首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Carbon (C) can be sequestered in the mineral soil after the conversion of intensively cropped agricultural fields to more extensive land uses such as afforested and natural succession ecosystems. Three land‐use treatments from the long‐term ecological research site at Kellogg biological station in Michigan were compared with a nearby deciduous forest. Treatments included a conventionally tilled cropland, a former cropland afforested with poplar for 10 years and an old field (10 years) succession. We used soil aggregate and soil organic matter fractionation techniques to isolate C pools that (1) have a high potential for C storage and (2) accumulate C at a fast rate during afforestation or succession. These fractions could serve as sensitive indicators for the total change in C content due to land‐use changes. At the mineral soil surface (0–7 cm), afforesting significantly increased soil aggregation to levels similar to native forest. However, surface soil (0–7 cm) C did not follow this trend: soil C of the native forest site (22.9 t C ha?1) was still significantly greater than the afforested (12.6 t C ha?1) and succession (15.4 t C ha?1) treatments. However, when the 0–50 cm soil layer was considered, no differences in total soil C were observed between the cropland and the poplar afforested system, while the successional system increased total soil C (0–50 cm) at a rate of 0.786 t C ha?1 yr?1. Afforested soils sequestered C mainly in the fine intra‐aggregate particulate organic matter (POM) (53–250 μm), whereas the successional soils sequestered C preferentially in the mineral‐associated organic matter and fine intra‐aggregate POM C pools.  相似文献   

2.
3.
When agricultural land is no longer used for cultivation and allowed to revert to natural vegetation or replanted to perennial vegetation, soil organic carbon can accumulate. This accumulation process essentially reverses some of the effects responsible for soil organic carbon losses from when the land was converted from perennial vegetation. We discuss the essential elements of what is known about soil organic matter dynamics that may result in enhanced soil carbon sequestration with changes in land‐use and soil management. We review literature that reports changes in soil organic carbon after changes in land‐use that favour carbon accumulation. This data summary provides a guide to approximate rates of SOC sequestration that are possible with management, and indicates the relative importance of some factors that influence the rates of organic carbon sequestration in soil. There is a large variation in the length of time for and the rate at which carbon may accumulate in soil, related to the productivity of the recovering vegetation, physical and biological conditions in the soil, and the past history of soil organic carbon inputs and physical disturbance. Maximum rates of C accumulation during the early aggrading stage of perennial vegetation growth, while substantial, are usually much less than 100 g C m?2 y?1. Average rates of accumulation are similar for forest or grassland establishment: 33.8 g C m?2 y?1 and 33.2 g C m?2 y?1, respectively. These observed rates of soil organic C accumulation, when combined with the small amount of land area involved, are insufficient to account for a significant fraction of the missing C in the global carbon cycle as accumulating in the soils of formerly agricultural land.  相似文献   

4.
Aim Lowland woodlands in Europe went through dramatic changes in management in the past century. This article investigates the influence of two key factors, abandonment of coppicing and increased pressure of ungulates, in thermophilous oakwoods. We focused on three interconnected topics: (1) Has the assumed successional trend lead to impoverishment of the vegetation assemblages? (2) Has it resulted in vegetation homogenization? (3) Are the thermophilous oakwoods loosing their original character? Location Czech Republic, Central Europe. Methods The vegetation in 46 semi‐permanent plots was recorded three times: firstly, shortly after the abandonment of coppicing (1953) and then, after four to six decades of secondary succession and strong game impact (1992 and 2006). Overall trends and changes in species spectra were analysed. Results There is a marked successional shift towards species‐poorer communities growing in cooler, moister and nutrient‐richer conditions. The change was significantly different in parts affected and unaffected by high numbers of ungulates yet only for herbs, not the woody species. However, observed change in species composition was not accompanied by significant homogenization process that is the general process reported from elsewhere. A sharp decline in plant species typical for thermophilous woodland communities and in endangered species indicates that the original character of the woodland has been gradually lost. Main conclusions Thermophilous oakwoods have been largely replaced by mesic forests. Lowland oakwoods in continental parts of Europe historically depended on active management, which kept the understorey conditions light and warm. Successional processes in the 20th century caused a critical loss of species diversity at various spatial levels. However, artificially high numbers of ungulates, which otherwise have a negative impact, probably held up succession, so that the changes may still be reversible.  相似文献   

