首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
We tested the effect of conditioning time of Pinus sylvestris litter on food consumption and growth of laboratory‐reared Sericostoma vittatum larvae. In all cases, larval mass was positively correlated with consumption rates but negatively with growth rates and gross production efficiencies. Conditioning time (4, 8 or 30 weeks) had an effect on feeding rates: they were lowest for the least conditioned pine litter, but no effect of conditioning time on growth rates was observed. Contrary to previous reports on conifer litter use by aquatic detritivores, our results indicate that S.vittatum larvae were able to transform the highly refractory pine litter into secondary production even when it was conditioned for only 4 weeks. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
3.
Amazon and Cerrado‐forested streams show natural fluctuations in leaf litter quantity along the time and space, suggesting a change on litter quality input. These natural fluctuations of leaf litter have repercussion on the organic matter cycling and consequently effects on leaf decomposition in forested streams. The effects of the quantity of leaf litter with contrasting traits on consumption by larvae of shredder insects from biomes with different organic matter dynamics have still been an understudied question. The Trichoptera Phylloicus spp. is a typical shredder in tropical headwater streams and keep an important role in leaf litter decomposition. Here, we assessed the consumption by shredder Phylloicus spp., from Amazonia and Cerrado biomes, on higher (Maprounea guianensis) and lower quality leaves (Inga laurina) in different proportions and quantities. Experiments were performed concomitantly in microcosms approaches, simulating Cerrado and Amazonian streams. Higher leaf consumption occurred in Cerrado microcosms. Litter quantity influenced negatively leaf consumption by shredders in Cerrado, in opposition to Amazonia, where consumption was not affected by leaf quantity. In both sites, we observed higher consumption by shredders in treatment with only M. guianensis and no difference between other treatments with mixture of leaves. In treatment with litter of I. laurina, we noted the use of substrate for case building (due to the higher leaf toughness), affecting the fragmentation process. Therefore, our results indicate that leaf litter quality drives the preference of consumption by Phylloicus larvae in Cerrado and Amazonia streams.  相似文献   

4.
Summary Experimental studies support four main conclusions about the effects of the chemical composition of stemflow on the growth, development, and survivorship of larvae of the tree hole mosquito Aedes triseratus Say, a vector of human encephalitis. (1) The presence and type of leaf litter is more critical for larval growth and development than the type of stemflow found in tree holes. (2) However, variations in stemflow chemical composition within the natural range of concentrations have substantial effects on growth, development, and survivorship of the larvae. Effects of pH, ammonia, nitrate, and sulfate are especially pronounced. (3) Acidification of stemflow caused increased mortality, prolonged development times, and reduced size of individual pupae, similar to effects of acid precipitation on the insect detritivores of lakes and streams. The stimulatory effects of nitrate and sulfate in acid precipitation do not compensate for the deleterious effects of the acidity. (4) Changes in stemflow characteristics sometimes had opposite effects on detritivores and detritus. The vigor of the larval population was not dependent on litter decomposition alone. In general, emergence patterns of adult treehole mosquitoes depend strongly on the chemical composition of stemflow.A fractional factorial experiment was successfully used. Fractional designs are advocated for experiments that screen a large number of nutrients or toxins for their effects on ecosystem components.  相似文献   

5.
Abstract Allochtonous leaf litter is an important source of energy and nutrients for invertebrates in cave ecosystems. A change to the quality or quantity of litter entering caves has the potential to disrupt the structure and function of cave communities. In this study, we adopted an experimental approach to examine rates of leaf litter decomposition and the invertebrate assemblages colonizing native and exotic leaf litter in limestone caves in the Jenolan Caves Karst Conservation Reserve, New South Wales, Australia. We deployed traps containing leaf litter from exotic sycamore (Acer pseudoplatanus) and radiata pine (Pinus radiata) trees and native eucalypts (Eucalyptus spp.) in twilight zones (near the cave entrance) and areas deep within the caves for 3 months. Thirty‐two invertebrate morphospecies were recorded from the litter traps, with greater richness and abundance evident in the samples from the twilight zone compared with areas deep within the cave. Sycamore litter had significantly greater richness and abundance of invertebrates compared with eucalypt and pine litter in samples from the twilight zone, but there was no difference in richness or abundance among litter samples placed deep within the cave. Relative rates of decay of the three litters were sycamore > eucalypt > pine. We discuss the potential for the higher decomposition rates and specific leaf area in sycamores to explain their higher invertebrate diversity and abundance. Our findings have important implications for the management of exotic plants and the contribution of their leaf litter to subterranean ecosystems.  相似文献   

