首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ability of harmful algal species to form dense, nearly monospecific blooms remains an ecological and evolutionary puzzle. We hypothesized that predation interacts with estuarine salinity gradients to promote blooms of Heterosigma akashiwo (Y. Hada) Y. Hada ex Y. Hara et M. Chihara, a cosmopolitan toxic raphidophyte. Specifically, H. akashiwo's broad salinity tolerance appears to provide a refuge from predation that enhances the net growth of H. akashiwo populations through several mechanisms. (1) Contrasting salinity tolerance of predators and prey. Estuarine H. akashiwo isolates from the west coast of North America grew rapidly at salinities as low as six, and distributed throughout experimental salinity gradients to salinities as low as three. In contrast, survival of most protistan predator species was restricted to salinities >15. (2) H. akashiwo physiological and behavioral plasticity. Acclimation to low salinity enhanced H. akashiwo's ability to accumulate and grow in low salinity waters. In addition, the presence of a ciliate predator altered H. akashiwo swimming behavior, promoting accumulation in low‐salinity surface layers inhospitable to the ciliate. (3) Negative effects of low salinity on predation processes. Ciliate predation rates decreased sharply at salinities <25 and, for one species, H. akashiwo toxicity increased at low salinities. Taken together, these behaviors and responses imply that blooms can readily initiate in low salinity waters where H. akashiwo would experience decreased predation pressure while maintaining near‐maximal growth rates. The salinity structure of a typical estuary would provide this HAB species a unique refuge from predation. Broad salinity tolerance in raphidophytes may have evolved in part as a response to selective pressures associated with predation.  相似文献   

2.
The breeding of plantation forestry trees for the possible afforestation of marginal land would be one approach to addressing global warming issues. Here, we developed novel transgenic Eucalyptus trees (Eucalyptus camaldulensis Dehnh.) harbouring an RNA‐Binding‐Protein (McRBP) gene derived from a halophyte plant, common ice plant (Mesembryanthemum crystallinum L.). We conducted screened‐house trials of the transgenic Eucalyptus using two different stringency salinity stress conditions to evaluate the plants’ acute and chronic salt stress tolerances. Treatment with 400 mM NaCl, as the high‐stringency salinity stress, resulted in soil electrical conductivity (EC) levels >20 mS/cm within 4 weeks. With the 400 mM NaCl treatment, >70% of the transgenic plants were intact, whereas >40% of the non‐transgenic plants were withered. Treatment with 70 mM NaCl, as the moderate‐stringency salinity stress, resulted in soil EC levels of approx. 9 mS/cm after 2 months, and these salinity levels were maintained for the next 4 months. All plants regardless of transgenic or non‐transgenic status survived the 70 mM NaCl treatment, but after 6‐month treatment the transgenic plants showed significantly higher growth and quantum yield of photosynthesis levels compared to the non‐transgenic plants. In addition, the salt accumulation in the leaves of the transgenic plants was 30% lower than that of non‐transgenic plants after 15‐week moderate salt stress treatment. There results suggest that McRBP expression in the transgenic Eucalyptus enhances their salt tolerance both acutely and chronically.  相似文献   

3.
Most research examining how herbivores and pathogens affect performance of invasive plants focuses on aboveground interactions. Although important, the role of belowground communities remains poorly understood, and the relative impact of aboveground and belowground interactions is still debated. As well, most studies of belowground interactions have been carried out in controlled environments, so little is known about the role of these interactions under natural conditions or how these relationships may change across a plant's range. Using the invasive plant Cirsium arvense, we performed a reciprocal transplant experiment to test the relative impacts of above‐ and belowground interactions at three sites across a 509‐km latitudinal gradient in its invaded range in Ontario, Canada. At each site, C. arvense seedlings were protected with above‐ and/or belowground exclosures in a factorial design. Plant performance (biomass, height, stem thickness, number of leaves, length of longest leaf, maximum rhizome length) was greatest when both above‐ and belowground exclosures were applied and lowest when no exclosures were applied. When only one type of exclosure was applied, biomass generally improved more with belowground exclosures than with aboveground exclosures. Despite site‐to‐site differences in foliar damage, root damage, and mesofaunal populations, belowground interactions generally had a greater negative impact on performance than aboveground herbivory alone. These results stress the importance of including both aboveground enemy interactions and plant–soil interactions in studies of plant community dynamics and invader performance.  相似文献   

