首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Important life history traits in groups of ectotherms have been shown to vary along a latitudinal axis. Despite sustained interest to this phenomenon, the underlying physiological mechanisms of latitudinal adaptation remain poorly understood. Thyroid hormones (THs) are key regulators of metabolism, development, and growth, and are involved in shaping adult phenotypes in lower vertebrates, fishes and amphibians. We tested the hypothesis that concentrations of triiodothyronine (T3), the most active form of THs, correlate with latitudinal gradient in ectotherms using a cyprinid fish, the common roach Rutilus rutilus as an example. Fish from seven locations between 46°45′ and 58°04′ N were studied for T3 concentrations. Our results show a strong positive correlation between latitude and T3 concentrations. There was a three-fold difference between the means of the extreme southern and northern samples. This is a first finding of latitudinal gradient of thyroid hormones in ectotherms. Photoperiodism and temperature were tested as main environmental factors influencing TH levels. In our results, the increase in T3 concentrations along the south–north axis in ectotherms is, seemingly, associated with adaptation to differing thermal environments.  相似文献   

2.
Locomotor and physiological performance of ectotherms are affected by temperature. Thermoregulation is achieved by changes in behavior and the selection of micro-habitats with adequate temperatures to maintain the body temperature (Tb) within a range of preference. Apart from this temperature dependence at spatial scales, ectotherms are also affected by temperature at temporal scale. For instance, ectotherms can only be active some months of the year, particularly in temperate environments. Tarantulas are ectotherms that live in burrows most of their life. Nevertheless, after the sexual maturation molt, males leave their refugia and start a wandering life searching for females to mate. The reproductive period varies among species. In some species walking males are seen in late spring or early summer, while in other species males are only seen during fall or winter. Apart from the differences in lifestyles after maturation, tarantulas exhibit sexual dimorphisms in longevity and body mass, having smaller, shorter-lived males. Thus, to optimize energetic budgets, decreasing thermoregulation costs, we hypothesize and examine a putative correlation between an individual's preferred body temperature (Tpref) and the environmental temperature during the reproductive period. Hence, we characterize Tpref in seven tarantula species and analyze which factors (i.e., time of day, body mass, and sex) correlated with it. Furthermore, we assess putative correlated evolution of Tpref with ambient temperature (minima, mean, and maxima) during the reproductive period by means of phylogenetic independent contrasts. We did not find differences in thermal preferences between sexes; and only one species, Acanthoscurria suina, exhibited diel differences in Tpref. We found evidence of correlated evolution between Tpref and minimum temperature during the reproductive period among all seven species studied herein. Our results show that the reproductive period is constrained by thermal preferences, dictating when males can start their wandering life to mate.  相似文献   

3.
Thermal biology, and therefore energy acquisition and survival, of ectotherms can be affected by diel and seasonal patterns of environmental temperatures. Galápagos Lava Lizards live in seasonal environments that are characterized by a warm and wet period when reproductive activity is maximal, and cooler and drier period. With the use of radiotelemetric techniques to record lizard surface temperatures (Ts), we studied the thermal ecology of the San Cristóbal Lava Lizard (Microlophus bivittatus) during both the warm and cool seasons over two years. During the diel activity period and when operative temperatures exceeded Tset-min, at least on rock faces without canopy, 52% or less of the Ts observations fell within the laboratory-determined Tset range (36–40 °C). Therefore, lizards may have avoided very warm midday temperatures in shaded microhabitats and the lag times in changes in Ts values occurred as operative temperatures rose rapidly during late morning warming phase. Lizards effectively thermoregulated during a year with moderate warm season temperatures and during a cool season that was unseasonably warm. In contrast, lizards less effectively thermoregulated during the warmest and coolest years of the study. We did not detect intersexual differences in thermoregulation although males may thermoregulate less effectively than do females during the cool season although we were unable to detect significant differences using our nonparametric statistical techniques.  相似文献   

