首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Co‐occurring ocean warming, acidification and reduced carbonate mineral saturation have significant impacts on marine biota, especially calcifying organisms. The effects of these stressors on development and calcification in newly metamorphosed juveniles (ca. 0.5 mm test diameter) of the intertidal sea urchin Heliocidaris erythrogramma, an ecologically important species in temperate Australia, were investigated in context with present and projected future conditions. Habitat temperature and pH/pCO2 were documented to place experiments in a biologically and ecologically relevant context. These parameters fluctuated diurnally up to 10 °C and 0.45 pH units. The juveniles were exposed to three temperature (21, 23 and 25 °C) and four pH (8.1, 7.8, 7.6 and 7.4) treatments in all combinations, representing ambient sea surface conditions (21 °C, pH 8.1; pCO2 397; ΩCa 4.7; ΩAr 3.1), near‐future projected change (+2–4 °C, ?0.3–0.5 pH units; pCO2 400–1820; ΩCa 5.0–1.6; ΩAr 3.3–1.1), and extreme conditions experienced at low tide (+4 °C, ?0.3–0.7 pH units; pCO2 2850–2967; ΩCa 1.1–1.0; ΩAr 0.7–0.6). The lowest pH treatment (pH 7.4) was used to assess tolerance levels. Juvenile survival and test growth were resilient to current and near‐future warming and acidification. Spine development, however, was negatively affected by near‐future increased temperature (+2–4 °C) and extreme acidification (pH 7.4), with a complex interaction between stressors. Near‐future warming was the more significant stressor. Spine tips were dissolved in the pH 7.4 treatments. Adaptation to fluctuating temperature‐pH conditions in the intertidal may convey resilience to juvenile H. erythrogramma to changing ocean conditions, however, ocean warming and acidification may shift baseline intertidal temperature and pH/pCO2 to levels that exceed tolerance limits.  相似文献   

2.
3.
Dramatic changes have occurred in the Arctic Ocean over the past few decades, especially in terms of sea ice loss and ocean warming. Those environmental changes may modify the planktonic ecosystem with changes from lower to upper trophic levels. This study aimed to understand how the biogeographic distribution of a crucial endemic copepod species, Calanus glacialis, may respond to both abiotic (ocean temperature) and biotic (phytoplankton prey) drivers. A copepod individual‐based model coupled to an ice‐ocean‐biogeochemical model was utilized to simulate temperature‐ and food‐dependent life cycle development of C. glacialis annually from 1980 to 2014. Over the 35‐year study period, the northern boundaries of modeled diapausing C. glacialis expanded poleward and the annual success rates of C. glacialis individuals attaining diapause in a circumpolar transition zone increased substantially. Those patterns could be explained by a lengthening growth season (during which time food is ample) and shortening critical development time (the period from the first feeding stage N3 to the diapausing stage C4). The biogeographic changes were further linked to large‐scale oceanic processes, particularly diminishing sea ice cover, upper ocean warming, and increasing and prolonging food availability, which could have potential consequences to the entire Arctic shelf/slope marine ecosystems.  相似文献   

4.
Widespread ocean acidification (OA) is modifying the chemistry of the global ocean, and the Arctic is recognized as the region where the changes will progress at the fastest rate. Moreover, Arctic species show lower capacity for cellular homeostasis and acid‐base regulation rendering them particularly vulnerable to OA. In the present study, we found physiological differences in OA response across geographically separated populations of the keystone Arctic copepod Calanus glacialis. In copepodites stage CIV, measured reaction norms of ingestion rate and metabolic rate showed severe reductions in ingestion and increased metabolic expenses in two populations from Svalbard (Kongsfjord and Billefjord) whereas no effects were observed in a population from the Disko Bay, West Greenland. At pHT 7.87, which has been predicted for the Svalbard west coast by year 2100, these changes resulted in reductions in scope for growth of 19% in the Kongsfjord and a staggering 50% in the Billefjord. Interestingly, these effects were not observed in stage CV copepodites from any of the three locations. It seems that CVs may be more tolerant to OA perhaps due to a general physiological reorganization to meet low intracellular pH during hibernation. Needless to say, the observed changes in the CIV stage will have serious implications for the C. glacialis population health status and growth around Svalbard. However, OA tolerant populations such as the one in the Disko Bay could help to alleviate severe effects in C. glacialis as a species.  相似文献   