4.
Evolution of osmoregulatory systems is a key factor in the transition of species between fresh‐ and saltwater habitats. Anopheles coluzzii and Anopheles merus are stenohaline and euryhaline malaria vector mosquitoes belonging to a larger group of sibling species, the Anopheles gambiae complex, which radiated in Africa within the last 2 million years. Comparative ecological genomics of these vector species can provide insight into the mechanisms that permitted the rapid radiation of this species complex into habitats of contrasting salinity. Here, we use RNA‐Seq to investigate gene expression differences between An. coluzzii and An. merus after briefly exposing both young and old larval instars of each species to either saltwater (SW) or freshwater (FW). Our study aims to identify candidate genes and pathways responsible for the greater SW tolerance of An. merus. Our results are congruent with the ability of gene induction to mediate salinity tolerance, with both species showing increasing amounts of differential gene expression between SW and FW as salt concentrations increase. Besides ion transporters such as AgAE2 that may serve as effectors for osmoregulation, we also find mitogen‐activated protein kinases that may serve in a phosphorylation signalling pathway responding to salinity, and report potential cross‐talk between the mosquito immune response and osmoregulation. This study provides a key step towards applying the growing molecular knowledge of these malaria vectors to improve understanding of their ecological tolerances and habitat occupancy.  相似文献   

5.
Here, we studied the evolution of salt glands in 11 species of Tamarix and determined their role in adaptation to saline environments by measuring the effect of NaCl on plant growth and salt gland characteristics. Cluster analysis divided Tamarix species into three types (types I–III) according to salt‐gland characteristics. A phylogenetic tree based on ITS sequences indicated an evolutionary relationship consistent with the geographical distribution of Tamarix. We measured growth under different NaCl conditions (0, 100, 200, and 300 mM) for 40 days in three species (Tgallica, Tramosissima, and Tlaxa) representing the three Tamarix types. With increasing NaCl concentration, the biomass of all species was significantly reduced, especially that of Tgallica. Salt secretion ability and salt‐gland density showed similar trends in three types. The order of salt tolerance was type I > type II > type III. We conclude that during Tamarix adaptation to salinity, salt‐gland evolution followed two directions: one increasing salt‐gland density, and the other increasing salt secretion rate per salt‐gland. This study provides a basis for potential mechanisms of recretohalophyte adaptation to salinity.  相似文献   

6.
It is unknown whether phenotypic plasticity in fitness‐related traits is associated with salinity–sodicity tolerance. This study compared growth and allocation phenotypic plasticity in two species with low salinity–sodicity tolerance (Chenopodium acuminatum and C. stenophyllum) and two species with high salinity–sodicity tolerance (Suaeda glauca and S. salsa) in a pot experiment in the Songnen grassland, China. While the species with low tolerance had higher growth and allocation plasticity than the highly tolerant species, the highly tolerant species only adjusted their growth traits and maintained higher fitness (e.g., plant height and total biomass) in response to increased soil salinity–sodicity, with low biomass allocation plasticity. Most plasticity is “apparent” plasticity (ontogenetic change), and only a few traits, for example, plant height:stem diameter ratio and root:shoot biomass ratio, represent “real” plasticity (real change in response to the environment). Our results show that phenotypic plasticity was negatively correlated with saline–sodic tolerance and could be used as an index of species sensitivity to soil salinity–sodicity.  相似文献   

