首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Theory predicts that tighter correlation between floral traits and weaker relationship between floral and vegetative traits more likely occur in specialized flowers than generalized flowers,favoring by precise fit with pollinators.However,traits and trait correlations frequently vary under different environments.Through detecting spatiotemporal variation in phenotypic traits (floral organ size and vegetative size) and trait correlations in four Ranunculaceae species,we examined four predictions.Overall,our results supported these predictions to a certain degree.The mean coefficient of variation (CV) of floral traits in two specialized species (Delphinium kamaonense and Aconitum gymnandrum) was marginally significantly lower than that of another two generalized species (Trollius ranunculoides and Anemone obtusiloba).The two specialized species also showed marginally significantly smaller CV in floral traits than vegetative size across the two species.The absolute mean correlation between floral and vegetative traits,or that between floral traits in species with specialized flowers was not significantly lower,or higher than that in generalized plants,weakly supporting the predictions.Furthermore,we documented a large variation in trait correlations of four species among different seasons and populations.Study of covariance of floral and vegetative traits will benefit from the contrast of results obtained from generalized and specialized pollination systems.  相似文献   

2.
Nearly forty years ago R. L. Berg proposed that plants with specialized pollination ecology evolve genetic and developmental systems that decouple floral morphology from phenotypic variation in vegetative traits. These species evolve separate floral and vegetative trait clusters, or as she termed them, "correlation pleiades." The predictions of this hypothesis have been generally supported, but only a small sample of temperate-zone herb and grass species has been tested. To further evaluate this hypothesis, especially its applicability to plants of other growth forms, we examined the patterns of phenotypic variation and covariation of floral and vegetative traits in nine species of Neotropical plants. We recognized seven specific predictions of Berg's hypothesis. Our results supported some predictions but not others. Species with specialized pollination systems usually had floral traits decoupled (weak correlation; Canna and Eichornia) or buffered (relationship with shallow proportional slope; Calathea and Canna) from variation in vegetative traits. However, the same trend was also observed in three species with unspecialized pollination systems (Echinodorus, Muntingia, and Wedelia). One species with unspecialized pollination (Croton) and one wind-pollinated species (Cyperus) showed no decoupling or buffering, as predicted. While species with specialized pollination usually showed lower coefficients of variation for floral traits than vegetative traits (as predicted), the same was also true of species with unspecialized or wind pollination (unlike our prediction). Species with specialized pollination showed less variation in floral traits than did species with unspecialized or wind pollination, as predicted. However, the same was true of the corresponding vegetative traits, which was unexpected. Also in contrast to our prediction, plants with specialized pollination systems did not exhibit tighter phenotypic integration of floral characters than did species with generalized pollination systems. We conclude that the patterns of morphological integration among floral traits and between floral and vegetative traits tend to be species specific, not easily predicted from pollination ecology, and generally more complicated than R. L. Berg envisaged.  相似文献   

3.
QTL analysis of floral traits in Louisiana iris hybrids   总被引:2,自引:0,他引:2  
The formation of hybrid zones between nascent species is a widespread phenomenon. The evolutionary consequences of hybridization are influenced by numerous factors, including the action of natural selection on quantitative trait variation. Here we examine how the genetic basis of floral traits of two species of Louisiana Irises affects the extent of quantitative trait variation in their hybrids. Quantitative trait locus (QTL) mapping was used to assess the size (magnitude) of phenotypic effects of individual QTL, the degree to which QTL for different floral traits are colocalized, and the occurrence of mixed QTL effects. These aspects of quantitative genetic variation would be expected to influence (1) the number of genetic steps (in terms of QTL substitutions) separating the parental species phenotypes; (2) trait correlations; and (3) the potential for transgressive segregation in hybrid populations. Results indicate that some Louisiana Iris floral trait QTL have large effects and QTL for different traits tend to colocalize. Transgressive variation was observed for six of nine traits, despite the fact that mixed QTL effects influence few traits. Overall, our QTL results imply that the genetic basis of floral morphology and color traits might facilitate the maintenance of phenotypic divergence between Iris fulva and Iris brevicaulis, although a great deal of phenotypic variation was observed among hybrids.  相似文献   

