首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In 2010, the American pika (Ochotona princeps fenisex) was denied federal protection based on limited evidence of persistence in low‐elevation environments. Studies in nonalpine areas have been limited to relatively few environments, and it is unclear whether patterns observed elsewhere (e.g., Bodie, CA) represent other nonalpine habitats. This study was designed to establish pika presence in a new location, determine distribution within the surveyed area, and evaluate influences of elevation, vegetation, lava complexity, and distance to habitat edge on pika site occupancy. In 2011 and 2012, we conducted surveys for American pika on four distinct subalpine lava flows of Newberry National Volcanic Monument, Oregon, USA. Field surveys were conducted at predetermined locations within lava flows via silent observation and active searching for pika sign. Site habitat characteristics were included as predictors of occupancy in multinomial regression models. Above and belowground temperatures were recorded at a subsample of pika detection sites. Pika were detected in 26% (2011) and 19% (2012) of survey plots. Seventy‐four pika were detected outside survey plot boundaries. Lava complexity was the strongest predictor of pika occurrence, where pika were up to seven times more likely to occur in the most complicated lava formations. Pika were two times more likely to occur with increasing elevation, although they were found at all elevations in the study area. This study expands the known distribution of the species and provides additional evidence for persistence in nonalpine habitats. Results partially support the predictive occupancy model developed for pika at Craters of the Moon National Monument, another lava environment. Characteristics of the lava environment clearly influence pika site occupancy, but habitat variables reported as important in other studies were inconclusive here. Further work is needed to gain a better understanding of the species’ current distribution and ability to persist under future climate conditions.  相似文献   

2.
3.
Glucocorticoids are often measured in wildlife to assess physiological responses to environmental or ecological stress. Hair, blood, saliva, or fecal samples are generally used depending on the timescale of the stress response being investigated and species‐specific considerations. Here, we report the first use of hair samples to measure long‐term corticosterone levels in the climate‐sensitive American pika (Ochotona princeps). We validated an immunoassay‐based measurement of corticosterone extracted from hair samples and compared corticosterone estimates obtained from plasma, hair, and fecal samples of nine pikas. To demonstrate an ecological application of this technique, we characterized physiological stress in 49 pikas sampled and released at eight sites along two elevational transects. Microclimate variation was measured at each site using both ambient and subsurface temperature sensors. We used an information theoretic approach to compare support for linear, mixed‐effects models relating corticosterone estimates to microclimate, body size, and sex. Corticosterone was measured accurately in pika hair samples after correcting for the influence of sample mass on corticosterone extraction efficiency. Hair‐ and plasma‐based estimates of corticosterone were weakly correlated. The best‐supported model suggested that corticosterone was lower in larger, male pikas, and at locations with higher ambient temperatures in summer. Our results are consistent with a general negative relationship between body mass and glucocorticoid concentration observed across mammalian species, attributed to the higher mass‐specific metabolic rates of smaller bodied animals. The higher corticosterone levels in female pikas likely reflected the physiological demands of reproduction, as observed in a wide array of mammalian species. Additionally, we establish the first direct physiological evidence for thermal stress in the American pika through nonlethal sampling of corticosterone. Interestingly, our data suggest evidence for cold stress likely induced during the summer molting period. This technique should provide a useful tool to researchers wishing to assess chronic stress in climate‐sensitive mammals.  相似文献   

4.
Climate change is arguably the greatest challenge to conservation of our time. Most vulnerability assessments rely on past and current species distributions to predict future persistence but ignore species' abilities to disperse through landscapes, which may be particularly important in fragmented habitats and crucial for long‐term persistence in changing environments. Landscape genetic approaches explore the interactions between landscape features and gene flow and can clarify how organisms move among suitable habitats, but have suffered from methodological uncertainties. We used a landscape genetic approach to determine how landscape and climate‐related features influence gene flow for American pikas (Ochotona princeps) in Crater Lake National Park. Pikas are heat intolerant and restricted to cool microclimates; thus, range contractions have been predicted as climate changes. We evaluated the correlation between landscape variables and genetic distance using partial Mantel tests in a causal modelling framework, and used spatially explicit simulations to evaluate methods of model optimization including a novel approach based on relative support and reciprocal causal modelling. We found that gene flow was primarily restricted by topographic relief, water and west‐facing aspects, suggesting that physical restrictions related to small body size and mode of locomotion, as well as exposure to relatively high temperatures, limit pika dispersal in this alpine habitat. Our model optimization successfully identified landscape features influencing resistance in the simulated data for this landscape, but underestimated the magnitude of resistance. This is the first landscape genetic study to address the fundamental question of what limits dispersal and gene flow in the American pika.  相似文献   