6.
Biotechnology offers a new approach for the restoration of tree species affected by exotic pathogens; however, nontarget impacts of this novel strategy on other organisms have not been comprehensively assessed. We evaluated the effect of transgenic American chestnut (Castanea dentata) leaf litter on the growth and survival of larval wood frogs (Lithobates sylvaticus), a forest‐dwelling amphibian species widely sympatric with American chestnut, that forage almost entirely on periphyton and litter detritus that accumulate in temporary vernal pools in forests. We reared wood frog larvae on Castanea leaf litter (American chestnut genetically engineered for blight tolerance, nontransgenic American chestnut, Chinese chestnut [Castanea mollissima], and an American–Chinese chestnut hybrid) and litter from two non‐Castanea, nontransgenic “control” tree species, coupled with two levels of supplementary food. We observed no differences in growth or survival of wood frog larvae reared on transgenic versus nontransgenic American chestnut leaves. Without supplementary food, wood frog larvae provided leaves from American chestnut (both types) developed faster and grew larger than those exposed to other leaf litter treatments. Results of this study provide preliminary evidence that (1) American chestnut may have formerly been an important source of food for forest‐dwelling amphibians and (2) transgenic American chestnut litter generated as part of chestnut restoration efforts is unlikely to present direct novel risks to developing amphibian larvae in the forest environment.  相似文献   

7.
1. Eucalyptus globulus, a tree species planted worldwide in many riparian zones, has been reported to affect benthic macroinvertebrates negatively. Although there is no consensus about the effects of Eucalyptus on aquatic macrobenthos, its removal is sometimes proposed as a means of ecological restoration. 2. We combined the sampling of macroinvertebrates with measurement of the colonisation of leaf packs in mesh bags, to examine the effects of riparian Eucalyptus and its litter on benthic macroinvertebrates in three small streams in California, U.S.A. Each stream included one reach bordered by Eucalyptus (E‐site) and a second bordered by native vegetation (N‐site). 3. The macrobenthos was sampled and two sets of litter bags were deployed at each site: one set with Eucalyptus litter (Euc‐bags) and one with mixed native tree litter (Nat‐bags) containing Quercus, Umbellularia, Acer and Alnus. Bags were exposed for 28, 56 and 90 days and this experiment was repeated in the autumn, winter and spring to account for effects of changing stream flow and insect phenology. 4. Litter input (average dry mass: 950 g m?2 year?1 in E‐sites versus 669 g m?2 year?1 in N‐sites) was similar, although in‐stream litter composition differed between E‐ and N‐sites. Litter broke down at similar rates in Euc‐bags and Nat‐bags (0.0193 day?1 versus 0.0134 day?1), perhaps reflecting the refractory nature of some of the leaves of the native trees (Quercus agrifolia). 5. Summary metrics for macroinvertebrates (taxon richness, Shannon diversity, pollution tolerance index) did not differ significantly between the E and N sites, or between Euc‐bags and Nat‐bags. No effect of exposure time or site was detected by ordination of the taxa sampled. However, distinct seasonal ordination clusters were observed in winter, spring and autumn, and one of the three streams formed a separate cluster. 6. The presence of Eucalyptus was less important in explaining the taxonomic composition of the macrobenthos than either ‘season’ or ‘stream’. Similarly, these same two factors (but not litter species) also helped explain the variation in leaf breakdown. We conclude that patches of riparian Eucalyptus and its litter have little effect on stream macrobenthos in this region.  相似文献   