4.
The thermal coadaptation hypothesis posits that ectotherms thermoregulate behaviorally to maintain body temperatures (Tb) that maximize performance, such as net energy gain. Huey's (1982) energetics model describes how food availability and Tb interact to affect net energy gain. We tested the thermal coadaptation hypothesis and Huey's energetics model with growth rates of juvenile Yarrow's spiny lizards (Sceloporus jarrovii). We compared the preferred (selected) Tb range (Tsel) of lizards in high and low energy states to their optimal temperature (To) for growth over nine weeks, and determined whether the To for growth depended on food availability. We also measured the same lizards’ resting metabolic rate at five Tbs to test the energetics model assumptions that metabolic cost increases exponentially with Tb and does not differ between energy states. The Tsel of lizards on both diets overlapped with the To for growth. The assumptions of the energetics model were verified, but the To for net energy gain did not depend on food availability. Therefore, we found support for the thermal coadaptation hypothesis. We did not find support for the energetics model, but this may have been due to low statistical power.  相似文献   

5.
Temperate-zone ectotherms experience varying or very low ambient temperatures and may have difficulty in attaining preferred body temperatures. Thus, adaptations to reduce the thermal dependence of physiological processes may be present. We measured the optimal temperature range for sprint speed and compared it with the selected body temperatures (T sel) of two sympatric, cool-temperate lizards: the diurnal skink Oligosoma maccanni and the primarily nocturnal gecko Woodworthia (previously Hoplodactylus) “Otago/Southland”. We also investigated whether time-of-day influenced sprint speed. Contrary to results for other reptiles, we found that time-of-day did not influence speed in either species. For each species, the optimal temperature range for sprinting and T sel overlapped, supporting the ‘thermal coadaptation’ hypothesis. However, the optimal range of temperatures for speed is not always attainable during activity by either species, which have limited opportunities to attain T sel in the field. The thermal sensitivity of sprint speed in these two species does not appear to have evolved to fully match their current thermal environment. More data on cold-adapted species are needed to fully understand physiological adaptation in ectotherms.  相似文献   

6.
Intraspecific variation in physiological traits and the standard metabolic rate (SMR) is common in widely distributed ectotherms since populations at contrasting latitudes experiences different thermal conditions. The climatic variability hypothesis (CVH) states that populations at higher latitudes presents higher acclimation capacity than those at lower latitudes, given the wider range of climatic variability they experience. The endemic four-eyed frog, Pleurodema thaul is widely distributed in Chile. We examined the variation in maximum and minimum critical temperatures (CTmax and CTmin), preferred temperature (TPref), SMR and their acclimatory capacity in two populations from the northern and center of its distribution. All the traits are higher in the warmer population. The capacity for acclimation varies between traits and, with the exception of CTmax and TPref, it is similar between populations. This pattern could be explained by the higher daily thermal variability in desert environments, that increases plasticity to the levels found in the high latitude population. However, we found low acclimatory capacity in all physiological traits, of only about 3% for CTmin, 10% for CTmax and TPref, and 1% for SMR. Thus, despite the fact that Pleurodema thaul possess some ability to adjust thermal tolerances in response to changing thermal conditions, this acclimatory capacity seems to be unable to prevent substantial buffering when body temperatures rise. The low acclimatory capacity found for P. thaul suggests that this species use behavioral rather than physiological adjustments to compensate for environmental variation, by exploiting available micro-environments with more stable thermal conditions.  相似文献   

7.
The thermal environment experienced by birds during early postembryonic development may be an important factor shaping growth and survival. However, few studies have directly manipulated nest temperature (T n) during the nestling phase, and none have measured the consequences of experimental heat stress on nestlings’ body temperature (T b). It is therefore not known to what extent any fitness consequences of development in a thermally challenging environment arise as a direct, or indirect, effect of heat stress. We, therefore, studied how experimentally increased T n affected T b in 8–12 d old blue tit Cyanistes caeruleus nestlings, to investigate if increased thermoregulatory demands to maintain normothermic T b influenced nestling growth and apparent long‐term survival. Nestlings in heated nest‐boxes had significantly higher T b compared to unheated nestlings during most of the experimental period. Yet, despite facing T n  50°C (as measured in the bottom of the nest cup below the nestlings), the highest nestling T b recorded was 43.8°C with nestlings showing evidence of controlled facultative hyperthermia without any increased nestling mortality in heated nests. However, body mass gain was lower in these nestlings compared to nestlings from control nest‐boxes. Contrary to our prediction, a larger proportion of nestlings from heated nest‐boxes were recaptured during their first winter, or subsequently recruited into the breeding population as first‐ or second‐year breeders. This result should, however, be treated with caution because of low recapture rates. This study highlights the importance of the thermal environment during nestling development, and its role in shaping both growth patterns and possibly also apparent survival.  相似文献   