5.
How climate constrains species’ distributions through time and space is an important question in the context of conservation planning for climate change. Despite increasing awareness of the need to incorporate mechanism into species distribution models (SDMs), mechanistic modeling of endotherm distributions remains limited in this literature. Using the American pika (Ochotona princeps) as an example, we present a framework whereby mechanism can be incorporated into endotherm SDMs. Pika distribution has repeatedly been found to be constrained by warm temperatures, so we used Niche Mapper, a mechanistic heat‐balance model, to convert macroclimate data to pika‐specific surface activity time in summer across the western United States. We then explored the difference between using a macroclimate predictor (summer temperature) and using a mechanistic predictor (predicted surface activity time) in SDMs. Both approaches accurately predicted pika presences in current and past climate regimes. However, the activity models predicted 8–19% less habitat loss in response to annual temperature increases of ~3–5 °C predicted in the region by 2070, suggesting that pikas may be able to buffer some climate change effects through behavioral thermoregulation that can be captured by mechanistic modeling. Incorporating mechanism added value to the modeling by providing increased confidence in areas where different modeling approaches agreed and providing a range of outcomes in areas of disagreement. It also provided a more proximate variable relating animal distribution to climate, allowing investigations into how unique habitat characteristics and intraspecific phenotypic variation may allow pikas to exist in areas outside those predicted by generic SDMs. Only a small number of easily obtainable data are required to parameterize this mechanistic model for any endotherm, and its use can improve SDM predictions by explicitly modeling a widely applicable direct physiological effect: climate‐imposed restrictions on activity. This more complete understanding is necessary to inform climate adaptation actions, management strategies, and conservation plans.  相似文献   

6.
The American pika (Ochotona princeps) is considered a sentinel species for detecting ecological effects of climate change. Pikas are declining within a large portion of their range, and ongoing research suggests loss of sub-surface ice as a mechanism. However, no studies have demonstrated physiological responses of pikas to sub-surface ice features. Here we present the first analysis of physiological stress in pikas living in and adjacent to habitats underlain by ice. Fresh fecal samples were collected non-invasively from two adjacent sites in the Rocky Mountains (one with sub-surface ice and one without) and analyzed for glucocorticoid metabolites (GCM). We also measured sub-surface microclimates in each habitat. Results indicate lower GCM concentration in sites with sub-surface ice, suggesting that pikas are less stressed in favorable microclimates resulting from sub-surface ice features. GCM response was well predicted by habitat characteristics associated with sub-surface ice features, such as lower mean summer temperatures. These results suggest that pikas inhabiting areas without sub-surface ice features are experiencing higher levels of physiological stress and may be more susceptible to changing climates. Although post-deposition environmental effects can confound analyses based on fecal GCM, we found no evidence for such effects in this study. Sub-surface ice features are key to water cycling and storage and will likely represent an increasingly important component of water resources in a warming climate. Fecal samples collected from additional watersheds as part of current pika monitoring programs could be used to further characterize relationships between pika stress and sub-surface ice features.  相似文献   

7.
Measurement of stress hormone metabolites in fecal samples has become a common method to assess physiological stress in wildlife populations. Glucocorticoid metabolite (GCM) measurements can be collected noninvasively, and studies relating this stress metric to anthropogenic disturbance are increasing. However, environmental characteristics (e.g., temperature) can alter measured GCM concentration when fecal samples cannot be collected immediately after defecation. This effect can confound efforts to separate environmental factors causing predeposition physiological stress in an individual from those acting on a fecal sample postdeposition. We used fecal samples from American pikas (Ochotona princeps) to examine the influence of environmental conditions on GCM concentration by (1) comparing GCM concentration measured in freshly collected control samples to those placed in natural habitats for timed exposure, and (2) relating GCM concentration in samples collected noninvasively throughout the western United States to local environmental characteristics measured before and after deposition. Our timed‐exposure trials clarified the spatial scale at which exposure to environmental factors postdeposition influences GCM concentration in pika feces. Also, fecal samples collected from occupied pika habitats throughout the species' range revealed significant relationships between GCM and metrics of climate during the postdeposition period (maximum temperature, minimum temperature, and precipitation during the month of sample collection). Conversely, we found no such relationships between GCM and metrics of climate during the predeposition period (prior to the month of sample collection). Together, these results indicate that noninvasive measurement of physiological stress in pikas across the western US may be confounded by climatic conditions in the postdeposition environment when samples cannot be collected immediately after defecation. Our results reiterate the importance of considering postdeposition environmental influences on this stress metric, especially in multiregional comparisons. However, measurements of fecal GCM concentration should prove useful for population monitoring within an eco‐region or when postdeposition exposure can be minimized.  相似文献   