5.
6.
7.
Model‐based global projections of future land‐use and land‐cover (LULC) change are frequently used in environmental assessments to study the impact of LULC change on environmental services and to provide decision support for policy. These projections are characterized by a high uncertainty in terms of quantity and allocation of projected changes, which can severely impact the results of environmental assessments. In this study, we identify hotspots of uncertainty, based on 43 simulations from 11 global‐scale LULC change models representing a wide range of assumptions of future biophysical and socioeconomic conditions. We attribute components of uncertainty to input data, model structure, scenario storyline and a residual term, based on a regression analysis and analysis of variance. From this diverse set of models and scenarios, we find that the uncertainty varies, depending on the region and the LULC type under consideration. Hotspots of uncertainty appear mainly at the edges of globally important biomes (e.g., boreal and tropical forests). Our results indicate that an important source of uncertainty in forest and pasture areas originates from different input data applied in the models. Cropland, in contrast, is more consistent among the starting conditions, while variation in the projections gradually increases over time due to diverse scenario assumptions and different modeling approaches. Comparisons at the grid cell level indicate that disagreement is mainly related to LULC type definitions and the individual model allocation schemes. We conclude that improving the quality and consistency of observational data utilized in the modeling process and improving the allocation mechanisms of LULC change models remain important challenges. Current LULC representation in environmental assessments might miss the uncertainty arising from the diversity of LULC change modeling approaches, and many studies ignore the uncertainty in LULC projections in assessments of LULC change impacts on climate, water resources or biodiversity.  相似文献   

8.
Summary Since the mid 1990s, there has been a significant increase in the area of semi‐arid grasslands included in the National Reserve Systems in the Victorian Riverine Plain. This expansion has not been matched by an improved understanding of the alternate disturbance regimes that might produce better outcomes for native ecosystem conservation. Over the past 150 years, stock grazing has completely replaced fire in these grasslands. As a result, the impact of fire on native (and exotic) plant biodiversity is little understood. This study compared the current grazing regime (i.e. ‘status quo’) with burning and the removal of grazing (‘deferred’ management) across three grasslands in the Victorian Riverine Plain to determine the effects of short‐term exposure to alternate disturbances on community structure. Our results showed little change in species density, composition or abundance under the three disturbance treatments. A long exposure to stock grazing may have reduced the abundance of species likely to respond positively to burning. The cover of the biological soil crust responded positively to fire; such changes are known to significantly influence establishment and the functional composition of communities. As such, further investigation of the functional attributes of these communities may broaden our understanding of short‐term responses to alternate disturbance events. To better understand the utility of fire as a management tool, a long‐term commitment to expanding the implementation of this regime from its current extent will greatly increase the understanding of alternate disturbances in this landscape.  相似文献   

9.
Production of biomass feedstock for methanation in Europe has focused on silages of maize and cereals. As ecological awareness has increased in the last several years, more attention is being focused on perennial energy crops (PECs). Studies of specific PECs have shown that their cultivation may enhance agrobiodiversity and increase soil organic carbon stocks while simultaneously providing valuable feedstock for methanation. This study was designed to compare soil quality indicators under annual energy crops (AECs), PECs and permanent grassland (PGL) on the landscape level in south‐western Germany. At a total 25 study sites, covering a wide range of parent materials, the cropping systems were found adjacent to each other. Stands were commercially managed, and PECs included different species such as the Cup Plant, Tall Wheatgrass, Giant Knotweed, Miscanthus, Virginia Mallow and Reed Canary Grass. Soil sampling was carried out for the upper 20 cm of soil. Several soil quality indicators, including soil organic carbon (Corg), soil microbial biomass (Cmic), and aggregate stability, showed that PECs were intermediate between AEC and PGL systems. At landscape level, mean Corg content for (on average) 6.1‐year‐old stands of PEC was 22.37 (±7.53) g kg?1, compared to 19.23 (±8.08) and 32.08 (±10.11) for AEC and PGL. Cmic contents were higher in PECs (356 ± 241 μg C g?1) compared to AECs (291 ± 145) but significantly lower than under PGL (753 ± 417). The aggregate stability increased by almost 65% in PECs compared to AEC but was still 57% lower than in PGL. Indicator differences among cropping systems were more pronounced when inherent differences in the parent material were accounted for in the comparisons. Overall, these results suggest that the cultivation of PECs has positive effects on soil quality indicators. Thus, PECs may offer potential to make the production of biomass feedstock more sustainable.  相似文献   

