首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
The life cycles of plants and animals are changing around the world in line with the predictions originated from hypotheses concerning the impact of global warming and climate change on biological systems. Commonly, the search for ecological mechanisms behind the observed changes in bird phenology has focused on the analysis of climatic patterns from the species breeding grounds. However, the ecology of bird migration suggests that the spring arrival of long‐distance migrants (such as trans‐Saharan birds) is more likely to be influenced by climate conditions in wintering areas given their direct impact on the onset of migration and its progression. We tested this hypothesis by analysing the first arrival dates (FADs) of six trans‐Saharan migrants (cuckoo Cuculus canorus, swift Apus apus, hoopoe Upupa epops, swallow Hirundo rustica, house martin Delichon urbica and nightingale Luscinia megarhynchos), in a western Mediterranean area since from 1952 to 2003. By means of multiple regression analyses, FADs were analysed in relation to the monthly temperature and precipitation patterns of five African climatic regions south of the Sahara where species are thought to overwinter and from the European site from where FADs were collected. We obtained significant models for five species explaining 9–41% of the variation in FADs. The interpretation of the models suggests that: (1) The climate in wintering quarters, especially the precipitation, has a stronger influence on FADs than that in the species' potential European breeding grounds. (2) The accumulative effects of climate patterns prior to migration onset may be of considerable importance since those climate variables that served to summarize climate patterns 12 months prior to the onset of migration were selected by final models. (3) Temperature and precipitation in African regions are likely to affect departure decision in the species studied through their indirect effects on food availability and the build‐up of reserves for migration. Our results concerning the factors that affect the arrival times of trans‐Saharan migrants indicate that the effects of climate change are more complex than previously suggested, and that these effects might have an interacting impact on species ecology, for example by reversing ecological pressures during species' life cycles.  相似文献   

4.
Introduced diseases can cause dramatic declines in—and even the loss of—natural populations. Extirpations may be followed by low recolonization rates, leading to inbreeding and a loss of genetic variation, with consequences on population viability. Conversely, extirpations may create vacant habitat patches that individuals from multiple source populations can colonize, potentially leading to an influx of variation. We tested these alternative hypotheses by sampling 15 colonies in a prairie dog metapopulation during 7 years that encompassed an outbreak of sylvatic plague, providing the opportunity to monitor genetic diversity before, during and after the outbreak. Analysis of nine microsatellite loci revealed that within the metapopulation, there was no change in diversity. However, within extirpated colonies, patterns varied: In half of the colonies, allelic richness after recovery was less than the preplague conditions, and in the other half, richness was greater than the preplague conditions. Finally, analysis of variation within individuals revealed that prairie dogs present in recolonized colonies had higher heterozygosity than those present before plague. We confirmed plague survivorship in six founders; these individuals had significantly higher heterozygosity than expected by chance. Collectively, our results suggest that high immigration rates can maintain genetic variation at a regional scale despite simultaneous extirpations in spatially proximate populations. Thus, virulent diseases may increase genetic diversity of host populations by creating vacant habitats that allow an influx of genetic diversity. Furthermore, even highly virulent diseases may not eliminate individuals randomly; rather, they may selectively remove the most inbred individuals.  相似文献   

5.
A recent analysis of brain size evolution reconstructed the plesiomorphic brain–body size allometry for the mammalian order Carnivora, providing an important reference frame for comparative analyses of encephalization (brain volume scaled to body mass). I performed phylogenetically corrected regressions to remove the effects of body mass, calculating correlations between residual values of encephalization with basal metabolic rate (BMR) and six life-history variables (gestation time, neonatal mass, weaning time, weaning mass, litter size, litters per year). No significant correlations were recovered between encephalization and any life-history variable or BMR, arguing against hypotheses relating encephalization to maternal energetic investment. However, after correcting for clade-specific adaptations, I recovered significant correlations for several variables, and further analysis revealed a conserved carnivoran reproductive strategy, linking degree of encephalization to the well-documented mammalian life-history trade-off between neonatal mass and litter size. This strategy of fewer, larger offspring correlating with increased encephalization remains intact even after independent changes in encephalization allometries in the evolutionary history of this clade.  相似文献   