8.
Understanding population genetic structure of climate‐sensitive herbivore species is important as it provides useful insights on how shifts in environmental conditions can alter their distribution and abundance. Herbivore responses to the environment can have a strong indirect cascading effect on community structure. This is particularly important for Royle's pika (Lagomorpha: Ochotona roylei), a herbivorous talus‐dwelling species in alpine ecosystem, which forms a major prey base for many carnivores in the Himalayan arc. In this study, we used seven polymorphic microsatellite loci to detect evidence for recent changes in genetic diversity and population structure in Royle's pika across five locations sampled between 8 and 160 km apart in the western Himalaya. Using four clustering approaches, we found the presence of significant contemporary genetic structure in Royle's pika populations. The detected genetic structure could be primarily attributed to the landscape features in alpine habitat (e.g., wide lowland valleys, rivers) that may act as semipermeable barriers to gene flow and distribution of food plants, which are key determinants in spatial distribution of herbivores. Pika showed low inbreeding coefficients (FIS) and a high level of pairwise relatedness for individuals within 1 km suggesting low dispersal abilities of talus‐dwelling pikas. We have found evidence of a recent population bottleneck, possibly due to effects of environmental disturbances (e.g., snow melting patterns or thermal stress). Our results reveal significant evidence of isolation by distance in genetic differentiation (FST range = 0.04–0.19). This is the first population genetics study on Royle's pika, which helps to address evolutionary consequences of climate change which are expected to significantly affect the distribution and population dynamics in this talus‐dwelling species.  相似文献   

9.
Ectotherms can attain preferred body temperatures by selecting specific temperature microhabitats within a varied thermal environment. The side‐blotched lizard, Uta stansburiana may employ microhabitat selection to thermoregulate behaviorally. It is unknown to what degree habitat structural complexity provides thermal microhabitats for thermoregulation. Thermal microhabitat structure, lizard temperature, and substrate preference were simultaneously evaluated using thermal imaging. A broad range of microhabitat temperatures was available (mean range of 11°C within 1–2 m2) while mean lizard temperature was between 36°C and 38°C. Lizards selected sites that differed significantly from the mean environmental temperature, indicating behavioral thermoregulation, and maintained a temperature significantly above that of their perch (mean difference of 2.6°C). Uta's thermoregulatory potential within a complex thermal microhabitat structure suggests that a warming trend may prove advantageous, rather than detrimental for this population.  相似文献   

10.
The ecological effects of climate change have been shown in most major taxonomic groups; however, the evolutionary consequences are less well‐documented. Adaptation to new climatic conditions offers a potential long‐term mechanism for species to maintain viability in rapidly changing environments, but mammalian examples remain scarce. The American pika (Ochotona princeps) has been impacted by recent climate‐associated extirpations and range‐wide reductions in population sizes, establishing it as a sentinel mammalian species for climate change. To investigate evidence for local adaptation and reconstruct patterns of genomic diversity and gene flow across rapidly changing environments, we used a space‐for‐time design and restriction site‐associated DNA sequencing to genotype American pikas along two steep elevational gradients at 30,966 SNPs and employed independent outlier detection methods that scanned for genotype‐environment associations. We identified 338 outlier SNPs detected by two separate analyses and/or replicated in both transects, several of which were annotated to genes involved in metabolic function and oxygen transport. Additionally, we found evidence of directional gene flow primarily downslope from high‐elevation populations, along with reduced gene flow at outlier loci. If this trend continues, elevational range contractions in American pikas will likely be from local extirpation rather than upward movement of low‐elevation individuals; this, in turn, could limit the potential for adaptation within this landscape. These findings are of particular relevance for future conservation and management of American pikas and other elevationally restricted, thermally sensitive species.  相似文献   