5.
Despite the important roles of shallow-water sediments in global biogeochemical cycling, the effects of ocean acidification on sedimentary processes have received relatively little attention. As high-latitude cold waters can absorb more CO2 and usually have a lower buffering capacity than warmer waters, acidification rates in these areas are faster than those in sub-tropical regions. The present study investigates the effects of ocean acidification on sediment composition, processes and sediment-water fluxes in an Arctic coastal system. Undisturbed sediment cores, exempt of large dwelling organisms, were collected, incubated for a period of 14 days, and subject to a gradient of pCO2 covering the range of values projected for the end of the century. On five occasions during the experimental period, the sediment cores were isolated for flux measurements (oxygen, alkalinity, dissolved inorganic carbon, ammonium, nitrate, nitrite, phosphate and silicate). At the end of the experimental period, denitrification rates were measured and sediment samples were taken at several depth intervals for solid-phase analyses. Most of the parameters and processes (i.e. mineralization, denitrification) investigated showed no relationship with the overlying seawater pH, suggesting that ocean acidification will have limited impacts on the microbial activity and associated sediment-water fluxes on Arctic shelves, in the absence of active bio-irrigating organisms. Only following a pH decrease of 1 pH unit, not foreseen in the coming 300 years, significant enhancements of calcium carbonate dissolution and anammox rates were observed. Longer-term experiments on different sediment types are still required to confirm the limited impact of ocean acidification on shallow Arctic sediment processes as observed in this study.  相似文献   

6.
Human activities have caused an increase in atmospheric CO2 over the last 250 years, leading to unprecedented rates of change in seawater pH and temperature. These global scale processes are now commonly referred to as ocean acidification and warming, and have the potential to substantially alter the physiological performance of many marine organisms. It is vital that the effects of ocean acidification and warming on marine organisms are explored so that we can predict how marine communities may change in future. In particular, the effect of ocean acidification and warming on host-parasite dynamics is poorly understood, despite the ecological importance of these relationships. Here, we explore the response of one himasthlid trematode, Himasthla sp., an abundant and broadly distributed species of marine parasite, to combinations of elevated temperature and pCO2 that represent physiological extremes, pre-industrial conditions, and end of century predictions. Specifically, we quantified the life span of the free-living cercarial stage under elevated temperature and pCO2, focussing our research on functional life span (the time cercariae spend actively swimming) and absolute life span (the period before death). We found that the effects of temperature and pCO2 were complex and interactive. Overall, increased temperature negatively affected functional and absolute life span, e.g. across all pCO2 treatments the average time to 50% cessation of active swimming was approximately 8 h at 5 °C, 6 h at 15 °C, 4 h at 25 °C, and 2 h at 40 °C. The effect of pCO2, which significantly affected absolute life span, was highly variable across temperature treatments. These results strongly suggest that ocean acidification and warming may alter the transmission success of trematode cercariae, and potentially reduce the input of cercariae to marine zooplankton. Either outcome could substantially alter the community structure of coastal marine systems.  相似文献   

7.
8.
The Arctic bloom consists of two distinct categories of primary producers, ice algae growing within and on the underside of the sea ice, and phytoplankton growing in open waters. Long chain omega‐3 fatty acids, a subgroup of polyunsaturated fatty acids (PUFAs) produced exclusively by these algae, are essential to all marine organisms for successful reproduction, growth, and development. During an extensive field study in the Arctic shelf seas, we followed the seasonal biomass development of ice algae and phytoplankton and their food quality in terms of their relative PUFA content. The first PUFA‐peak occurred in late April during solid ice cover at the onset of the ice algal bloom, and the second PUFA‐peak occurred in early July just after the ice break‐up at the onset of the phytoplankton bloom. The reproduction and growth of the key Arctic grazer Calanus glacialis perfectly coincided with these two bloom events. Females of C. glacialis utilized the high‐quality ice algal bloom to fuel early maturation and reproduction, whereas the resulting offspring had access to ample high‐quality food during the phytoplankton bloom 2 months later. Reduction in sea ice thickness and coverage area will alter the current primary production regime due to earlier ice break‐up and onset of the phytoplankton bloom. A potential mismatch between the two primary production peaks of high‐quality food and the reproductive cycle of key Arctic grazers may have negative consequences for the entire lipid‐driven Arctic marine ecosystem.  相似文献   