8.
(1) The thermal capabilities of Australian silvereyes (Zosterops lateralis, 11 g) were investigated both at low and high ambient temperatures (Ta) during the photophase and scotophase. (2). The peak metabolic rate (PMR) induced by helium–oxygen (79:21 %, He–O2) exposure during the photophase was 15.64±1.55 mL O2 g−1 h−1 at an effective lower survival limit Ta (Tpmr) of −39.7±6.1°C. (3). Above the thermoneutral zone (TNZ), metabolic rate, body temperature (Tb), and thermal conductance increased steeply, but they were able to withstand a Ta of 39°C. (4). Our study shows that silvereyes are able to tolerate an impressive range of Ta from about −42°C to at least +39°C and are able to produce enough heat to maintain a thermal difference between Tb and Ta of up to 80°C.  相似文献   

9.
The temperature-size rule (TSR) is a well-established phenomenon to describe the growth response of ectotherms to temperature by which individuals maintained at low temperatures grow more slowly, but attain a larger size upon maturity. Although there are adaptive and non-adaptive theories about the plasticity of body size in response to temperature, these cannot be applied to all ectotherms, and little is known about the changes in growth and development rates through ontogeny. The ostracod species Heterocypris bosniaca, an inhabitant of freshwater temporary ponds, was used to examine the growth and development rates of its nine growth stages and female fecundity at four different temperatures (15 °C, 20 °C, 25 °C and 30 °C). The development rate of this species accelerates with increasing temperature, reaching a maximum value at 25 °C. The growth factor has a reverse-TSR in younger instars, and the typical TSR is followed only in the last two moults, resulting in non-monotonic response of adult size to temperature. Fecundity (total offspring per female) was not directly related to adult size and was generally higher at lower temperatures. Our results agree with recent research showing that the TSR may vary during ontogeny, and may not be a general trend in ostracod species from temporary waters. Indeed, adult carapace size seems to follow the pattern of a thermal reaction norm, probably influenced by the reduction of oxygen bioavailability at low temperature and the drastic increase in metabolic demand at the upper extreme of the thermal gradient.  相似文献   

10.
Life history traits in many ectotherms show complex patterns of variation among conspecific populations sampled along wide latitudinal or climatic gradients. However, few studies have assessed whether these patterns can be explained better by thermal reaction norms of multiple life history traits, covering major aspects of the life cycle. In this study, we compared five populations of a Holarctic, numerically dominant soil microarthropod species, Folsomia quadrioculata, sampled from a wide latitudinal gradient (56–81°N), for growth, development, fecundity, and survival across four temperatures (10, 15, 20, and 25°C) in common garden experiments. We evaluated the extent to which macroclimate could explain differences in thermal adaptation and life history strategies among populations. The common garden experiments revealed large genotypic differences among populations in all the traits, which were little explained by latitude and macroclimate. In addition, the life history strategies (traits combined) hardly revealed any systematic difference related to latitude and macroclimate. The overall performance of the northernmost population from the most stochastic microclimate and the southernmost population, which remains active throughout the year, was least sensitive to the temperature treatments. In contrast, performance of the population from the most predictable microclimate peaked within a narrow temperature range (around 15°C). Our findings revealed limited support for macroclimate‐based predictions, and indicated that local soil habitat conditions related to predictability and seasonality might have considerable influence on the evolution of life history strategies of F. quadrioculata. This study highlights the need to combine knowledge on microhabitat characteristics, and demography, with findings from common garden experiments, for identifying the key drivers of life history evolution across large spatial scales, and wide climate gradients. We believe that similar approaches may substantially improve the understanding of adaptation in many terrestrial ectotherms with low dispersal ability.  相似文献   