7.
  • Coastal salt marsh plants employ various combinations of morphological and physiological adaptations to survive under saline conditions. Little information is available on salinity tolerance mechanisms of Halopeplis perfoliata, a C3 stem succulent halophyte.
  • We investigated the growth, photosynthesis and antioxidant defence mechanisms of H. perfoliata under saline conditions (0, 150, 300 and 600 mM NaCl) in an open greenhouse.
  • Optimal shoot succulence, projected shoot area and relative growth rate were obtained in the low (150 mm NaCl) salinity treatment, while growth was inhibited at the highest salinity (600 mm NaCl). The CO2 compensation point and carbon isotope composition of biomass confirmed C3 photosynthesis. Increases in salinity did not affect the photosynthetic pigment content or maximum quantum efficiency of PSII of H. perfoliata. Assimilation of CO2 (A) also remained unaffected by salinity. A modest effect on some gas exchange and photochemistry parameters was observed at 600 mm NaCl. With increasing salinity, there was a continual increase in respiration, suggesting utilisation of energy to cope with saline conditions. Under 300 and 600 mm NaCl, there was an increase in H2O2 and MDA with a concomitant rise in AsA, GR content and CAT activity.
  • Hence, H. perfoliata appears to be an obligate halophyte that can grow up to seawater salinities by modulating photosynthetic gas exchange, photochemistry and the antioxidant defence systems.
  相似文献   

8.
The underground part of a tree is an important carbon sink in forest ecosystems. Understanding biomass allocation between the below‐ and aboveground parts (root:shoot ratios) is necessary for estimation of the underground biomass and carbon pool. Nevertheless, large‐scale biomass allocation patterns and their control mechanisms are not well identified. In this study, a large database of global forests at the community level was compiled to investigate the root:shoot ratios and their responses to environmental factors. The results indicated that both the aboveground biomass (AGB) and belowground biomass (BGB) of the forests in China (medians 73.0 Mg/ha and 17.0 Mg/ha, respectively) were lower than those worldwide (medians 120.3 Mg/ha and 27.7 Mg/ha, respectively). The root:shoot ratios of the forests in China (median = 0.23), however, were not significantly different from other forests worldwide (median = 0.24). In general, the allocation of biomass between the belowground and aboveground parts was determined mainly by the inherent allometry of the plant but also by environmental factors. In this study, most correlations between root:shoot ratios and environmental factors (development parameter, climate, altitude, and soil) were weak but significant (< .01). The allometric model agreed with the trends observed in this study and effectively estimated BGB based on AGB across the entire database.  相似文献   

9.
A laboratory study using the fish‐killing raphidophyte Heterosigma akashiwo was conducted to examine its capability to grow at salinities below oceanic, and to test the perceived relationship between reduced salinities and increased cytotoxicity. A nonaxenic strain of H. akashiwo isolated from the U.S. Pacific Northwest was exposed to a combination of three salinity (32, 20, and 10) and five temperature (14.7°C, 18.4°C, 21.4°C, 24.4°C and 27.8°C) conditions. Our results demonstrate that cell permeability and cytotoxicity are strongly correlated in unialgal cultures of H. akashiwo, which both increased as salinity decreased from 32 to 10. Furthermore, over a broad median range of salinities (10 and 20), neither temperature nor specific growth rate was correlated with cytotoxicity. However, in cultures grown at the salinity of 32, both temperature and specific growth rate were inversely proportional to toxicity; this relationship was likely due to the effect of contamination by an unidentified species of Skeletonema in those cultures. The presence of Skeletonema sp. resulted in a cytotoxic response from H. akashiwo that was greater than the response caused by salinity alone. These laboratory results reveal the capability of H. akashiwo to become more toxic not only at reduced salinities but also in competition with another algal species. Changes in cell permeability in response to salinity may be an acclimation mechanism by which H. akashiwo is able to respond rapidly to different salinities. Furthermore, due to its strong positive correlation with cytotoxicity, cellular permeability is potentially associated with the ichthyotoxic pathway of this raphytophyte.  相似文献   