10.
Burrow‐digging organisms act as ecosystem engineers, providing potential habitat to other organisms. In the Mid North region of South Australia, wolf and trapdoor spiders in fragmented grassland communities provide this service. Pygmy bluetongue lizards are an endangered skink, endemic to these grasslands. The lizards obligatorily use burrows dug by these spider groups as refuges, basking sites and ambush points. We investigated the occupancy of these spider burrows by lizards and other organisms within the grassland community, identifying the occasions that burrows were shared by multiple taxa. We found that the lizards and trapdoor spiders are predominantly solitary, while wolf spiders co‐shared burrows more frequently with either weevils or snails. There were numerous taxa that were found to regularly co‐share with other taxa, particularly snails, centipedes and weevils. There was a strong temporal influence on burrow sharing, with most co‐sharing occurring late in summer. This study provides an insight into the use of burrows by the lizards and co‐existing taxa within these grassland communities. The dynamics of burrow‐use by other taxa have the potential to influence long‐term conservation of these lizards as burrow availability is crucial to their survival in these grasslands.  相似文献   

11.
Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.  相似文献   

12.
1. While it is clear that land‐use change significantly impacts the taxonomic dimension of soil biodiversity, how the functional dimension responds to land‐use change is less well understood. 2. This study examined how the transformation of primary forests into rubber tree monocultures impacts individual termite species and how this change is reflected in termite taxonomic and functional α‐diversity (within site) and β‐diversity (among sites). 3. Overall, individual species responded strongly to land‐use change, whereby only 11 of the 27 species found were able to tolerate both habitats. These differences caused a 27% reduction in termite taxonomic richness and reduced taxonomic β‐diversity in rubber plantations compared with primary forests. The study also revealed that the forest conversion led to a shift in some termite species with smaller body size, shorter legs and smaller mandibular traits. Primary forests exhibited higher functional richness and functional β‐diversity of termite species, indicating that functional traits of termite species in rubber plantations are more evenly distributed. 4. The present study suggests that forest conversion does not merely decrease taxonomic diversity of termites, but also exerts functional trait filtering within some termite species. The results affirm the need for biodiversity assessments that combine taxonomic and functional indicators when monitoring the impact of land‐use change.  相似文献   

13.
14.
Biorefining agro‐industrial biomass residues for bioenergy production represents an opportunity for both sustainable energy supply and greenhouse gas (GHG) emissions mitigation. Yet, is bioenergy the most sustainable use for these residues? To assess the importance of the alternative use of these residues, a consequential life cycle assessment (LCA) of 32 energy‐focused biorefinery scenarios was performed based on eight selected agro‐industrial residues and four conversion pathways (two involving bioethanol and two biogas). To specifically address indirect land‐use changes (iLUC) induced by the competing feed/food sector, a deterministic iLUC model, addressing global impacts, was developed. A dedicated biochemical model was developed to establish detailed mass, energy, and substance balances for each biomass conversion pathway, as input to the LCA. The results demonstrated that, even for residual biomass, environmental savings from fossil fuel displacement can be completely outbalanced by iLUC, depending on the feed value of the biomass residue. This was the case of industrial residues (e.g. whey and beet molasses) in most of the scenarios assessed. Overall, the GHGs from iLUC impacts were quantified to 4.1 t CO2‐eq.ha?1demanded yr?1 corresponding to 1.2–1.4 t CO2‐eq. t?1 dry biomass diverted from feed to energy market. Only, bioenergy from straw and wild grass was shown to perform better than the alternative use, as no competition with the feed sector was involved. Biogas for heat and power production was the best performing pathway, in a short‐term context. Focusing on transport fuels, bioethanol was generally preferable to biomethane considering conventional biogas upgrading technologies. Based on the results, agro‐industrial residues cannot be considered burden‐free simply because they are a residual biomass and careful accounting of alternative utilization is a prerequisite to assess the sustainability of a given use. In this endeavor, the iLUC factors and biochemical model proposed herein can be used as templates and directly applied to any bioenergy consequential study involving demand for arable land.  相似文献   