11.
Reproductive females manipulate offspring phenotypes by modifying conditions during embryogenesis. In ectotherms, the environmental control over embryogenesis is often realized by changes in maternal thermoregulation during gravidity. To determine if reproduction influences thermoregulatory behavior in species where females lay eggs shortly after fertilization (strict oviparity), we compared preferred body temperatures (Tp) between reproductive (egg-laying) and non-reproductive female newts, Ichthyosaura alpestris. Next, we exposed reproductive females to temperatures mimicking Tp ranges of reproductive and non-reproductive individuals to find out whether the maternally modified thermal regime influences ovum and jelly coat volume, and early cleavage rates at the time of oviposition. In the thermal gradient, reproductive females maintained their body temperatures within a narrower range than non-reproductive individuals. The exposure of ovipositing females to temperatures preferred during their reproductive and non-reproductive period had a negligible influence on egg size and early cleavage rates. We conclude that the modification of maternal thermoregulatory behavior provides a limited opportunity to manipulate egg traits in newts.  相似文献   

12.
Whole-organism performance of ectotherms depends on body temperature, which is tightly linked to environmental temperatures. Individuals attempting to optimize fitness must thus select appropriate temperatures. The thermal coadaptation hypothesis posits that To for traits closely linked to fitness should match temperatures selected by a species (Tset) and should coevolve with Tset. To may mismatch Tset if the thermal reaction norm for fitness is asymmetric. In this study, we examined six traits related to fitness in red and in confused flour beetles (Tribolium castaneum and T. confusum, respectively), including longevity, lifetime reproductive success, reproductive rate, and development time at four temperatures between 23 and 32 °C. For reproductive traits, To matched Tset whereas for longevity To was lower than Tset. Tribolium species have a strongly r-selected life history strategy, therefore reproductive traits are likely more tightly linked to fitness than longevity due to high predation rates at early life stages. We therefore provide support for the thermal coadaptation hypothesis for reproductive traits that are tightly linked to fitness. Our results highlight the importance of knowing the relationships of traits to fitness when studying thermal physiology.  相似文献   

13.
Many ectotherms possess the ability to behaviourally regulate their body temperatures. Thermoregulatory behaviour is affected by various biotic and abiotic factors, which may cause a substantial bias in the laboratory estimates of preferred body temperatures (T p). We examined thermoregulatory behaviour in alpine newts, Ichthyosaura (formerly Triturus) alpestris, in both horizontal linear and vertical nonlinear thermal gradients, to evaluate the influence of a disparate water temperature distribution on their thermal preferences. Newt positions in thermal gradients differed from those in constant temperatures, which indicates their thermal preferences in both experimental setups. The mean and range of body temperatures showed similar values in both types of aquatic thermal gradients. We concluded that under a sufficiently wide range of environmental temperatures, newt thermal preferences are largely insensitive to the thermal gradient profile. This supports the suitability of T p estimates for further experimental and comparative studies in newts.  相似文献   

14.
Acclimatization to different ambient conditions is an essential prerequisite for survival of small passerine birds. Long-distance migration and winter acclimatization induce similar physiological and biochemical adjustments in passerines. To understand metabolic adaptations, the resting metabolic rate (RMR), the thermogenic properties of mitochondria in liver and muscle, and the activity of thyroid hormones were examined in field-captured little buntings (Emberiza pusilla) between Southeastern (Wenzhou) and Northeastern (Qiqihar) China from March to May in 2008 during their migration. Twelve birds were trapped from March to April in Wenzhou region, Zhejiang Province (27°29′N, 120°51′E) and eleven birds originated from April to May in Qiqihar region, Heilongjiang Province (47°29′N, 124°02′E). We found that RMRs of little buntings were significantly higher in Qiqihar than in Wenzhou. Consistently, mitochondrial state-4 respiration capacities and cytochrome c oxidase activities (COX) in liver and muscle, and circulating levels of plasma triiodothyronine (T3) of little buntings were also significantly higher in Qiqihar than in Wenzhou. Variation in metabolic biochemical markers of liver and muscle, such as state-4 respiration and COX, and variation in thyroid hormone levels were correlated with variation in RMR. There was also a positive relationship between T3 and metabolic biochemical markers. Little buntings mainly coped with a cold environment by enhancing thermogenic capacities through enhanced respiratory enzyme activities and plasma T3. These results support the view that the primary means by which small birds meet energetic challenges of cold conditions is through metabolic adjustments.  相似文献   