4.
Divergence in phenotypic traits often contributes to premating isolation between lineages, but could also promote isolation at postmating stages. Phenotypic differences could directly result in mechanical isolation or hybrids with maladapted traits; alternatively, when alleles controlling these trait differences pleiotropically affect other components of development, differentiation could indirectly produce genetic incompatibilities in hybrids. Here, we determined the strength of nine postmating and intrinsic postzygotic reproductive barriers among 10 species of Jaltomata (Solanaceae), including species with highly divergent floral traits. To evaluate the relative importance of floral trait diversification for the strength of these postmating barriers, we assessed their relationship to floral divergence, genetic distance, geographical context, and ecological differences, using conventional tests and a new linear‐mixed modeling approach. Despite close evolutionary relationships, all species pairs showed moderate to strong isolation. Nonetheless, floral trait divergence was not a consistent predictor of the strength of isolation; instead this was best explained by genetic distance, although we found evidence for mechanical isolation in one species, and a positive relationship between floral trait divergence and fruit set isolation across species pairs. Overall, our data indicate that intrinsic postzygotic isolation is more strongly associated with genome‐wide genetic differentiation, rather than floral divergence.  相似文献   

5.
Covariation among traits can modify the evolutionary trajectory of complex structures. This process is thought to operate at a microevolutionary scale, but its long‐term effects remain controversial because trait covariation can itself evolve. Flower morphology, and particularly floral trait (co)variation, has been envisioned as the product of pollinator‐mediated selection. Available evidence suggests that major changes in pollinator assemblages may affect the joint expression of floral traits and their phenotypic integration. We expect species within a monophyletic lineage sharing the same pollinator type will show not only similarity in trait means but also similar phenotypic variance‐covariance structures. Here, we tested this expectation using eighteen Salvia species pollinated either by bees or by hummingbirds. Our findings indicated a nonsignificant multivariate phylogenetic signal and a decoupling between means and variance‐covariance phenotypic matrices of floral traits during the evolution to hummingbird pollination. Mean trait value analyses revealed significant differences between bee‐ and hummingbird‐pollinated Salvia species although fewer differences were detected in the covariance structure between groups. Variance‐covariance matrices were much more similar among bee‐ than hummingbird‐pollinated species. This pattern is consistent with the expectation that, unlike hummingbirds, bees physically manipulate the flower, presumably exerting stronger selection pressures favouring morphological convergence among species. Overall, we conclude that the evolution of hummingbird pollination proceeded through different independent transitions. Thus, although the evolution of hummingbird pollination led to a new phenotypic optimum, the process involved the diversification of the covariance structure.  相似文献   

6.
Hall MC  Basten CJ  Willis JH 《Genetics》2006,172(3):1829-1844
Evolutionary biologists seek to understand the genetic basis for multivariate phenotypic divergence. We constructed an F2 mapping population (N = 539) between two distinct populations of Mimulus guttatus. We measured 20 floral, vegetative, and life-history characters on parents and F1 and F2 hybrids in a common garden experiment. We employed multitrait composite interval mapping to determine the number, effect, and degree of pleiotropy in quantitative trait loci (QTL) affecting divergence in floral, vegetative, and life-history characters. We detected 16 QTL affecting floral traits; 7 affecting vegetative traits; and 5 affecting selected floral, vegetative, and life-history traits. Floral and vegetative traits are clearly polygenic. We detected a few major QTL, with all remaining QTL of small effect. Most detected QTL are pleiotropic, implying that the evolutionary shift between these annual and perennial populations is constrained. We also compared the genetic architecture controlling floral trait divergence both within (our intraspecific study) and between species, on the basis of a previously published analysis of M. guttatus and M. nasutus. Eleven of our 16 floral QTL map to approximately the same location in the interspecific map based on shared, collinear markers, implying that there may be a shared genetic basis for floral divergence within and among species of Mimulus.  相似文献   