8.
9.
1. Knowledge of the influence of predatory fish in detritus‐based stream food webs is poor. We tested whether larval abundance of the New Zealand leaf‐shredding caddisfly, Zelandopsyche ingens (family Oeconesidae), was affected by the presence of predatory brown trout, Salmo trutta and the abundance of their primary detrital resource (Nothofagus leaves). 2. The density of Z. ingens and the biomass of leaves were determined in seven fishless streams and four trout streams in the Cass region, central South Island, on four occasions spanning 5 years. 3. Physicochemical conditions were similar in trout and fishless streams, but ancova indicated that Z. ingens numbers were positively related to leaf biomass and that caddisfly numbers were significantly greater in fishless streams than trout streams for any given biomass of leaf. The cases of trout stream larvae were also heavier per unit length than those in fishless streams. 4. Our results provide evidence for both top‐down and bottom‐up influences on a detritus‐based stream food web. Although stream detritivores may benefit from a habitat that provides both food and a degree of protection from predators, top‐down effects of predators on detritivore population abundance were still important. Thus, detrital resource availability may determine maximum attainable population size, whereas predation is likely to reduce the population to a level below that.  相似文献   

10.
This study assessed the feeding preference of larvae of Triplectides sp. (Trichoptera, Leptoceridae) exposed to leaves of native (Hoffmannia dusenii Standley, 1931) and exotic (Eucalyptus globulus Labillardiere, 1799) trees. We hypothesized that, regardless of the origin of the leaves, larval preference is determined mainly by leaf anatomy and quality. Leaves from both species were conditioned with and without nutrient enrichment (NPK), and the four food items were offered in paired combinations to 162 larvae. Larval preference varied according to leaf combinations. In treatments containing both species, larvae preferred to feed on H. dusenii because of softer tissues and anatomical structure. The only exception was the treatment containing discs of enriched E. globulus and non-enriched H. dusenii where enhanced microbial activity on enriched leaves provided a softer resource to shredders. Our results corroborate the initial hypothesis and suggest that introduction of exotic leaves and changes in nutrient availability may affect shredder activity in streams and, consequently, organic-matter processing and ecosystem functioning.  相似文献   

11.
Swan CM  Palmer MA 《Oecologia》2006,147(3):469-478
Leaf litter derived from riparian trees can control secondary production of detritivores in forested streams. Species-rich assemblages of leaf litter reflect riparian plant species richness and represent a heterogeneous resource for stream consumers. Such variation in resource quality may alter consumer growth and thus the feedback on leaf breakdown rate via changes in feeding activity. To assess the consequences of this type of resource heterogeneity on both consumer growth and subsequent litter breakdown, we performed a laboratory experiment where we offered a leaf-shredding stream detritivore (the stonefly Tallaperla maria, Peltoperlidae) ten treatments of either single- or mixed-species leaf litter. We measured consumer growth rate, breakdown rate and feeding activity both with and without consumers for each treatment and showed that all three variables responded to speciose leaf litter. However, the number of leaf species was not responsible for these results, but leaf species composition explained the apparent non-additive effects. T. maria growth responded both positively and negatively to litter composition, and growth on mixed-litter could not always be predicted by averaging estimates of growth in single-species treatments. Furthermore, breakdown and feeding rates in mixed litter treatments could not always be predicted from estimates of single-species rates. Given that species richness and composition of senesced leaves in streams reflects riparian plant species richness, in-stream secondary production of detritivores and organic matter dynamics may be related to species loss of trees in the riparian zone. Loss of key species may be more critical to maintaining such processes than species richness per se.  相似文献   

