given the length of time‐series analysed and that studies often do not evaluate – and thereby sufficiently rule out – other potential causes. Here, we evaluate evidence for climate‐related changes in adult body size (indexed by skull size) over a 4–decade period for a population of moose (Alces alces) near the southern limit of their range whilst also considering changes in density, predation, and human activities. In particular, we document: (i) a trend of increasing winter temperatures and concurrent decline in skull size (decline of 19% for males and 13% for females) and (ii) evidence of a negative relationship between skull size and winter temperatures during the first year of life. These patterns could be plausibly interpreted as an adaptive phenotypic response to climate warming given that latitudinal/temperature clines are often accepted as evidence of adaptation to local climate. However, we also observed: (iii) that moose with smaller skulls had shorter lifespans, (iv) a reduction in lifespan over the 4‐decade study period, and (v) a negative relationship between lifespan and winter temperatures during the first year of life. Those observations indicate that this phenotypic change is not an adaptive response to climate change. However, this decline in lifespan was not accompanied by an obvious change in population dynamics, suggesting that climate change may affect population dynamics and life‐histories differently.  相似文献   

19.
Range shifts and phenological change are two processes by which organisms respond to environmental warming. Understanding the mechanisms that drive these changes is key for optimal conservation and management. Here we study both processes in the migratory Bewick's swan (Cygnus columbianus bewickii) using different methods, analysing nearly 50 years of resighting data (1970–2017). In this period the wintering area of the Bewick's swans shifted eastwards (‘short‐stopping’) at a rate of ~13 km/year, thereby shortening individual migration distance on an average by 353 km. Concurrently, the time spent at the wintering grounds has reduced (‘short‐staying’) by ~38 days since 1989. We show that individuals are consistent in their migratory timing in winter, indicating that the frequency of individuals with different migratory schedules has changed over time (a generational shift). In contrast, for short‐stopping we found evidence for both individual plasticity (individuals decrease their migration distances over their lifetime) and generational shift. Additional analysis of swan resightings with temperature data showed that, throughout the winter, Bewick's swans frequent areas where air temperatures are c. 5.5°C. These areas have also shifted eastwards over time, hinting that climate warming is a contributing factor behind the observed changes in the swans' distribution. The occurrence of winter short‐stopping and short‐staying suggests that this species is to some extent able to adjust to climate warming, but benefits or repercussions at other times of the annual cycle need to be assessed. Furthermore, these phenomena could lead to changes in abundance in certain areas, with resulting monitoring and conservation implications. Understanding the processes and driving mechanisms behind population changes therefore is important for population management, both locally and across the species range.  相似文献   

20.
The obesity epidemic represents an important public health issue in the United States. Studying obesity trends across age groups over time helps to identify crucial relationships between the disease and medical treatment allowing for the development of effective prevention policies. We aim to define subgroups of age and cohort effects in obesity prevalence over time by considering an optimization approach applied to the age‐period‐cohort (APC) model. We consider a heterogeneous regression problem where the regression coefficients are age dependent and belong to subgroups with unknown grouping information. Using the APC model, we apply the alternating direction method of multipliers (ADMM) algorithm to develop a two‐step algorithm for (1) subgrouping of cohort effects based on similar characteristics and (2) subgrouping age effects over time. The proposed clustering approach is illustrated for the United States population, aged 18–79, during the period 1990–2017.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号