11.
Ecological niche theory holds that species distributions are shaped by a large and complex suite of interacting factors. Species distribution models (SDMs) are increasingly used to describe species’ niches and predict the effects of future environmental change, including climate change. Currently, SDMs often fail to capture the complexity of species’ niches, resulting in predictions that are generally limited to climate‐occupancy interactions. Here, we explore the potential impact of climate change on the American pika using a replicated place‐based approach that incorporates climate, gene flow, habitat configuration, and microhabitat complexity into SDMs. Using contemporary presence–absence data from occupancy surveys, genetic data to infer connectivity between habitat patches, and 21 environmental niche variables, we built separate SDMs for pika populations inhabiting eight US National Park Service units representing the habitat and climatic breadth of the species across the western United States. We then predicted occurrence probability under current (1981–2010) and three future time periods (out to 2100). Occurrence probabilities and the relative importance of predictor variables varied widely among study areas, revealing important local‐scale differences in the realized niche of the American pika. This variation resulted in diverse and – in some cases – highly divergent future potential occupancy patterns for pikas, ranging from complete extirpation in some study areas to stable occupancy patterns in others. Habitat composition and connectivity, which are rarely incorporated in SDM projections, were influential in predicting pika occupancy in all study areas and frequently outranked climate variables. Our findings illustrate the importance of a place‐based approach to species distribution modeling that includes fine‐scale factors when assessing current and future climate impacts on species’ distributions, especially when predictions are intended to manage and conserve species of concern within individual protected areas.  相似文献   

12.
The plateau pika (Ochotona curzoniae) of the Qinghai–Xizang (Tibetan) plateau, People's Republic of China, has been considered a pest because it putatively competes with native livestock for forage and contributes to rangeland degradation. As a result the plateau pika has been poisoned across vast areas of the high alpine meadows of the plateau. The plateau pika has also been considered a keystone species for biodiversity on the plateau. As one test of the keystone species hypothesis, we investigated the effects of poisoning plateau pikas on avian species richness and abundance. We conducted standardized censuses of birds on a number of sites across the alpine grassland of Qinghai province on which pikas either had or had not been poisoned. Avian species richness and abundance were higher on non-poisoned sites, in particular for species that nest in pika burrows such as Hume's groundpecker (Pseudopodoces humilis) and six species of snowfinch (Montifringilla spp., Pyrgilauda spp.), and species that prey on pikas (upland buzzard, Buteo hemilasius; black-eared kite, Milvus lineatus). The plateau pika thus appears to be both an allogenic engineer and a keystone species. Poisoning pikas reduces biodiversity of native species on the Qinghai–Xizang plateau, therefore management decisions concerning plateau pikas should reflect caution and careful assessment.  相似文献   

13.
A brief history of Great Basin pikas   总被引:3,自引:1,他引:2  
Aim Within the past few decades, seven of the 25 historically described populations of American pikas (Ochotona princeps) in the Great Basin of arid western North America appear to have become extinct. In this paper, the prehistoric record for pikas in the Great Basin is used to place these losses in deeper historical context. Location The Great Basin, or area of internal drainage, of the western United States. Methods The location, elevation, and age of all reported prehistoric Great Basin specimens of American pikas were extracted from the literature. Elevations of extinct pika populations were arrayed through time, and latitudes and longitudes of those populations used to determine changing distances of those populations from the nearest extant populations. Results The average elevation of now‐extinct Great Basin pika populations during the late Wisconsinan (c. 40,000–10,000 radiocarbon years ago) and early Holocene (c. 10,000–7500 years ago) was 1750 m. During the hot and dry middle Holocene (c. 7500–4500 years ago), the average elevation of these populations rose 435 m, to 2168 m. All prehistorically known late Holocene (c. 4500–200 years ago) populations in the Great Basin are from mountain ranges that currently support populations of this animal, but historic period losses have caused the average elevation of pika populations to rise an additional 152 m. The total elevational increase, from the late Wisconsinan and early Holocene to today, has been 783 m. As lower elevation pika populations were lost, their distribution increasingly came to resemble its modern form. During the late Wisconsinan, now‐extinct pika populations were located an average of 170 km from the nearest extant population. By the late Holocene, this distance had declined to 30 km. Main conclusions Prehistoric alterations in the distribution of pika population in the Great Basin were driven by climate change and attendant impacts on vegetation. Today, Great Basin pikas contend with both climate change and anthropogenic impacts and thus may be on the brink of extinction.  相似文献   