12.
1. Resource quality and stoichiometric imbalances in carbon : nutrient ratios between consumers and resources can influence key ecosystem processes. In many streams, this has important implications for food webs that are based largely upon the utilization of terrestrial leaf‐litter, which varies widely among litter types in its value as a food source for detritivores and as a substrate for microbial decomposers. 2. We measured breakdown rates and macroinvertebrate colonization of leaf‐litter from a range of native and exotic plants of differing resource quality and palatability to consumers [e.g. carbon : nitrogen : phosphorus (C : N : P) ratios, lignin and cellulose content], in a field experiment. We also measured C : N : P ratios of the principal leaf‐shredding invertebrates, which revealed strong stoichiometric imbalances across trophic levels: C : N and C : P ratios typically differed by at least one order of magnitude between consumers and resources, whereas N : P imbalances were less marked. Application of the threshold elemental ratio approach, which integrates animal bioenergetics and body elemental composition in examining nutrient deficiency between consumers and resources, revealed less marked C : P imbalances than those based on the simpler arithmetic differences described above. 3. Litter breakdown rates declined as nutrient imbalances widened and resource quality fell, but they were independent of whether resources were exotic or native. The principal drivers of total, microbial and invertebrate‐mediated breakdown rates were lignin : N, lignin : P and fungal biomass, respectively. However, multiple regression using orthogonal predictors yielded even more efficient models of litter breakdown, as consumers responded to more than one aspect of resource quality. For example, fungal biomass and litter C : N both influenced invertebrate‐mediated breakdown. 4. Large stoichiometric imbalances and changes in resource quality are likely to have serious consequences for stream ecosystem functioning, especially when riparian zones have been invaded by exotic plant species whose chemical composition differs markedly from that of the native flora. Consequently, the magnitude and direction of change in breakdown rates and, thus, resource depletion, will be driven to a large extent by the biochemical traits (rather than taxonomic identity per se) of the resident and invading flora.  相似文献   

13.
14.
Replacement of native macrophyte species with exotic or invasive ones affects the quality of detritus entering streams and can alter nutrient cycles and community structure in aquatic ecosystems. Decomposition of air‐dried native hardstem bulrush (Schoenoplectus acutus), invasive southern cattail (Typha domingensis), and exotic common reed (Phragmites australis) were studied in an urban stream (Las Vegas, Nevada, USA) using litter bags. Samples were analyzed for dry mass, lignin, nutrients, trace elements, and macroinvertebrates. Litter type and sediment deposited on plant material influenced material loss. Trace elements arsenic and selenium increased in plant material to concentrations considered marginal for ecosystem contamination by exposure day 76. Mercury increases were inconsistent across plant species and did not exceed limits. Bulrush decomposed faster, and tended to have higher selenium concentrations, than did invasive southern cattail and exotic common reed. Macroinvertebrate communities colonizing litter bags were similar across plant litter types, but differed from mesh‐only bags and samples collected with a kick‐net. Macroinvertebrate exclusion resulted in significantly lower loss rates, but functional feeding groups such as shredders were not associated with decomposition differences. The caddisfly, Smicridea, physically modified stem material and aided in processing, but microbes appeared most important in biological material breakdown. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
1. A knowledge of how individual behaviour affects populations in nature is needed to understand many ecologically important processes, such as the dispersal of larval insects in streams. The influence of chemical cues from drift‐feeding fish on the drift dispersal of mayflies has been documented in small experimental channels (i.e. < 3 m), but their influence on dispersal in natural systems (e.g. 30 m stream reaches) is unclear. 2. Using surveys in 10 Rocky Mountain streams in Western Colorado we examined whether the effects of predatory brook trout (Salvelinus fontinalis) on mayfly drift, that were apparent in stream‐side channels, could also be detected in natural streams. 3. In channel experiments, the drift of Baetis bicaudatus (Baetidae) was more responsive to variation in the concentration of chemical cues from brook trout than that of another mayfly, Epeorus deceptivus (Heptageniidae). The rate of brook trout predation on drifting mayflies of both species in a 2‐m long observation tank was higher during the day (60–75%) but still measurable at night (5–10%). Epeorus individuals released into the water column were more vulnerable to trout predation by both day and night than were Baetis larvae treated similarly. 4. Drift of all mayfly taxa in five fishless streams was aperiodic, whereas their drift was nocturnal in five trout streams. The propensity of mayflies to drift was decreased during the day and increased during the night in trout streams compared with fishless streams. In contrast to the channel experiments, fish biomass and density did not alter the nocturnal nature nor magnitude of mayfly drift in natural streams. 5. In combination, these results indicate that mayflies respond to subtle differences in concentration of fish cues in experimental channels. However, temporal and spatial variation in fish cues available to mayflies in natural streams may have obscured our ability to detect responses at larger scales.  相似文献   