7.
Genetic polymorphisms for floral color are interesting phenomena to study because they are likely to be maintained by opposing selective forces. Pollinator preferences may exert direct selection on floral color; however, floral color might also be the indirect target of selection through genetic associations with other traits under selection. Malva moschata (Malvaceae) is a North American species that produces either red or white flowers. In the present study, we present reflectance spectrophotometry data that characterize the nature of floral color variation in this species and show that honey bees and bumble bees should be able to distinguish between the morphs through differential sensitivity at the green (long‐wavelength) photoreceptor. Second, we use a series of phenotypic measures to investigate whether the color morphs differ with respect to other floral traits, vegetative traits or female reproductive success, and use a series of correlation analyses to infer the relative independence of color from these other traits. We found that red‐flowered morphs produced more anthers per flower and had greater leaf area, and that white‐flowered morphs had greater percentage fruit set; however, there were no reproductive success differences between the morphs. The relationship between flower size and anther number was the only correlation that differed between the morphs. Finally, a series of pollinator‐choice experiments showed that bumble bees strongly prefer red morphs in terms of visit frequency and duration, but honey bees have no preference. Taken together, our results suggest that color is rather independent of other phenotypic traits, and that honey bee abundance is likely to play a role in maintaining color variation in this system.  相似文献   

8.
Plant hydraulic traits capture the impacts of drought stress on plant function, yet vegetation models lack sufficient information regarding trait coordination and variation with climate‐of‐origin across species. Here, we investigated key hydraulic and carbon economy traits of 12 woody species in Australia from a broad climatic gradient, with the aim of identifying the coordination among these traits and the role of climate in shaping cross‐species trait variation. The influence of environmental variation was minimized by a common garden approach, allowing us to factor out the influence of environment on phenotypic variation across species. We found that hydraulic traits (leaf turgor loss point, stomatal sensitivity to drought [Pgs], xylem vulnerability to cavitation [Px], and branch capacitance [Cbranch]) were highly coordinated across species and strongly related to rainfall and aridity in the species native distributional range. In addition, trade‐offs between drought tolerance and plant growth rate were observed across species. Collectively, these results provide critical insight into the coordination among hydraulic traits in modulating drought adaptation and will significantly advance our ability to predict drought vulnerability in these dominant trees species.  相似文献   

9.
Biodiversity is structured by multiple mechanisms that are dependent, at least in part, on ecological similarities and differences among species. Integrating traits and phylogenies in diversity metrics may provide deeper insight into community assembly processes across spatial scales. However, different traits are influenced by processes at different spatial scales, and it is not clear how trait‐spatial scale mismatches skew our ability to detect assembly patterns. An additional complexity is how phylogenetic distances, which might capture unmeasured traits, reflect spatially dependent processes. Here we analyze a freshwater zooplankton dataset from 91 ponds and show that different traits are associated with processes at different spatial scales. We first assessed the response of individual traits to processes at both α‐ and β‐scales, and then quantified the power of different combinations of traits and phylogenetic distances to reveal environmental and spatial drivers of α‐ and β‐diversity. We found that explanatory power was maximised when we accounted for environmental and spatial drivers with single, but different traits for α‐ and β‐diversity. Using the most appropriate trait for each spatial scale outperformed phylogenetic information, but phylogenetic information outperformed the same traits when these were used at the wrong spatial scale, and all outperformed taxonomic analyses that ignore trait and phylogenetic information. We demonstrate that accounting for species’ similarities and differences provides important information about dominant assembly mechanisms at different spatial scales, and that phylogeny is especially useful when measured traits are uninformative at a given spatial scale or when there is lack of trait data. Our study also indicates, however, that trait‐scale mismatches among phylogenetically conserved traits may affect the performance of phylogenetic indices compared to indices that account only for the best single trait at each spatial scale.  相似文献   