9.
Southern Ocean waters are among the most vulnerable to ocean acidification. The projected increase in the CO2 level will cause changes in carbonate chemistry that are likely to be damaging to organisms inhabiting these waters. A meta‐analysis was undertaken to examine the vulnerability of Antarctic marine biota occupying waters south of 60°S to ocean acidification. This meta‐analysis showed that ocean acidification negatively affects autotrophic organisms, mainly phytoplankton, at CO2 levels above 1,000 μatm and invertebrates above 1,500 μatm, but positively affects bacterial abundance. The sensitivity of phytoplankton to ocean acidification was influenced by the experimental procedure used. Natural, mixed communities were more sensitive than single species in culture and showed a decline in chlorophyll a concentration, productivity, and photosynthetic health, as well as a shift in community composition at CO2 levels above 1,000 μatm. Invertebrates showed reduced fertilization rates and increased occurrence of larval abnormalities, as well as decreased calcification rates and increased shell dissolution with any increase in CO2 level above 1,500 μatm. Assessment of the vulnerability of fish and macroalgae to ocean acidification was limited by the number of studies available. Overall, this analysis indicates that many marine organisms in the Southern Ocean are likely to be susceptible to ocean acidification and thereby likely to change their contribution to ecosystem services in the future. Further studies are required to address the poor spatial coverage, lack of community or ecosystem‐level studies, and the largely unknown potential for organisms to acclimate and/or adapt to the changing conditions.  相似文献   

10.
11.
Ocean acidification is likely to impact the calcification potential of marine organisms. In part due to the covarying nature of the ocean carbonate system components, including pH and CO2 and CO32? levels, it remains largely unclear how each of these components may affect calcification rates quantitatively. We develop a process‐based bioenergetic model that explains how several components of the ocean carbonate system collectively affect growth and calcification rates in Emiliania huxleyi, which plays a major role in marine primary production and biogeochemical carbon cycling. The model predicts that under the IPCC A2 emission scenario, its growth and calcification potential will have decreased by the end of the century, although those reductions are relatively modest. We anticipate that our model will be relevant for many other marine calcifying organisms, and that it can be used to improve our understanding of the impact of climate change on marine systems.  相似文献   

12.
The ongoing ocean acidification associated with a changing carbonate system may impose profound effects on marine planktonic calcifiers. Here, we show that a coccolithophore, Gephyrocapsa oceanica, evolved in response to an elevated CO2 concentration of 1000 μatm (pH reduced to 7.8) in a long‐term (~670 generations) selection experiment. The high CO2‐selected cells showed increases in photosynthetic carbon fixation, growth rate, cellular particulate organic carbon (POC) or nitrogen (PON) production, and a decrease in C:N elemental ratio, indicating a greater upregulation of PON than of POC production under the ocean acidification condition. Cells from the low CO2 selection process shifted to high CO2 exposure showed an enhanced cellular POC and PON production rates. Our data suggest that the coccolithophorid could adapt to ocean acidification with enhanced assimilations of carbon and nitrogen but decreased C:N ratios.  相似文献   

13.
Ocean acidification and warming will be most pronounced in the Arctic Ocean. Aragonite shell‐bearing pteropods in the Arctic are expected to be among the first species to suffer from ocean acidification. Carbonate undersaturation in the Arctic will first occur in winter and because this period is also characterized by low food availability, the overwintering stages of polar pteropods may develop into a bottleneck in their life cycle. The impacts of ocean acidification and warming on growth, shell degradation (dissolution), and mortality of two thecosome pteropods, the polar Limacina helicina and the boreal L. retroversa, were studied for the first time during the Arctic winter in the Kongsfjord (Svalbard). The abundance of L. helicina and L. retroversa varied from 23.5 to 120 ind m?2 and 12 to 38 ind m?2, and the mean shell size ranged from 920 to 981 μm and 810 to 823 μm, respectively. Seawater was aragonite‐undersaturated at the overwintering depths of pteropods on two out of ten days of our observations. A 7‐day experiment [temperature levels: 2 and 7 °C, pCO2 levels: 350, 650 (only for L. helicina) and 880 μatm] revealed a significant pCO2 effect on shell degradation in both species, and synergistic effects between temperature and pCO2 for L. helicina. A comparison of live and dead specimens kept under the same experimental conditions indicated that both species were capable of actively reducing the impacts of acidification on shell dissolution. A higher vulnerability to increasing pCO2 and temperature during the winter season is indicated compared with a similar study from fall 2009. Considering the species winter phenology and the seasonal changes in carbonate chemistry in Arctic waters, negative climate change effects on Arctic thecosomes are likely to show up first during winter, possibly well before ocean acidification effects become detectable during the summer season.  相似文献   