10.
Elevated atmospheric CO2 concentrations ([CO2]) generally increase primary production of terrestrial ecosystems. Production responses to elevated [CO2] may be particularly large in deserts, but information on their long‐term response is unknown. We evaluated the cumulative effects of elevated [CO2] on primary production at the Nevada Desert FACE (free‐air carbon dioxide enrichment) Facility. Aboveground and belowground perennial plant biomass was harvested in an intact Mojave Desert ecosystem at the end of a 10‐year elevated [CO2] experiment. We measured community standing biomass, biomass allocation, canopy cover, leaf area index (LAI), carbon and nitrogen content, and isotopic composition of plant tissues for five to eight dominant species. We provide the first long‐term results of elevated [CO2] on biomass components of a desert ecosystem and offer information on understudied Mojave Desert species. In contrast to initial expectations, 10 years of elevated [CO2] had no significant effect on standing biomass, biomass allocation, canopy cover, and C : N ratios of above‐ and belowground components. However, elevated [CO2] increased short‐term responses, including leaf water‐use efficiency (WUE) as measured by carbon isotope discrimination and increased plot‐level LAI. Standing biomass, biomass allocation, canopy cover, and C : N ratios of above‐ and belowground pools significantly differed among dominant species, but responses to elevated [CO2] did not vary among species, photosynthetic pathway (C3 vs. C4), or growth form (drought‐deciduous shrub vs. evergreen shrub vs. grass). Thus, even though previous and current results occasionally show increased leaf‐level photosynthetic rates, WUE, LAI, and plant growth under elevated [CO2] during the 10‐year experiment, most responses were in wet years and did not lead to sustained increases in community biomass. We presume that the lack of sustained biomass responses to elevated [CO2] is explained by inter‐annual differences in water availability. Therefore, the high frequency of low precipitation years may constrain cumulative biomass responses to elevated [CO2] in desert environments.  相似文献   

11.
We investigated the roles of flooding, salinity, and plant competition in creating a bimodal zonation pattern of the marsh dominant annual plant, Suaeda salsa, along coastal topographic gradients on the Pacific coast of northern China. In two consecutive years, we manipulated salinity and flooding, salinity, and competition for S. salsa seedlings that had been transplanted into the mudflat, the high marsh, and the upland, respectively. S. salsa plants that had been transplanted into the mudflat were completely eliminated in the non-elevated treatments whereas they performed much better in the 10 cm elevated treatments, regardless of salinity treatments. Although the performance of S. salsa transplanted into the high marsh did not differ between the fresh (watered) and the salt (control) treatments, S. salsa seedling emergence in the high marsh was nearly completely inhibited in the salt treatments. In contrast, a large number of S. salsa seedlings did emerge in the fresh treatments. S. salsa transplanted into the upland performed well when neighbors were removed, whereas it appeared to be strongly suppressed when neighbors were present. These data indicated that flooding, salinity, and competition all played a role in determining the zonation pattern of S. salsa. Furthermore, the importance of salinity was found to vary with life-history stage. Based on the results from these field manipulative experiments, we suggest that the marsh plant zonation paradigm may hold true for plant distributions along landscape-scale topographic gradients from mudflats to uplands in general. The relative importance of flooding, salinity, and competition, however, may vary at different elevations within a site and between sites. Handling editor: Pierluigi Viaroli  相似文献   

12.
Rising sea levels threaten coastal safety by increasing the risk of flooding. Coastal dunes provide a natural form of coastal protection. Understanding drivers that constrain early development of dunes is necessary to assess whether dune development may keep pace with sea‐level rise. In this study, we explored to what extent salt stress experienced by dune building plant species constrains their spatial distribution at the Dutch sandy coast. We conducted a field transplantation experiment and a glasshouse experiment with two dune building grasses Ammophila arenaria and Elytrigia juncea. In the field, we measured salinity and monitored growth of transplanted grasses in four vegetation zones: (I) nonvegetated beach, (II) E. juncea occurring, (III) both species co‐occurring, and (IV) A. arenaria dominant. In the glasshouse, we subjected the two species to six soil salinity treatments, with and without salt spray. We monitored biomass, photosynthesis, leaf sodium, and nutrient concentrations over a growing season. The vegetation zones were weakly associated with summer soil salinity; zone I and II were significantly more saline than zones III and IV. Ammophila arenaria performed equally (zone II) or better (zones III, IV) than E. juncea, suggesting soil salinity did not limit species performance. Both species showed severe winter mortality. In the glasshouse, A. arenaria biomass decreased linearly with soil salinity, presumably as a result of osmotic stress. Elytrigia juncea showed a nonlinear response to soil salinity with an optimum at 0.75% soil salinity. Our findings suggest that soil salinity stress either takes place in winter, or that development of vegetated dunes is less sensitive to soil salinity than hitherto expected.  相似文献   