10.
By analysing patterns of phenotypic integration and multivariate covariance structure of five metric floral traits in nine Iberian populations of bumblebee‐pollinated Helleborus foetidus (Ranunculaceae), this paper attempts to test the general hypothesis that pollinators enhance floral integration and selectively modify phenotypic correlations between functionally linked floral traits. The five floral traits examined exhibited significant phenotypic integration at all populations, and both the magnitude and the pattern of integration differed widely among populations. Variation in extent and pattern of integration was neither distance‐dependent nor significantly related to between‐population variation in taxonomical composition and morphological diversity of the pollinator assemblage. Patterns of floral integration were closer to expectations derived from consideration of developmental affinities between floral whorls than to expectations based on a pollinator‐mediated adaptive hypothesis. Taken together, results of this study suggest that between‐population differences in magnitude and pattern of floral integration in H. foetidus are probably best explained as a consequence of random genetic sampling in the characteristically small and ephemeral populations of this species, rather than reflecting the selective action of current pollinators.  相似文献   

11.
The microevolutionary process of adaptive phenotypic differentiation of quantitative traits between populations or closely‐related taxa depends on the response of populations to the action of natural selection. However, this response can be constrained by the structure of the matrix of additive genetic variance and covariance between traits in each population ( G matrix). In the present study, we obtained additive genetic variance and narrow sense heritability for 25 floral and vegetative traits of three subspecies of Aquilegia vulgaris, and one subspecies of Aquilegia pyrenaica through a common garden crossing experiment. For two vegetative and one floral trait, we also obtained the G matrix and genetic correlations between traits in each subspecies. The amount of genetic variation available in wild populations is not responsible for the larger differentiation of vegetative than floral traits found in this group of columbines. However, the low heritability of some traits constrained their evolution because phenotypic variability among taxa was larger for traits with larger heritability. We confirmed that the process of diversification of the studied taxa involved shifts in the G matrix, mainly determined by changes in the genetic covariance between floral and vegetative traits, probably caused by linkage disequilibrium in narrow endemic taxa. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 252–261.  相似文献   

12.
Variation in species richness across environmental gradients may be associated with an expanded volume or increased packing of ecological niche space. However, the relative importance of these alternative scenarios remains unknown, largely because standardized information on functional traits and their ecological relevance is lacking for major diversity gradients. Here, we combine data on morphological and ecological traits for 523 species of passerine birds distributed across an Andes-to-Amazon elevation gradient. We show that morphological traits capture substantial variation in species dietary (75%) and foraging niches (60%) when multiple independent trait dimensions are considered. Having established these relationships, we show that the 14-fold increase in species richness towards the lowlands is associated with both an increased volume and density of functional trait space. However, we find that increases in volume contribute little to changes in richness, with most (78%) lowland species occurring within the range of trait space occupied at high elevations. Taken together, our results suggest that high species richness is mainly associated with a denser occupation of functional trait space, implying an increased specialization or overlap of ecological niches, and supporting the view that niche packing is the dominant trend underlying gradients of increasing biodiversity towards the lowland tropics.  相似文献   