14.
Anthropogenic carbon dioxide (CO2) emissions and the resultant acidification of surface ocean waters are predicted to have far‐reaching consequences for biological processes in the marine environment. For example, because changes in pH and pCO2 can alter sperm performance, ocean acidification may be accompanied by reductions in the success of fertilization in marine broadcast spawners. Several studies have attempted to determine the effects of elevated pCO2 on marine invertebrate fertilization success, albeit with differing results. These conflicts may stem from the use of inappropriate sperm–egg contact times and, in several cases, the lack of measurements over a range of sperm concentrations extending from sperm‐limited conditions to polyspermy scenarios. In our study, we used biologically realistic sperm–egg contact times and a full range of sperm concentrations to assess the effect of elevated pCO2 on fertilization in the broadcast spawning sea urchin, Strongylocentrotus franciscanus. Fertilization experiments were carried out in seawater bubbled with CO2 to 400 (control), 800, and 1800 ppm. Using a fertilization kinetics model, we estimate that elevated pCO2 levels both increased sperm limitation and reduced the efficiency of fast blocks to polyspermy. Thus, elevated pCO2 decreased the range of sperm concentrations over which high fertilization success was likely. Given the inherent difficulties in achieving high fertilization success in broadcast spawners, raised pCO2 levels are likely to exacerbate low fertilization success in low‐density populations or in areas with high water turbulence.  相似文献   

15.
Deoxygenation in coastal and open‐ocean ecosystems rarely exists in isolation but occurs concomitantly with acidification. Here, we first combine meta‐data of experimental assessments from across the globe to investigate the potential interactive impacts of deoxygenation and acidification on a broad range of marine taxa. We then characterize the differing degrees of deoxygenation and acidification tested in our dataset using a ratio between the partial pressure of oxygen and carbon dioxide (pO2/pCO2) to assess how biological processes change under an extensive, yet diverse range of pO2 and pCO2 conditions. The dataset comprised 375 experimental comparisons and revealed predominantly additive but variable effects (91.7%, additive; 6.0%, synergistic; and 2.3%, antagonistic) of the dual stressors, yielding negative impacts across almost all responses examined. Our data indicate that the pO2/pCO2‐ratio offers a simplified metric to characterize the extremity of the concurrent stressors and shows that more severe impacts occurred when ratios represented more extreme deoxygenation and acidification conditions. Importantly, our analysis highlights the need to assess the concurrent impacts of deoxygenation and acidification on marine taxa and that assessments considering the impact of O2 depletion alone will likely underestimate the impacts of deoxygenation events and their ecosystem‐wide consequences.  相似文献   

16.
1. While anthropogenic stream acidification is known to lower species diversity and impair decomposition, its effects on nutrient cycling remain unclear. The influence of acid‐stress on microbial physiology can have implications for carbon (C) and nitrogen (N) cycles, linking environmental conditions to ecosystem processes. 2. We collected leaf biofilms from streams spanning a gradient of pH (5.1–6.7), related to chronic acidification, to investigate the relationship between qCO2 (biomass‐specific respiration; mg CO2‐C g?1 fungal C h?1), a known indicator of stress, and biomass‐specific N uptake (μg NH4‐N mg?1 fungal biomass h?1) at two levels of N availability (25 and 100 μg NH4‐N L?1) in experimental microcosms. 3. Strong patterns of increasing qCO2 (i.e. increasing stress) and increasing microbial N uptake were observed with a decrease in ambient (i.e. chronic) stream pH at both levels of N availability. However, fungal biomass was lower on leaves from more acidic streams, resulting in lower overall respiration and N uptake when rates were standardized by leaf biomass. 4. Results suggest that chronic acidification decreases fungal metabolic efficiency because, under acid conditions, these organisms allocate more resources to maintenance and survival and increase their removal of N, possibly via increased exoenzyme production. At the same time, greater N availability enhanced N uptake without influencing CO2 production, implying increased growth efficiency. 5. At the ecosystem level, reductions in growth because of chronic acidification reduce microbial biomass and may impair decomposition and N uptake; however, in systems where N is initially scarce, increased N availability may alleviate these effects. Ecosystem response to chronic stressors may be better understood by a greater focus on microbial physiology, coupled elemental cycling, and responses across several scales of investigation.  相似文献   

17.
Predicting the impacts of environmental change on marine organisms, food webs, and biogeochemical cycles presently relies almost exclusively on short‐term physiological studies, while the possibility of adaptive evolution is often ignored. Here, we assess adaptive evolution in the coccolithophore Emiliania huxleyi, a well‐established model species in biological oceanography, in response to ocean acidification. We previously demonstrated that this globally important marine phytoplankton species adapts within 500 generations to elevated CO2. After 750 and 1000 generations, no further fitness increase occurred, and we observed phenotypic convergence between replicate populations. We then exposed adapted populations to two novel environments to investigate whether or not the underlying basis for high CO2‐adaptation involves functional genetic divergence, assuming that different novel mutations become apparent via divergent pleiotropic effects. The novel environment “high light” did not reveal such genetic divergence whereas growth in a low‐salinity environment revealed strong pleiotropic effects in high CO2 adapted populations, indicating divergent genetic bases for adaptation to high CO2. This suggests that pleiotropy plays an important role in adaptation of natural E. huxleyi populations to ocean acidification. Our study highlights the potential mutual benefits for oceanography and evolutionary biology of using ecologically important marine phytoplankton for microbial evolution experiments.  相似文献   