14.
Environmental heterogeneity among sites can generate phenotypic and genetic variation facilitating differentiation and microevolution of plant populations. Badlands are desert‐like, predominantly vegetation‐poor habitats often embedded in (semi‐)dry grasslands. The desert‐like conditions of badlands demand extreme adaptation of plants, that is, phenotypic modifications in short‐term and/or natural adaptation in long‐term. However, detailed knowledge is missing about both plant phenotypic and genetic differentiation in this unique and widely occurring habitat type. The present study focused on the largest known badlands systems in Central Europe located in the “Drei Gleichen” region, a designated nature conservation area in Central Germany. Locations were suitable for this study in terms of having co‐occurring badlands and (semi‐)dry grassland habitats (sites) occupied by the pioneer plant Thymus praecox. Here, we studied the environmental preferences, morphological and functional trait variation, and genetic variation using microsatellite markers of T. praecox. Results revealed significant, mainly site‐dependent environmental, phenotypic, and genetic differentiation. In general, individuals in badlands are shorter in height and have lower patch sizes (length × width), relative growth rates, and smaller stomata. The PCA additionally unveiled slightly increased leaf robustness, trichome density, decreased stomatal conductance, fewer females, and earlier phenology in badlands. We interpret differentiation patterns as adaptive responses to light, temperature, drought, and nutrient stress conditions supported by reviewed literature. Genetic differentiation was strongest between local badlands and grassland sites, and clearly weaker among locations and between sites (in total) as indicated by GST, AMOVA, PCoA, and population structure. Our study supports the importance of small‐scale microhabitat conditions as a driver of microevolutionary processes, and the population's need for sufficient phenotypic variation and genetic resources to deal with environmental changes. We demonstrated that badlands are an appropriate model system for testing plant response to extreme habitats and that more research is needed on these fascinating landscapes.  相似文献   

15.
Coral bleaching and mortality are predicted to increase as climate change‐induced thermal‐stress events become more frequent. Although many studies document coral bleaching and mortality patterns, few studies have examined deviations from the expected positive relationships among thermal stress, coral bleaching, and coral mortality. This study examined the response of >30,000 coral colonies at 80 sites in Palau, during a regional thermal‐stress event in 2010. We sought to determine the spatial and taxonomic nature of bleaching and examine whether any habitats were comparatively resistant to thermal stress. Bleaching was most severe in the northwestern lagoon, in accordance with satellite‐derived maximum temperatures and anomalous temperatures above the long‐term averages. Pocillopora populations suffered the most extensive bleaching and the highest mortality. However, in the bays where temperatures were higher than elsewhere, bleaching and mortality were low. The coral‐community composition, constant exposure to high temperatures, and high vertical attenuation of light caused by naturally high suspended particulate matter buffered the corals in bays from the 2010 regional thermal‐stress event. Yet, nearshore reefs are also most vulnerable to land‐use change. Therefore, nearshore reefs should be given high conservation status because they provide refugia for coral populations as the oceans continue to warm.  相似文献   

16.
The urban heat island effect, where urban areas exhibit higher temperatures than less‐developed suburban and natural habitats, occurs in cities across the globe and is well understood from a physical perspective and at broad spatial scales. However, very little is known about how thermal variation caused by urbanization influences the ability of organisms to live in cities. Ectotherms are sensitive to environmental changes that affect thermal conditions, and therefore, increased urban temperatures may pose significant challenges to thermoregulation and alter temperature‐dependent activity. To evaluate whether these changes to the thermal environment affect the persistence and dispersal of ectothermic species in urban areas, we studied two species of Anolis lizards (Anolis cristatellus and Anolis sagrei) introduced to Miami‐Dade County, FL, USA, where they occur in both urban and natural habitats. We calculated canopy openness and measured operative temperature (Te), which estimates the distribution of body temperatures in a non‐thermoregulating population, in four urban and four natural sites. We also captured lizards throughout the day and recorded their internal body temperature (Tb). We found that urban areas had more open canopies and higher Te compared to natural habitats. Laboratory trials showed that A. cristatellus preferred lower temperatures than A. sagrei. Urban sites currently occupied by each species appear to lower thermoregulatory costs for both species, but only A. sagreihad field Tb that were more often within their preferred temperature range in urban habitats compared to natural areas. Furthermore, based on available Te within each species' preferred temperature range, urban sites with only A. sagrei appear less suitable for A. cristatellus, whereas natural sites with only A. cristatellus are less suitable for A. sagrei. These results highlight how the thermal properties of urban areas contribute to patterns of persistence and dispersal, particularly relevant for studying species invasions worldwide.  相似文献   