13.
Floral traits are commonly thought to be more canalized than vegetative ones. In addition, floral and vegetative traits are hypothesized to be genetically decoupled, enabling vegetative structures to respond plastically to environmental heterogeneity, and to evolve in response to selection without disrupting the reproductive function of flowers. To test these hypotheses, we evaluate the genetic architecture of floral and vegetative traits in natural populations of Arabidopsis thaliana raised under variable light-quality environments. Plants were grown either under high or low ratios of red to far-red (R:FR) light, an aspect of light quality that varies with neighbor proximity and regulates competitive shade-avoidance responses. Across environments, we detected significant genetic variation for the average expression of all measured floral traits (petal length and width, stamen length, pistil length, stigma-anther separation, and exsertion of both the stamen and pistil beyond the corolla). Light quality significantly influenced the absolute size of several floral traits as well as the allometry (i.e., relative scaling) of all floral traits, and genotypes differed in the plasticity of floral traits to the light treatments. Exposure to low relative to high R:FR resulted in significantly greater elongation in the vegetative trait, petiole length, and genotypes again differed in the plasticity of this trait to R:FR. Consistent with prior studies, most floral traits were less plastic than the vegetative trait; herkogamy (i.e., stigma-anther separation) was the exception and expressed more variable trait values across environments than petiole length, apparently as a consequence of the independent responses of stamens and pistils. Flowers also showed strong phenotypic integration; genotypic correlations were significantly positive among floral traits within each light treatment. Although floral-vegetative correlations were not significant in the high R:FR light treatment, significant correlations were detected between petal traits, pistil length, and petiole length under low R:FR, in contrast to the widely held hypothesis that floral and vegetative traits are genetically independent. Finally, we detected selection for reduced herkogamy in the low R:FR light treatment. The observed correlation between functional trait groups suggest that vegetative plasticity may affect the expression of floral traits in some environments, and that environment-specific constraints may exist on the evolution of floral and vegetative traits.  相似文献   

14.
Evolutionary community ecology is an emerging field of study that includes evolutionary principles such as individual trait variation and plasticity of traits to provide a more mechanistic insight as to how species diversity is maintained and community processes are shaped across time and space. In this review we explore phenotypic plasticity in functional traits and its consequences at the community level. We argue that resource requirement and resource uptake are plastic traits that can alter fundamental and realised niches of species in the community if environmental conditions change. We conceptually add to niche models by including phenotypic plasticity in traits involved in resource allocation under stress. Two qualitative predictions that we derive are: (1) plasticity in resource requirement induced by availability of resources enlarges the fundamental niche of species and causes a reduction of vacant niches for other species and (2) plasticity in the proportional resource uptake results in expansion of the realized niche, causing a reduction in the possibility for coexistence with other species. We illustrate these predictions with data on the competitive impact of invasive species. Furthermore, we review the quickly increasing number of empirical studies on evolutionary community ecology and demonstrate the impact of phenotypic plasticity on community composition. Among others, we give examples that show that differences in the level of phenotypic plasticity can disrupt species interactions when environmental conditions change, due to effects on realized niches. Finally, we indicate several promising directions for future phenotypic plasticity research in a community context. We need an integrative, trait-based approach that has its roots in community and evolutionary ecology in order to face fast changing environmental conditions such as global warming and urbanization that pose ecological as well as evolutionary challenges.  相似文献   

15.

Background and Aims

The underlying evolutionary processes of pollinator-driven floral diversification are still poorly understood. According to the Grant–Stebbins model speciation begins with adaptive local differentiation in the response to spatial heterogeneity in pollinators. Although this crucial process links the micro- and macroevolution of floral adaptation, it has received little attention. In this study geographical phenotypic variation was investigated in Patagonian Calceolaria polyrhiza and its pollinators, two oil-collecting bee species that differ in body size and geographical distribution.

Methods

Patterns of phenotypic variation were examined together with their relationships with pollinators and abiotic factors. Six floral and seven vegetative traits were measured in 45 populations distributed across the entire species range. Climatic and edaphic parameters were determined for 25 selected sites, 2–16 bees per site of the most frequent pollinator species were captured, and a critical flower–bee mechanical fitting trait involved in effective pollination was measured. Geographical patterns of phenotypic and environmental variation were examined using uni- and multivariate analyses. Decoupled geographical variation between corolla area and floral traits related to the mechanical fit of pollinators was explored using a Mantel test.

Key Results

The body length of pollinators and the floral traits related to mechanical fit were strongly correlated with each other. Geographical variation of the mechanical-fit-related traits was decoupled from variation in corolla size; the latter had a geographical pattern consistent with that of the vegetative traits and was mainly affected by climatic gradients.