16.
17.
Invasive plants are common and may provide resources through litter for container mosquito larvae. Invasive plant reproductive parts can make up a substantial part of litter but have mostly been ignored as a resource for mosquito larvae. We hypothesized that the reproductive fruits of the invasive eastern red cedar, Juniperus virginiana, provide high quality resources for the invasive, container mosquito Aedes albopictus at the western margin of its invasive range in North America. To test this hypothesis, we performed two laboratory experiments. The first examined the response of individual larvae of Ae. albopictus to different amounts of J. virginiana leaf (fresh and senesced) and J. virginiana fruit (ripe and unripe), as well as to a control leaf (Quercus virginiana, live oak). The second experiment examined the response of different densities of Ae. albopictus larvae to each litter type. We found significant differences in response by individual larvae to different amounts of litter and litter types. We also found J. virginiana litter components could support positive population growth rates as a function of initial larval density where the control leaf could not. We conclude that invasive plants may provide high quality resources, and that the reproductive parts (fruits, flowers, cones) may be an important and overlooked component in provisioning larval habitats. Therefore, the expansion of J. virginiana into grassland areas may contribute to the expansion of Ae. albopictus westward in North America.  相似文献   

18.
We tested the hypotheses that (1) plant defenses against consumers increase in the tropics, and that these differences in quality are perceived by detritivores; and (2) microbial conditioning of leaf litter is important for the feeding ecology of shredders from both geographical regions. We compared quality parameters of 8 tree species from Portugal and 8 from Venezuela. The tropical leaves were tougher, but did not differ from temperate leaves in terms of N, C: N, and polyphenols. In multiple‐choice experiments, shredders from Portugal (Sericostoma vittatum and Chaetopteryx lusitanica) and from Venezuela (Nectopsyche argentata and Phylloicus priapulus) discriminated among conditioned leaves, preferentially consuming softer leaves. In another set of experiments, all shredders preferentially fed on conditioned rather than unconditioned leaves, grew faster when fed conditioned than unconditioned leaves and fed more on temperate than tropical leaves. We conclude that leaf litter from the tropics is a low‐quality resource compared to leaves in temperate systems, because of differences in toughness, and that tropical shredders benefit from microbial colonization, as previously demonstrated for temperate systems. We suggest that leaf toughness could be one explanation for the reported paucity of shredders in some tropical streams. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
Animals are exposed to different predators over their lifespan. This raises the question of whether exposure to predation risk in an early life stage affects the response to predators in subsequent life stages. In this study, we used wood frogs (Rana sylvatica) to test whether exposure to cues indicating predation risk from dragonfly larvae during the wood frog larval stage affected post‐metamorphic activity level and avoidance of garter snake chemical cues. Dragonfly larvae prey upon wood frogs only during the larval stage, whereas garter snakes prey upon wood frogs during both the larval stage and the post‐metamorphic stage. Exposure to predation risk from dragonflies during the larval stage caused post‐metamorphic wood frog juveniles to have greater terrestrial activity than juvenile wood frogs that were not exposed to larval‐stage predation risk from dragonflies. However, exposure to predation risk as larvae did not affect juvenile wood frog responses to chemical cues from garter snakes. Wood frogs exposed as larvae to predation risk from dragonfly larvae avoided garter snake chemical cues to the same extent as wood frog larvae not exposed to predation risk from dragonfly larvae. Our results demonstrate that while some general behaviors exhibit carry‐over effects from earlier life stages, behavioral responses to predators may remain independent of conditions experienced in earlier life stages.  相似文献   

20.
Aphidophagous ladybirds of the Coccinellinae subfamily are deterred from oviposition in the presence of chemical cues deposited by conspecific larvae, therefore avoiding the detrimental effects of competition and cannibalism to their offspring. However, it is still unknown whether aphidophagous species from other Coccinellidae subfamilies similarly behave. Here, we investigate this question for species of the Scymninae subfamily. A GC‐MS analysis of Scymnus interruptus (Goeze) larval tracks shows that larvae deposit a cocktail of hydrocarbons containing at least five branched‐chain alkanes. Furthermore, our experiments on the oviposition behaviour of S. interruptus and S. nubilus (Mulsant) in the presence of conspecific larval tracks and of conspecific larval wax covering Scymninae larvae show that females do not refrain from ovipositing in the presence of these larval cues. We recommend that more attention is paid to the role of Scymnus spp. in the regulation of aphids because their oviposition strategy might strengthen aphid suppression in agrosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号