15.
Nations have committed to ambitious conservation targets in response to accelerating rates of global biodiversity loss. Anticipating future impacts is essential to inform policy decisions for achieving these targets, but predictions need to be of sufficiently high spatial resolution to forecast the local effects of global change. As part of the intercomparison of biodiversity and ecosystem services models of the Intergovernmental Science‐Policy Platform on Biodiversity and Ecosystem Services, we present a fine‐resolution assessment of trends in the persistence of global plant biodiversity. We coupled generalized dissimilarity models, fitted to >52 million records of >254 thousand plant species, with the species–area relationship, to estimate the effect of land‐use and climate change on global biodiversity persistence. We estimated that the number of plant species committed to extinction over the long term has increased by 60% globally between 1900 and 2015 (from ~10,000 to ~16,000). This number is projected to decrease slightly by 2050 under the most optimistic scenario of land‐use change and to substantially increase (to ~18,000) under the most pessimistic scenario. This means that, in the absence of climate change, scenarios of sustainable socio‐economic development can potentially bring extinction risk back to pre‐2000 levels. Alarmingly, under all scenarios, the additional impact from climate change might largely surpass that of land‐use change. In this case, the estimated number of species committed to extinction increases by 3.7–4.5 times compared to land‐use‐only projections. African regions (especially central and southern) are expected to suffer some of the highest impacts into the future, while biodiversity decline in Southeast Asia (which has previously been among the highest globally) is projected to slow down. Our results suggest that environmentally sustainable land‐use planning alone might not be sufficient to prevent potentially dramatic biodiversity loss, unless a stabilization of climate to pre‐industrial times is observed.  相似文献   

16.
17.
18.
19.
Abstract. A local seed mixture from plants growing in a species‐rich, traditionally managed hay meadow site at Varaldsoy, Hardanger, western Norway, where many endangered hay meadow species of the region are growing, was sown in a newly harrowed experimental field 1 km from the source meadow in order to increase the habitat area for the endangered species. Of 25 endangered species recorded in the source meadow, only one (Holcus lanatus) was present in the target meadow. After sowing, 16 of the endangered species in addition to Holcus lanatus were recorded in the new site. Six species were only present in sown plots and seven others were more frequent there, while three species might have arrived by chance or originated from the seed bank. Replacing the traditional management regime, including one late cut and grazing in spring and in autumn, with three cutting times and the creation of gaps in the sward, resulted in a higher number of endangered species in plots which were only cut, possibly because the grazing was too intensive in the small enclosures.  相似文献   

20.
One of the major challenges in ecology is to predict how multiple global environmental changes will affect future ecosystem patterns (e.g. plant community composition) and processes (e.g. nutrient cycling). Here, we highlight arguments for the necessary inclusion of land‐use legacies in this endeavour. Alterations in resources and conditions engendered by previous land use, together with influences on plant community processes such as dispersal, selection, drift and speciation, have steered communities and ecosystem functions onto trajectories of change. These trajectories may be modulated by contemporary environmental changes such as climate warming and nitrogen deposition. We performed a literature review which suggests that these potential interactions have rarely been investigated. This crucial oversight is potentially due to an assumption that knowledge of the contemporary state allows accurate projection into the future. Lessons from other complex dynamic systems, and the recent recognition of the importance of previous conditions in explaining contemporary and future ecosystem properties, demand the testing of this assumption. Vegetation resurvey databases across gradients of land use and environmental change, complemented by rigorous experiments, offer a means to test for interactions between land‐use legacies and multiple environmental changes. Implementing these tests in the context of a trait‐based framework will allow biologists to synthesize compositional and functional ecosystem responses. This will further our understanding of the importance of land‐use legacies in determining future ecosystem properties, and soundly inform conservation and restoration management actions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号