18.
Ocean acidity has increased by 30% since preindustrial times due to the uptake of anthropogenic CO2 and is projected to rise by another 120% before 2100 if CO2 emissions continue at current rates. Ocean acidification is expected to have wide‐ranging impacts on marine life, including reduced growth and net erosion of coral reefs. Our present understanding of the impacts of ocean acidification on marine life, however, relies heavily on results from short‐term CO2 perturbation studies. Here, we present results from the first long‐term CO2 perturbation study on the dominant reef‐building cold‐water coral Lophelia pertusa and relate them to results from a short‐term study to compare the effect of exposure time on the coral's responses. Short‐term (1 week) high CO2 exposure resulted in a decline of calcification by 26–29% for a pH decrease of 0.1 units and net dissolution of calcium carbonate. In contrast, L. pertusa was capable to acclimate to acidified conditions in long‐term (6 months) incubations, leading to even slightly enhanced rates of calcification. Net growth is sustained even in waters sub‐saturated with respect to aragonite. Acclimation to seawater acidification did not cause a measurable increase in metabolic rates. This is the first evidence of successful acclimation in a coral species to ocean acidification, emphasizing the general need for long‐term incubations in ocean acidification research. To conclude on the sensitivity of cold‐water coral reefs to future ocean acidification further ecophysiological studies are necessary which should also encompass the role of food availability and rising temperatures.  相似文献   

19.
Outbreaks of crown‐of‐thorns starfish (COTS), Acanthaster planci, contribute to major declines of coral reef ecosystems throughout the Indo‐Pacific. As the oceans warm and decrease in pH due to increased anthropogenic CO2 production, coral reefs are also susceptible to bleaching, disease and reduced calcification. The impacts of ocean acidification and warming may be exacerbated by COTS predation, but it is not known how this major predator will fare in a changing ocean. Because larval success is a key driver of population outbreaks, we investigated the sensitivities of larval A. planci to increased temperature (2–4 °C above ambient) and acidification (0.3–0.5 pH units below ambient) in flow‐through cross‐factorial experiments (3 temperature × 3 pH/pCO2 levels). There was no effect of increased temperature or acidification on fertilization or very early development. Larvae reared in the optimal temperature (28 °C) were the largest across all pH treatments. Development to advanced larva was negatively affected by the high temperature treatment (30 °C) and by both experimental pH levels (pH 7.6, 7.8). Thus, planktonic life stages of A. planci may be negatively impacted by near‐future global change. Increased temperature and reduced pH had an additive negative effect on reducing larval size. The 30 °C treatment exceeded larval tolerance regardless of pH. As 30 °C sea surface temperatures may become the norm in low latitude tropical regions, poleward migration of A. planci may be expected as they follow optimal isotherms. In the absence of acclimation or adaptation, declines in low latitude populations may occur. Poleward migration will be facilitated by strong western boundary currents, with possible negative flow‐on effects on high latitude coral reefs. The contrasting responses of the larvae of A. planci and those of its coral prey to ocean acidification and warming are considered in context with potential future change in tropical reef ecosystems.  相似文献   

20.
Coccolithophores are unicellular marine algae that produce biogenic calcite scales and substantially contribute to marine primary production and carbon export to the deep ocean. Ongoing ocean acidification particularly impairs calcifying organisms, mostly resulting in decreased growth and calcification. Recent studies revealed that the immediate physiological response in the coccolithophore Emiliania huxleyi to ocean acidification may be partially compensated by evolutionary adaptation, yet the underlying molecular mechanisms are currently unknown. Here, we report on the expression levels of 10 candidate genes putatively relevant to pH regulation, carbon transport, calcification and photosynthesis in E. huxleyi populations short-term exposed to ocean acidification conditions after acclimation (physiological response) and after 500 generations of high CO2 adaptation (adaptive response). The physiological response revealed downregulation of candidate genes, well reflecting the concomitant decrease of growth and calcification. In the adaptive response, putative pH regulation and carbon transport genes were up-regulated, matching partial restoration of growth and calcification in high CO2-adapted populations. Adaptation to ocean acidification in E. huxleyi likely involved improved cellular pH regulation, presumably indirectly affecting calcification. Adaptive evolution may thus have the potential to partially restore cellular pH regulatory capacity and thereby mitigate adverse effects of ocean acidification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号