15.
Animals that undergo prolonged dormancy experience minimal muscle disuse atrophy (MDA) compared to animals subjected to artificial immobilisation over shorter timeframes. An association between oxidative stress and MDA suggests that metabolic depression presumably affords dormant animals some protection against muscle disuse. Because aerobic metabolism is temperature sensitive, we proposed that MDA in dormant (aestivating) ectotherms would be enhanced at elevated temperatures. In the green‐striped burrowing frog, Cyclorana alboguttata, the thermal sensitivity of skeletal muscle metabolic rate is muscle‐specific. We proposed that the degree of atrophy experienced during aestivation would correlate with the thermal sensitivity of muscle metabolic rate such that muscles with a relatively high metabolic rate at high temperatures would experience more disuse atrophy. To test this hypothesis, we examined the effect of temperature and aestivation on the extent of MDA in two functionally different muscles: the M. gastrocnemius (jumping muscle) and M. iliofibularis (non‐jumping muscle), in C. alboguttata aestivating at 24 or 30°C for 6 months. We compared a range of morphological parameters from muscle cross‐sections stained with succinic dehydrogenase to show that muscle‐specific patterns of disuse atrophy were consistent with the relative rates of oxygen consumption of those muscle types. However, despite muscle‐specific differences in thermal sensitivity of metabolic rate, aestivation temperature did not influence the extent of atrophy in either muscle. Our results suggest that the muscles of frogs aestivating at high temperatures are defended against additional atrophy ensuring protection of muscle function during long periods of immobilisation. J. Morphol., 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
Reptiles thermoregulate behaviourally, but change their preferred temperature and the optimal temperature for performance seasonally. We evaluated whether the digestive and locomotor systems of the alligator show parallel metabolic adjustments during thermal acclimation. To this end, we allowed juvenile alligators to grow under thermal conditions typical of winter and summer, providing them with seasonally appropriate basking opportunities. Although mean body temperatures of alligators in these groups differed by approximately 10°C, their growth and final anatomic status was equivalent. While hepatic mitochondria isolated from cold-acclimated alligators had higher oxidative capacities at 30°C than those from warm-acclimated alligators, the capacities did not differ at 20°C. Cold acclimation decreased maximal oxidative capacities of muscle mitochondria. For mitochondria from both organs and acclimation groups, palmitate increased oligomycin-inhibited respiration. GDP addition reduced palmitate-uncoupled rates more in liver mitochondria from warm- than cold-acclimated alligators. In muscle mitochondria, carboxyatractyloside significantly reduced palmitate-uncoupled rates. This effect was not changed by thermal acclimation. The aerobic capacity of liver, skeletal muscle and duodenum, as estimated by activities of cytochrome c oxidase (COX), increased with cold acclimation. At acclimation temperatures, the activities of COX and citrate synthase (CS) in these organs were equivalent. By measuring COX and CS in isolated mitochondria and tissue extracts, we estimated that cold acclimation did not change the mitochondrial content in liver, but increased that of muscle. The thermal compensation of growth rates and of the aerobic capacity of the locomotor and digestive systems suggests that alligators optimised metabolic processes for the seasonally altered, preferred body temperature. The precision of this compensatory response exceeds that typically shown by aquatic ectotherms whose body temperatures are at the mercy of their habitat.  相似文献   

17.
For ectotherms, environmental temperatures influence numerous life history characteristics, and the body temperatures (Tb) selected by individuals can affect offspring fitness and parental survival. Reproductive trade‐offs may therefore ensue for gravid females, because temperatures conducive to embryonic development may compromise females' body condition. We tested whether reproduction influenced thermoregulation in female Arizona Bark Scorpions (Centruroides sculpturatus). We predicted that gravid females select higher Tb and thermoregulate more precisely than nonreproductive females. Gravid C. sculpturatus gain body mass throughout gestation, which exposes larger portions of their pleural membrane, possibly increasing their rates of transcuticular water loss in arid environments. Accordingly, we tested whether gravid C. sculpturatus lose water faster than nonreproductive females. We determined the preferred Tb of female scorpions in a thermal gradient and measured water loss rates using flow‐through respirometry. Gravid females preferred significantly higher Tb than nonreproductive females, suggesting that gravid C. sculpturatus alter their thermoregulatory behaviour to promote offspring fitness. However, all scorpions thermoregulated with equal precision, perhaps because arid conditions create selective pressure on all females to thermoregulate effectively. Gravid females lost water faster than nonreproductive animals, indicating that greater exposure of the pleural membrane during gestation enhances the desiccation risk of reproductive females. Our findings suggest that gravid C. sculpturatus experience a trade‐off, whereby selection of higher Tb and increased mass during gestation increase females' susceptibility to water loss, and thus their mortality risk. Elucidating the mechanisms that influence thermal preferences may reveal how reproductive trade‐offs shape the life history of ectotherms in arid environments.  相似文献   