Conclusions

The results are consistent with pollinators playing a key role in shaping floral phenotype at a geographical scale and promoting the differentiation of two floral ecotypes. The relationship between the critical floral-fit-related trait and bee length remained significant even in models that included various environmental variables and an allometric predictor (corolla area). The abiotic environment also has an important role, mainly affecting floral size. Decoupled geographical variation between floral mechanical-fit-related traits and floral size would represent a strategy to maintain plant–pollinator phenotypic matching in this environmentally heterogeneous area.  相似文献   

16.
Synthesis This study compared the decomposability of leaf, twig and wood litter from 27 co‐occurring temperate rainforest tree species in New Zealand. We found that interspecific variation in decomposition was not coordinated across the three litter types. Analysis of the relationships between functional traits and decomposition revealed that traits predictive of wood decomposition varied among the species independently from traits predictive of the decomposition of leaf and twig litter. We conclude that efforts to understand how tree species influence C, N and P dynamics in forested ecosystems through the decomposition pathway need to consider the functional traits of multiple plant structures. Plant functional traits are increasingly used to evaluate changes in ecological and ecosystem processes. However our understanding of how functional traits coordinate across different plant structures, and the implications for trait‐driven processes such as litter decomposition, remains limited. We compared the functional traits of green leaves and leaf, twig and wood litter among 27 co‐occurring tree species from New Zealand, and quantified the loss of mass, N and P from the three litter types during decomposition. We hypothesised that: a) the functional traits of green leaves, and leaf, twig and wood litter are co‐ordinated so that species which produce high quality leaves and leaf litter will also produce high quality twig and wood litter, and b) the decomposability of leaf, twig and wood litter is coordinated because breakdown of all three litter types is driven by similar combinations of traits. Trait variation across species was co‐ordinated between leaves, twigs and wood when angiosperm and gymnosperm species were considered in combination, or when angiosperms were considered separately, but trait coordination was poor for gymnosperms. There was little coordination among the three litter types in their decomposability, especially when angiosperms and gymnosperms were considered separately; this was caused by the decomposability of each of the three litter types, at least partially, being driven by different functional traits or trait combinations. Our findings indicate that although interspecific variation in the functional traits of trees can be coordinated among leaves, twigs and wood, different or unrelated traits predict the decomposition of these different structures. Furthermore, leaf‐level analyses of functional traits are not satisfactory proxies for function of whole trees and related ecological processes. As such, efforts to understand how tree species influence C, N and P dynamics in forested ecosystems through the decomposition pathway need to consider functional traits of other plant structures.  相似文献   

17.
Character intercorrelation was studied in a natural population of the epiphytic orchid Liparis resupinata in northern Thailand, and patterns of morphological variation in relation to the local growth environment of individual plants were mapped. Massive occurrence of character intercorrelation was detected, but clone size only influenced few characters of individual flowering shoots. Variation in vegetative and floral organs was largely independent, but two cases differed from the general pattern: (1) the only character not defined by size (distance between apices of lateral sepals) exhibited largely independent variation; (2) ovary length was positively correlated with nearly all other characters. Major groups of vegetative and floral characters were found to covary with different combinations of ecological parameters. Although our study does not document the existence of phenotypic plasticity in L. resupinata, the overall patterns observed would be congruent with a scenario involving phenotypic plasticity. No positive correlation between variability and apparent morphological susceptibility to environmental influence was found; but floral characters were generally less variable and covaried with more ecological parameters than vegetative characters. Based on our observations, we make a few methodological recommendations for morphometric studies of species complexes.  相似文献   