6.
Does hippocampal size correlate with the degree of caching specialization?   总被引:5,自引:0,他引:5  
A correlation between the degree of specialization for food hoarding and the volume of the hippocampal formation in passerine birds has been accepted for over a decade. The relationship was first demonstrated in family-level comparisons, and subsequently in species comparisons within two families containing a large number of hoarding species, the Corvidae and the Paridae. Recently, this approach has been criticized as invalid and excessively adaptationist. A recent test of the predicted trends with data pooled from previous studies found no evidence for such a correlation in either of these two families. This result has been interpreted as support for the critique. Here we reanalyse the original dataset and also include additional new data on several parid species. Our results show a surprising difference between continents, with North American species possessing significantly smaller hippocampi than Eurasian ones. Controlling for the continent effect makes the hoarding capacity/hippocampal formation correlation clearly significant in both families. We discuss possible reasons for the continent effect.  相似文献   

7.
Plants are expected to emit floral scent when their pollinators are most active. In the case of long‐tubed flowers specialised for pollination by crepuscular or nocturnal moths, scent emissions would be expected to peak during dawn. Although this classic idea has existed for decades, it has rarely been tested quantitatively. We investigated the timing of flower visitation, pollination and floral scent emissions in six long‐spurred Satyrium species (Orchidaceae). We observed multiple evening visits by pollinaria‐bearing moths on flowers of all study species, but rarely any diurnal visits. The assemblages of moth pollinators differed among Satyrium species, even those that co‐flowered, and the lengths of moth tongues and floral nectar spurs were strongly correlated, suggesting that the available moth pollinator fauna is partitioned by floral traits. Pollinarium removal occurred more frequently during the night than during the day in four of the six species. Scent emission, however, was only significantly higher at dusk than midday in two species. Analysis of floral volatiles using gas chromatography coupled with mass spectrometry yielded 168 scent compounds, of which 112 were species‐specific. The scent blends emitted by each species occupy discrete clusters in two‐dimensional phenotype space, based on multivariate analysis. We conclude that these long‐spurred Satyrium species are ecologically specialised for moth pollination, yet the timing of their scent emission is not closely correlated with moth pollination activity. Scent composition was also more variable than expected from a group of closely related plants sharing the same pollinator functional group. These findings reveal a need for greater understanding of mechanisms of scent production and their constraints, as well as the underlying reasons for divergent scent chemistry among closely related plants.  相似文献   

8.
What selection pressures drive the evolution of offspring size? Answering this fundamental question for any species requires an understanding of the relationship between offspring size and offspring fitness. A major goal of evolutionary ecologists has been to estimate this critical relationship, but for organisms with complex lifecycles, logistical constraints restrict most studies to early life‐history stages only. Here, we examine the relationship between offspring size and offspring performance in the field across multiple life‐history stages and across generations in a marine invertebrate .We then use these data to parameterise a simple optimality model to generate predictions of optimal offspring size and determined whether these predictions depended on which estimate of offspring performance was used. We found that offspring size had consistently positive effects on performance (estimated as post‐metamorphic growth, fecundity and reproductive output). We also found that manipulating the experience of offspring during the larval phase changed the way in which offspring size affects performance: offspring size affected post‐metamorphic growth when larvae were allowed to settle immediately but offspring size affected survival when larvae were forced to swim prior to settlement. Despite finding consistently positive effects of offspring size, early measures of the effect of offspring size resulted in the systematic underestimation of optimal offspring size. Surprisingly, the amount of variation in offspring performance that offspring size explained decreased with increasing time in the field but the steepness of the relationship between offspring size and performance actually increased. Our results suggest caution should be exercised when empirically examining offspring size effects – it may not be appropriate to assume that early measures are a good reflection of the actual relationship between offspring size and fitness.  相似文献   

9.
10.
1. The lack of consistent differences between the traits of native and non‐native plant species makes it difficult to make general predictions about the ecological impact of invasive plants; however, the increasing number of non‐native plants in many habitats makes the assessment of the impact of each individual species impracticable. General knowledge about how specific plant traits are linked to their effects on communities or ecosystems may be more useful for predicting the effect of plant invasions. Specifically, we hypothesised that higher carbon‐to‐nitrogen ratio (C:N) and percent lignin in plant detritus would reduce the rate of development and total mass at metamorphosis of tadpoles, resulting in lower metamorph production (total fresh biomass) and amphibian species richness. 2. To test these hypotheses, we raised five species of tadpoles in mesocosms containing senescent leaves of three common native and three common non‐native wetland plants that varied in C:N ratio and % lignin. 3. Leaf mass loss, total metamorph production and the number of species that metamorphosed declined as a function of increasing C:N ratio of plant leaves. Plant lignin content was not related to the production of metamorphs or the number of species that metamorphosed. The percentage of wood frog (Lithobates sylvaticus) and American toad (Anaxyrus americanus) tadpoles reaching metamorphosis declined as a function of increasing plant C:N ratio. Mean time to metamorphosis increased and mean mass at metamorphosis declined as a function of increasing plant C:N ratio. Tadpole performance and metamorph diversity and production (biomass) were similar between native and non‐native plant species with similar C:N ratio in leaves. Percent lignin was not a significant predictor of tadpole performance. 4. Our results show that the impact of a plant invasion on tadpole performance could depend on differences between the quality of the detritus produced by the invading species and that of the native species it replaces. We suggest that plant community changes that lead to dominance by more recalcitrant plant species (those with higher leaf C:N ratio) may negatively affect amphibian populations.  相似文献   