13.
Sediment deposition is a common phenomenon in the estuary area. Pot control experiments were conducted to evaluate the interaction effects of sediment burial depth and salt stress on the seed germination and early seedling growth of Suaeda salsa (L.) Pall., an pioneer species of tidal wetland near the Yellow River Delta. The results showed that the percentage of seedling emergence, seedling emergence rate, seedling height, branch number, shoot biomass and root biomass were all significantly affected by salt stress and sediment burial depth. While the interaction of salt and burial depth significantly influenced the branch number, leaf biomass, shoot biomass and total plant biomass. Only 5 cm burial depth without salt stress should 6.25 ± 3.61% seedlings emergence. With the increasing of sediment burial depth and salt stress, percentage of seedling emergence, seedling emergence rate and plant height decreased significantly. However, under the salt treatment of 0 and 1%, the branch number increased dramatically with the increasing of sediment burial depth from 0 to 3 cm. The ratio of leaf to total biomass increased with increasing of burial depth, on the contrary, the ratio of root to total biomass decreased. 0–1 cm sediment burial depth was proved the suitable depths for seed germination of S. salsa in the coastal wetland of the Yellow River Delta. Our findings contribute to a better understanding of how to improve the seedling establishment of S. salsa under the dynamic changes of sediment deposition and salinity in the coastal wetland of the Yellow River Delta.  相似文献   

14.
Cereal varieties with improved salinity tolerance are needed to achieve profitable grain yields in saline soils. The expression of AVP1, an Arabidopsis gene encoding a vacuolar proton pumping pyrophosphatase (H+‐PPase), has been shown to improve the salinity tolerance of transgenic plants in greenhouse conditions. However, the potential for this gene to improve the grain yield of cereal crops in a saline field has yet to be evaluated. Recent advances in high‐throughput nondestructive phenotyping technologies also offer an opportunity to quantitatively evaluate the growth of transgenic plants under abiotic stress through time. In this study, the growth of transgenic barley expressing AVP1 was evaluated under saline conditions in a pot experiment using nondestructive plant imaging and in a saline field trial. Greenhouse‐grown transgenic barley expressing AVP1 produced a larger shoot biomass compared to null segregants, as determined by an increase in projected shoot area, when grown in soil with 150 mm NaCl. This increase in shoot biomass of transgenic AVP1 barley occurred from an early growth stage and also in nonsaline conditions. In a saline field, the transgenic barley expressing AVP1 also showed an increase in shoot biomass and, importantly, produced a greater grain yield per plant compared to wild‐type plants. Interestingly, the expression of AVP1 did not alter barley leaf sodium concentrations in either greenhouse‐ or field‐grown plants. This study validates our greenhouse‐based experiments and indicates that transgenic barley expressing AVP1 is a promising option for increasing cereal crop productivity in saline fields.  相似文献   

15.
Arundo donax L., commonly known as giant reed, is promising biomass feedstock that is also a notorious invasive plant in freshwater ecosystems around the world. Heretofore, the salt tolerance of A. donax had not been quantified even though anecdotal evidence suggests halophytic qualities. To test whole-plant and leaf level responses, we established a pot experiment on 80 scions propagated from an A. donax population that has naturalized on the shore of the San Francisco Bay Estuary. To quantify growth and physiological responses to salinity (NaCl), A. donax scions were divided into eight treatments and grown for 60 days across a range of salinities (0–42 dS m−1). Classic growth analysis showed >80% reduction in overall growth at the highest salinities. Yet, there was zero mortality indicating that A. donax is able to tolerate high levels of salt. Declining photosynthesis rates were strongly correlated (R2 > 0.97) with decreasing stomatal conductance, which was in turn closely related to increasing salinity. Leaf gas exchange revealed that stomata and leaf limitations of carbon dioxide were three times greater at high salinities. Nonetheless, even when salinities were 38–42 dS m−1 A. donax was able to maintain assimilation rates 7–12 μmol m−2 s−1. Further, by maintaining 50% relative growth at salinities ~12 dS m−1 A. donax can now be classified as ‘moderately salt tolerant’. A. donax leaf gas exchange and whole-plant salt tolerance are greater than many important food crops (i.e. maize, rice), the bioenergy feedstock Miscanthus × giganteus, as well as some uncultivated plant species (i.e. Populus and Salix) that are indigenous in regions A. donax currently invades. The results of this study have implications for both agronomists wishing to expand A. donax to fields dominated by saline soils, and for others who are concerned about the spread of A. donax with altered stream hydrology or sea-level rise.  相似文献   