18.
The echidna (Tachyglossus aculeatus) maintained a body temperature of 30.7°C ± 1.03 s.d. (N = 23) at ambient temperatures (TA) between 0 and 25°C. It may, however, also become hypothermic at low TA. At TA = 30°C or above the echidna became hyperthermic. The thermoneutral range was about 20–30°C. At low TA the metabolic rate might be increased several fold. The thermal conductance was at a minimum at TA = 20°C, and was not further reduced at lower TA. At higher TA the thermal conductance increased up to five-fold. The evaporation showed little change with increasing TA. At the highest TA we used (33°C) the evaporation on the average accounted for the dissipation of only about one-third of the metabolic heat produced. These findings suggest that the echidna, although it can maintain its body temperature at low ambient temperature, cannot rely upon evaporation as the major avenue for heat loss at high ambient temperature.  相似文献   

19.
Understanding the potential for organisms to tolerate thermal stress through physiological or evolutionary responses is crucial given rapid climate change. Although climate models predict increases in both temperature mean and variance, such tolerances are typically assessed under constant conditions. We tested the effects of temperature variability during development on male fitness in the rainforest fly Drosophila birchii, by simulating thermal variation typical of the warm and cool margins of its elevational distribution, and estimated heritabilities and genetic correlations of fitness traits. Reproductive success was reduced for males reared in warm (mean 24 °C) fluctuating (±3 °C) vs. constant conditions but not in cool fluctuating conditions (mean 17 °C), although fluctuations reduced body size at both temperatures. Male reproductive success under warm fluctuating conditions was similar to that at constant 27 °C, indicating that briefly exceeding critical thermal limits has similar fitness costs to continuously stressful conditions. There was substantial heritable variation in all traits. However, reproductive success traits showed no genetic correlation between treatments reflecting temperature variation at elevational extremes, which may constrain evolutionary responses at these ecological margins. Our data suggest that even small increases in temperature variability will threaten tropical ectotherms living close to their upper thermal limits, both through direct effects on fitness and by limiting their adaptive potential.  相似文献   

20.
Data on thermal energetics for vespertilionid bats are under-represented in the literature relative to their abundance, as are data for bats of very small body mass. Therefore, we studied torpor use and thermal energetics in one of the smallest (4 g) Australian vespertilionids, Vespadelus vulturnus. We used open-flow respirometry to quantify temporal patterns of torpor use, upper and lower critical temperatures (T uc and T lc) of the thermoneutral zone (TNZ), basal metabolic rate (BMR), resting metabolic rate (RMR), torpid metabolic rate (TMR), and wet thermal conductance (C wet) over a range of ambient temperatures (T a). We also measured body temperature (T b) during torpor and normothermia. Bats showed a high proclivity for torpor and typically aroused only for brief periods. The TNZ ranged from 27.6°C to 33.3°C. Within the TNZ T b was 33.3±0.4°C and BMR was 1.02±0.29 mlO2 g−1 h−1 (5.60±1.65 mW g−1) at a mean body mass of 4.0±0.69 g, which is 55 % of that predicted for a 4 g bat. Minimum TMR of torpid bats was 0.014±0.006 mlO2 g−1 h−1 (0.079±0.032 mW g−1) at T a=4.6±0.4°C and T b=7.5±1.9. T lc and C wet of normothermic bats were both lower than that predicted for a 4 g bat, which indicates that V. vulturnus is adapted to minimising heat loss at low T a. Our findings support the hypothesis that vespertilionid bats have evolved energy-conserving physiological traits, such as low BMR and proclivity for torpor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号