17.
The conversion of natural habitats to human land uses often increases local temperatures, creating novel thermal environments for species. The variable responses of ectotherms to habitat conversion, where some species decline while others persist, can partly be explained by variation among species in their thermal niches. However, few studies have examined thermal niche variation within species and across forest‐land use ecotones, information that could provide clues about the capacity of species to adapt to changing temperatures. Here, we quantify individual‐level variation in thermal traits of the tropical poison frog, Oophaga pumilio, in thermally contrasting habitats. Specifically, we examined local environmental temperatures, field body temperatures (Tb), preferred body temperatures (Tpref), critical thermal maxima (CTmax), and thermal safety margins (TSM) of individuals from warm, converted habitats and cool forests. We found that frogs from converted habitats exhibited greater mean Tb and Tpref than those from forests. In contrast, CTmax and TSM did not differ significantly between habitats. However, CTmax did increase moderately with increasing Tb, suggesting that changes in CTmax may be driven by microscale temperature exposure within habitats rather than by mean habitat conditions. Although O. pumilio exhibited moderate divergence in Tpref, CTmax appears to be less labile between habitats, possibly due to the ability of frogs in converted habitats to maintain their Tb below air temperatures that reach or exceed CTmax. Selective pressures on thermal tolerances may increase, however, with the loss of buffering microhabitats and increased frequency of extreme temperatures expected under future habitat degradation and climate warming. Abstract in Spanish is available with online material.  相似文献   

18.
19.
Behavioral thermoregulation is an important mechanism allowing ectotherms to respond to thermal variations. Its efficiency might become imperative for securing activity budgets under future climate change. For diurnal lizards, thermal microhabitat variability appears to be of high importance, especially in hot deserts where vegetation is highly scattered and sensitive to climatic fluctuations. We investigated the effects of a shading gradient from vegetation on body temperatures and activity timing for two diurnal, terrestrial desert lizards, Ctenotus regius, and Morethia boulengeri, and analyzed their changes under past, present, and future climatic conditions. Both species’ body temperatures and activity timing strongly depended on the shading gradient provided by vegetation heterogeneity. At high temperatures, shaded locations provided cooling temperatures and increased diurnal activity. Conversely, bushes also buffered cold temperature by saving heat. According to future climate change scenarios, cooler microhabitats might become beneficial to warm‐adapted species, such as C. regius, by increasing the duration of daily activity. Contrarily, warmer microhabitats might become unsuitable for less warm‐adapted species such as M. boulengeri for which midsummers might result in a complete restriction of activity irrespective of vegetation. However, total annual activity would still increase provided that individuals would be able to shift their seasonal timing towards spring and autumn. Overall, we highlight the critical importance of thermoregulatory behavior to buffer temperatures and its dependence on vegetation heterogeneity. Whereas studies often neglect ecological processes when anticipating species’ responses to future climate change the strongest impact of a changing climate on terrestrial ectotherms in hot deserts is likely to be the loss of shaded microhabitats rather than the rise in temperature itself. We argue that conservation strategies aiming at addressing future climate changes should focus more on the cascading effects of vegetation rather than on shifts of species distributions predicted solely by climatic envelopes.  相似文献   

20.
Global change, including habitat isolation and climate change, has both short‐ and long‐term impacts on wildlife populations. For example, genetic drift and inbreeding result in genetic impoverishment in small, isolated populations, while species undergo range shifts or adaptive phenotypic change in response to shifts in environmental temperatures. In this study, we utilize a model system in which Holocene landscape changes have occurred to examine long‐term effects of population isolation. To examine how isolation may constrain responses to climate change, we characterized ecophysiology across land‐bridge island populations of Erhard's wall lizard Podarcis erhardii. We hypothesized that 1) small, isolated populations that are likely genetically depauperate would exhibit lower phenotypic variability; and 2) populations would be adapted to local microhabitat conditions. We compared a population at a low elevation site on the large island of Naxos with two small populations on nearby islets to determine the effects of population fragmentation. We further compared the low elevation Naxos population with two high elevation sites characterized by disparate microclimates to examine the effects of microclimate. To assess the thermal biology and ecophysiological limits of the study species we measured operative body temperatures (Te), field body temperatures (Tb), preferred temperatures (Tp), thermal tolerances (CTmax and CTmin), and evaporative water loss (EWL). Our results indicate that small, isolated populations did not exhibit thermal biology or evaporative water loss, while EWL and thermoregulatory effort varied according to microhabitat characteristics. This study integrates fine‐scale measurements with environmental data to provide a holistic view of the relationships between ecophysiology, fragmentation, and microclimate. Our methods can be applied to other ectotherms to gain a better understanding of potential impacts of global change on natural populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号