16.
An invasive wetland grass primes deep soil carbon pools   总被引:1,自引:0,他引:1       下载免费PDF全文
Understanding the processes that control deep soil carbon (C) dynamics and accumulation is of key importance, given the relevance of soil organic matter (SOM) as a vast C pool and climate change buffer. Methodological constraints of measuring SOM decomposition in the field prevent the addressing of real‐time rhizosphere effects that regulate nutrient cycling and SOM decomposition. An invasive lineage of Phragmites australis roots deeper than native vegetation (Schoenoplectus americanus and Spartina patens) in coastal marshes of North America and has potential to dramatically alter C cycling and accumulation in these ecosystems. To evaluate the effect of deep rooting on SOM decomposition we designed a mesocosm experiment that differentiates between plant‐derived, surface SOM‐derived (0–40 cm, active root zone of native marsh vegetation), and deep SOM‐derived mineralization (40–80 cm, below active root zone of native vegetation). We found invasive P. australis allocated the highest proportion of roots in deeper soils, differing significantly from the native vegetation in root : shoot ratio and belowground biomass allocation. About half of the CO2 produced came from plant tissue mineralization in invasive and native communities; the rest of the CO2 was produced from SOM mineralization (priming). Under P. australis, 35% of the CO2 was produced from deep SOM priming and 9% from surface SOM. In the native community, 9% was produced from deep SOM priming and 44% from surface SOM. SOM priming in the native community was proportional to belowground biomass, while P. australis showed much higher priming with less belowground biomass. If P. australis deep rooting favors the decomposition of deep‐buried SOM accumulated under native vegetation, P. australis invasion into a wetland could fundamentally change SOM dynamics and lead to the loss of the C pool that was previously sequestered at depth under the native vegetation, thereby altering the function of a wetland as a long‐term C sink.  相似文献   

17.
Salicornia europaea L. is a halophyte that often occupies the lowestand most saline (>3.5% total salt) areas of salt marshes. Atriplexprostrata Boucher is less salt tolerant than S. europaea and oftengrows in a less saline (<2.0% total salts) zone adjacent to S. europaea. The purpose of this experiment was to determine thecompetitive outcome when these two species are grown at differentsalinities to ascertain the extent salinity and competition affect plantzonation. Plants were grown in a de Wit replacement series at 85, 170,and 340 mM NaCl in half-strength Hoagland's no. 2 nutrient solution fortwo months. There was a significant effect of salt concentration,competition, and their interaction on biomass production of S. europaea plants. However, only salt concentration significantly affectedbiomass production of A. prostrata plants. Results of thisexperiment confirmed the results of other studies that demonstrated thatthe more salt tolerant species were less competitive at lower salinities. Atriplex prostrata was the better competitor at 85 mM NaCl, whereasS. europaea was the better competitor at 340 mM NaClbecause growth of A. prostrata was inhibited. At 170 mMNaCl, A. prostrata biomass production decreased more than S. europaea biomass in mixed culture.  相似文献   