11.
12.
Akhtar  J.  Gorham  J.  Qureshi  R.H.  Aslam  M. 《Plant and Soil》1998,201(2):275-284
The effects of NaCl salinity (100 or 150 mol m-3) and hypoxia on seedlings of several wheat varieties (Lyallpur-90, SARC-1, Pato, Tchere, Pb-85, Siete Cerros, Chinese Spring and a Chinese Spring × Thinopyrum elongatum amphidiploid) were studied in solution culture. In vivo studies of activities of different enzymes (alcohol dehydrogenase (ADH), lactate dehydrogenase (LDH) and cytochrome oxidase (COase)) extracted from Pato and Pb-85 included the effect of salinity with and without hypoxia, while during in vitro studies, NaCl, glycinebetaine and proline were added to the assay mixture. The extent of aerenchyma formation was also determined in Pato, Chinese Spring and a Chinese Spring × Thinopyrum elongatum amphidiploid. Imposition of hypoxia greatly induced ADH and LDH activity in roots of wheat seedlings after a week-long exposure. However, exposure of roots to salinity also slightly increased LDH and ADH activity compared with the non-saline control. On a relative basis, Pato had higher ADH activity under hypoxic (21×) or saline-hypoxic stress (20×) than in aerated conditions. Hypoxia alone or in the presence of salts decreased COase activity in both Pato and Pb-85. The in vitro studies revealed that NaCl (on an equimolar basis at up to 500 mol m-3) is more disruptive than glycinebetaine or proline. LDH was more sensitive to NaCl than ADH. Aerenchyma development was higher near the root-shoot interface compared to near the root tip. Salinity under hypoxic conditions significantly reduced aerenchyma development near the root tip and root-shoot interface compared to hypoxia alone. Neither enzyme activity nor aerenchyma formation could account for varietal differences in tolerance to hypoxia alone or in combination with salinity.  相似文献   

13.
The evolution of cooperative breeding (CB) in birds has aroused intensive interest for decades, largely due to the paradox that some adults forgo independent breeding to help others. While much effort has been directed at understanding the adaptive significance of CB behavior, much less effort has been spent on understanding its origin. Ligon and Burt argued that the evolution of altriciality played a key role in the origin of CB since CB occurs more frequently in altricial lineages than expected if developmental mode and CB evolved independently and that both traits arose early in the avian tree of life. We mapped presence or absence of CB, and precocial or altricial development on a recent phylogeny of all birds to re‐evaluate their conclusions. Our results suggest altriciality may be more recently derived than previously thought, and that CB species clustered in a derived land bird clade (especially within Passeriformes) where we reconstructed many gains and losses. We did find a link between cooperative breeding and altriciality. However, since CB also occurs in precocial species, has not evolved in many altricial clades, and may have evolved prior to altriciality (based on some classifications of which species have CB), it is not clear whether altriciality is linked to other factors, such as benefits to group living, that are necessary for the acquisition of CB behavior, or whether altriciality may have been a driving force in the evolution of CB itself. The relative importance of these other factors versus altriciality for the origin of CB needs to be considered.  相似文献   