18.
The genetic basis of species differences provides insight into the mode and tempo of phenotypic divergence. We investigate the genetic basis of floral differences between two closely related plant taxa with highly divergent mating systems, Mimulus guttatus (large-flowered outcrosser) and M. nasutus (small-flowered selfer). We had previously constructed a framework genetic linkage map of the hybrid genome containing 174 markers spanning approximately 1800 cM on 14 linkage groups. In this study, we analyze the genetics of 16 floral, reproductive, and vegetative characters measured in a large segregating M. nasutus x M. guttatus F2 population (N = 526) and in replicates of the parental lines and F1 hybrids. Phenotypic analyses reveal strong genetic correlations among floral traits and epistatic breakdown of male and female fertility traits in the F2 hybrids. We use multitrait composite interval mapping to jointly locate and characterize quantitative trait loci (QTLs) underlying interspecific differences in seven floral traits. We identified 24 floral QTLs, most of which affected multiple traits. The large number of QTLs affecting each trait (mean = 13, range = 11-15) indicates a strikingly polygenic basis for floral divergence in this system. In general, QTL effects are small relative to both interspecific differences and environmental variation within genotypes, ruling out QTLs of major effect as contributors to floral divergence between M. guttatus and M. nasutus. QTLs show no pattern of directional dominance. Floral characters associated with pollinator attraction (corolla width) and self-pollen deposition (stigma-anther distance) share several pleiotropic or linked QTLs, but unshared QTLs may have allowed selfing to evolve independently from flower size. We discuss the polygenic nature of divergence between M. nasutus and M. guttatus in light of theoretical work on the evolution of selfing, genetics of adaptation, and maintenance of variation within populations.  相似文献   

19.
We sampled four wild populations of the highly autogamous Spergularia marina (Caryophyllaceae) in California to detect and to measure the magnitude of within- and among-population sources of phenotypic variation in gender and floral traits. From flowers and fruits collected from field and greenhouse-raised plants, we measured ovule number, seed number, mean seed mass, pollen production (greenhouse families only), mean pollen grain volume (greenhouse families only), anther number, anther/ovule ratio, pollen/ovule ratio (estimated using different flowers for pollen than for ovules; greenhouse families only), petal number, and petal size. Using greenhouse-raised genotypes, variation among maternal families nested within populations was evaluated for each trait to determine whether populations differ in the degree of maternally transmitted phenotypic variation. For each population, we used 15 greenhouse-raised maternal families to estimate the broad-sense heritability and genetic coefficient of variation of each floral trait. The magnitude and statistical significance of broad-sense heritability estimates were trait- and population-specific. Each population was characterized by a different combination of floral traits that expressed significant maternally transmitted (presumably genetic) variation under greenhouse conditions. Flowers representing two populations expressed low levels of maternally transmitted variation (three or fewer of nine measured traits exhibited significant maternal family effects on phenotype), while flowers representing the other two populations exhibited significant maternal family effects on phenotype for five or more traits. Our ability to detect statistically significant differences among the four populations depended upon the conditions under which plants were grown (field vs. greenhouse) and on the floral trait observed. Field-collected flowers exhibited significant differences among population means for all traits except anther number. Flowers sampled from greenhouse-raised maternal families differed among populations for all traits except ovule number, seed number, and petal size. We detected negligible evidence that genetic correlations constrain selection on floral traits in Spergularia marina.  相似文献   

20.
Community assembly is the result of multiple ecological and evolutionary forces that influence species coexistence. For flowering plants, pollinators are often essential for plant reproduction and establishment, and pollinator‐mediated interactions may influence plant community composition. Here, we use null models and community phylogenetic analyses of co‐occurrence patterns to determine the role of pollinator‐mediated processes in structuring plant communities dominated by congeners. We surveyed three species‐rich genera (Limnanthes, Mimulus and Clarkia) with centres of diversity in the Sierra Nevada of California. Each genus contains species that co‐flower and share pollinators, and each has a robust phylogeny. Within each genus, we surveyed 44–48 communities at three spatial scales, measured floral and vegetative traits and tested for segregation or aggregation of: (i) species, (ii) floral traits (which are likely to be influenced by pollinators), and (iii) vegetative traits (which are likely affected by other environmental factors). We detected both aggregation and segregation of floral traits that were uncorrelated with vegetative trait patterns; we infer that pollinators have shaped the community assembly although the mechanisms may be varied (competition, facilitation, or filtering). We also found that mating system differences may play an important role in allowing species co‐occurrence. Together, it appears that pollinators influence community assemblage in these three clades.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号