18.
The invasive, euryhaline hydroid Cordylophora sp. is a colonial cnidarian present in both freshwater and brackish water habitats. Individuals contend with osmotic stress at the tissue and cellular level. It has been suggested that this hydroid's ability to expand its range of distribution by invading new habitats is due in large part to an ability to acclimate to new salinities. The purpose of this study was to assess colony growth and morphological changes at various salinities in freshwater and brackish genotypes of Cordylophora sp. Single genotypes from a known freshwater clade (0.5 psu; Des Plaines River) and a known brackish clade (16 psu; Napa River) were cultured and gradually transitioned to 12 different salinities ranging 0.5–22 psu, and we characterized the growth rates and hydranth morphological features at each salinity. Colony growth was optimal at 0.5 psu for the freshwater genotype and 10 psu for the brackish genotype. Changes in hydranth morphology in the freshwater genotype were primarily observed at higher salinities, while morphological changes in the brackish genotype primarily occurred at lower salinities. Our results for the brackish genotype generally concur with previous work, but this study is the first to document the response of a freshwater genotype of Cordylophora sp. to various salinities. Differences in growth between these two genotypes strongly support the previously proposed existence of multiple cryptic species. Furthermore, because this hydroid is quite prevalent in freshwater and brackish systems as a fouling organism, understanding the effects of various salinities on the successful establishment of Cordylophora sp. is an important contribution to the understanding of the ecophysiology and management of this invasive hydroid.  相似文献   

19.
Question: What are the interactive roles of abiotic stress and plant interactions in mediating the zonation of the shrub Tamarix chinensis along a salinity gradient? Location: Yellow River estuary (37°46′N, 119°09′E), northeast China. Methods: We surveyed the zonation of T. chinensis along a salinity gradient and quantified its salt tolerance using a pot experiment. In two field experiments, we transplanted T. chinensis seedlings into salt marsh, transitional zone and upland habitats, manipulated neighbours and quantified survivorship and biomass to examine neighbour effects. We also quantified vegetation effects on abiotic conditions in each zone. Results: Tamarix chinensis dominated the transitional zone, but was absent in upland and salt marsh habitats. In the pot experiment, T. chinensis grew well in freshwater treatments, but was inhibited by increasing salinity. Field experiments revealed that competition from neighbours limited T. chinensis growth in the uplands, while T. chinensis transplants were limited, with or without neighbours, in the salt marsh by high soil salinity. In the transitional zone, however, T. chinensis transplants performed better with than without neighbours. Vegetation removal significantly elevated soil salinity in the transitional zone, but not in other zones. Conclusions: Competition, facilitation and abiotic stress are all important in mediating the zonation of T. chinensis. Within its physiological stress tolerance range, or fundamental niche, it is limited by plant competition in low salinity habitats, and facilitated by neighbours in high salt stress habitats, but cannot survive in salt marshes having salinities above its salt stress tolerance limit. Our results have implications for understanding the relationships between facilitation and stress gradients.  相似文献   

20.
  • There is an increasing interest to use halophytes for revegetation of salt affected ecosystems, as well as in understanding their mechanisms of salt tolerance. We hypothesized that bacteria from the phyllosphere of these plants might play a key role in its high tolerance to excessive salinity.
  • Eight endophytic bacteria belonging to Bacillus and closely related genera were isolated from phyllosphere of the halophyte Arthrocnemum macrostachyum growing in salty agricultural soils. The presence of plant‐growth promoting (PGP) properties, enzymatic activities and tolerance towards NaCl was determined. Effects of inoculation on seeds germination and adult plant growth under experimental NaCl treatments (0, 510 and 1030 mM NaCl) were studied.
  • Inoculation with a consortium including the best performing bacteria improved considerably the kinetics of germination and the final germination percentage of A. macrostachyum seeds. At high NaCl concentrations (1030 mM), inoculation of plants mitigated the effects of high salinity on plant growth and physiological performance and, in addition, this consortium appears to have increased the potential of A. macrostachyum to accumulate Na+ in its shoots, thus improving sodium phytoextraction capacity.
  • Bacteria isolated from A. macrostachyum phyllosphere seem to play an important role in plant salt tolerance under stressing salt concentrations. The combined use of A. macrostachyum and its microbiome can be an adequate tool to enhance plant adaptation and sodium phytoextraction during restoration of salt degraded soils.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号