14.
To accommodate an increased food intake with greater body size, rumen–reticulum capacity must become larger to allow heavier digesta loads. Recently, digesta load was found to correlate with age more strongly than body size. It was suggested that older animals had compromised mastication efficiency due to tooth wear and compensated for larger particles by increasing rumen–reticulum capacity to extend retention time. Herein, we constructed models and used Akaike Information Criteria corrected for small sample size to determine if digesta load was related with age or body weight in 80 female and 105 male black-tailed deer (Odocoileus hemionus columbianus). We also assessed if the presence of fetuses influenced relationships in females. Females were collected in spring, 1985–1988, and males were collected in autumn, 1980, 1982–1984, and 1988, from Hopland Research and Extension Center, Mendocino County, California. Digesta loads, fetuses, and carcasses were weighed, and animal ages were estimated. Digesta load was related to age in females and body weight in males. Our study shows that body size and age-related factors may both influence rumen–reticulum capacity.  相似文献   

15.
The conservation of migratory birds requires internationally coordinated efforts that, in turn, demand an understanding of population dynamics and connectivity throughout a species' range. Whimbrels (Numenius phaeopus) are a widespread long‐distance migratory shorebird with two disparate North American breeding populations. Monitoring efforts suggest that at least one of these populations is declining, but the level of migratory connectivity linking the two populations to specific non‐breeding sites or identifiable conservation threats remains unclear. We deployed light‐level geolocators in 2012 to track the migration of Whimbrels breeding near Churchill, Manitoba, Canada. In 2013, we recovered 11 of these geolocators, yielding complete migration tracks for nine individuals. During southbound migration, six of the nine Whimbrels stopped at two staging sites on the mid‐Atlantic seaboard of the United States for an average of 22 days, whereas three individuals made nonstop flights of ~8000 km from Churchill to South America. All individuals subsequently spent the entire non‐breeding season along the northern coasts of Brazil and Suriname. On their way north, all birds stopped at the same two staging sites used during southbound migration. Individuals staged at these sites for an average of 34 days, significantly longer than during southbound migration, and all departed within a 5‐day period to undertake nonstop flights ranging from 2600 to 3100 km to the breeding grounds. These extended spring stopovers suggest that female Whimbrels likely employ a mixed breeding strategy, drawing on both endogenous and exogenous reserves to produce their eggs. Our results also demonstrate that this breeding population exhibits a high degree of connectivity among breeding, staging, and wintering sites. As with other long‐distance migratory shorebirds, conservation efforts for this population of Whimbrels must therefore focus on a small, but widely spaced, suite of sites that support a large proportion of the population.  相似文献   

16.
Tolerance of ectotherm species to cold stress is highly plastic according to thermal conditions experienced prior to cold stress. In this study, we investigated how cold tolerance varies with developmental temperature (at 17, 25 and 30 °C) and whether developmental temperature induces different metabolic profiles. Experiments were conducted on the two populations of the parasitoid wasp, Venturia canescens, undergoing contrasting thermal regimes in their respective preferential habitat (thermally variable vs. buffered). We predicted the following: i) development at low temperatures improves the cold tolerance of parasitoid wasps, ii) the shape of the cold tolerance reaction norm differs between the two populations, and iii) these phenotypic variations are correlated with their metabolic profiles. Our results showed that habitat origin and developmental acclimation interact to determine cold tolerance and metabolic profiles of the parasitoid wasps. Cold tolerance was promoted when developmental temperatures declined and population originating from variable habitat presented a higher cold tolerance. Cold tolerance increases through the accumulation of metabolites with an assumed cryoprotective function and the depression of metabolites involved in energy metabolism. Our data provide an original example of how intraspecific cold acclimation variations correlate with metabolic response to developmental temperature.  相似文献   

17.
1. Species of Drosophilidae are frequently used as model organisms, but their relationships with the environment, particularly in immature stages, remain poorly known. 2. This is the most comprehensive survey to date of fruit‐breeding drosophilids and their hosts in the Neotropics. Drosophilid host‐utilisation patterns were analysed as to geographic origin (native versus exotic) and level of specialisation. 3. The 180 species of plants recorded as drosophilid hosts are distributed across the main Angiosperm lineages and fleshy‐fruited orders; plant families that hosted the greatest number of drosophilid species were Arecaceae, Moraceae, and Myrtaceae. The 100 nominal drosophilid species recorded breeding in fruits belong to just over one‐third of Neotropical genera; most species (91) belong to Drosophila. Drosophilid species with the greatest resource breadth were Drosophila simulans, Drosophila nebulosa, and Zaprionus indianus. 4. Exotic drosophilids breed in more plant species than Neotropical drosophilids and use exotic hosts more frequently, possibly because they are generalists that have survived the trial of introduction and establishment in the Neotropics. Native drosophilids are more variable in resource breadth and sometimes adopt exotic hosts. 5. Amongst the 49 drosophilids with enough records for analysis (> 4), 48 were categorised as generalists. One possible explanation for such overwhelming generalism is the high diversity of Neotropical habitat or hosts. A second, non‐exclusive explanation, suggested by recent studies and empirically supported by the absence of host specialisation found in this study, is that drosophilids could be selective of the dominant yeasts and bacteria in host tissue, and not of the hosts themselves.  相似文献   

18.
1. Diapause is a dynamic process of low metabolic activity that allows insects to survive periods of harsh conditions. Notwithstanding the lowered metabolism, and because diapausing insects have no access to food, diapause has an energetic cost that may affect post‐diapause performance. 2. Previous studies on the solitary bee Osmia lignaria have shown that prolonged pre‐wintering periods (the time during which individuals already in diapause remain at warm temperatures) are associated with elevated lipid consumption, fat body depletion, and body weight loss. The present study investigated whether prolonged pre‐wintering also affects reproduction, i.e. whether the costs associated with diapause could have an effect on post‐diapause performance in this species. 3. Females were exposed to a range of pre‐wintering conditions, and ovary development and individual post‐wintering performance were monitored throughout their adult life span. 4. No evidence of an effect of pre‐wintering duration on post‐diapause reproductive success was found. Expected differences in the timing of establishment were not observed because ovary maturation was, surprisingly, not arrested during pre‐wintering. Prolonged pre‐wintering duration did not result in decreased life span, probably because emerging females could rapidly replenish their metabolic reserves through feeding. However, there was a very strong effect of the duration of the pre‐emergence period on the likelihood of nest establishment. 5. Longevity, the main factor determining fecundity in Osmia, is subjected to high levels of intrinsic variability, even among females of similar size exposed to identical conditions during development and nesting.  相似文献   

19.
The attainment of sexual maturity has been shown to affect measures of sexual size dimorphism (SSD) and adult sex ratios in several groups of vertebrates. Using data for turtles, we tested the model that sex ratios are expected to be male‐biased when females are larger than males and female‐biased when males are larger than females because of the relationship of each with the attainment of maturity. Our model is based on the premise that the earlier‐maturing sex remains smaller, on average throughout life, and predominates numerically unless the sexes are strongly affected by differential mortality, differential emigration, and immigration, or biased primary sex ratios. Based on data for 24 species in seven families, SSD and sex ratios were significantly negatively correlated for most analyses, even after the effect of phylogenetic bias was removed. The analyses provide support for the model that SSD and adult sex ratios are correlated in turtles as a result of simultaneous correlation of each with sexual differences in attainment of maturity (bimaturism). Environmental sex determination provides a possible mechanism for the phenomenon in turtles and some other organisms. © 2014 The Authors. Biological Journal of the Linnean Society published by John Wiley & Sons Ltd on behalf of The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 112 , 142–149.  相似文献   

20.
Compared with the deer mouse, Peromyscus maniculatus, the grasshopper mouse, Onychomys leucogaster, exhibits modifications in its jaw‐muscle architecture that promote wide gapes and large bite forces at wide gapes to prey upon large vertebrate prey. In this study, we determine whether jaw‐muscle anatomy predicts gape and biting performance in O. leucogaster, and we also assess the influence of gape on bite force in the two species. Although O. leucogaster has an absolutely longer jaw, which facilitates larger gapes, maximum passive gape is similar in both species, averaging ~12.5 mm. Thus, when scaled to jaw length, O. leucogaster has a smaller maximum passive gape. These results suggest that predatory behaviors of O. leucogaster may not require remarkably large gapes. On the other hand, both absolute and relative bite forces exerted by O. leucogaster are significantly larger than those of P. maniculatus. The largest bite forces in both species occur at 5.0 mm of gape at the incisors, or 40% of maximum gape. Although bite force in both species decreases at larger gapes, O. leucogaster does maintain a larger percentage of maximum bite force at gapes larger than 40% of maximum passive gape. Therefore, although structural modifications in the masticatory apparatus of O. leucogaster may constrain gape, they may help to maintain bite force at large gapes. These results suggest that increases in gape differentially influence the length‐tension properties of the jaw muscles in the two species. Finally, these results highlight the importance of considering the effect of muscle stretch on force production in comparative studies of bite force. As a first approximation, it appears that gapes of 40–50% of maximum gape in rodents optimizes bite force production at the incisors. J. Morphol., 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号