首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent droughts and increasing temperatures have resulted in extensive tree mortality across the globe. Understanding the environmental controls on tree regeneration following these drought events will allow for better predictions of how these ecosystems may shift under a warmer, drier climate. Within the widely distributed piñon–juniper woodlands of the southwestern USA, a multiyear drought in 2002–2004 resulted in extensive adult piñon mortality and shifted adult woodland composition to a juniper‐dominated, more savannah‐type ecosystem. Here, we used pre‐ (1998–2001) and 10‐year post‐ (2014) drought stand structure data of individually mapped trees at 42 sites to assess the effects of this drought on tree regeneration across a gradient of environmental stress. We found declines in piñon juvenile densities since the multiyear drought due to limited new recruitment and high (>50%) juvenile mortality. This is in contrast to juniper juvenile densities, which increased over this time period. Across the landscape, piñon recruitment was positively associated with live adult piñon densities and soil available water capacity, likely due to their respective effects on seed and water availability. Juvenile piñon survival was strongly facilitated by certain types of nurse trees and shrubs. These nurse plants also moderated the effects of environmental stress on piñon survival: Survival of interspace piñon juveniles was positively associated with soil available water capacity, whereas survival of nursed piñon juveniles was negatively associated with perennial grass cover. Thus, nurse plants had a greater facilitative effect on survival at sites with higher soil available water capacity and perennial grass cover. Notably, mean annual climatic water deficit and elevation were not associated with piñon recruitment or survival across the landscape. Our findings reveal a clear shift in successional trajectories toward a more juniper‐dominated woodland and highlight the importance of incorporating biotic interactions and soil properties into species distribution modeling approaches.  相似文献   

2.
Piñon–juniper (Pinus spp.–Juniperus spp.) woodlands are common throughout western North America, yet relatively little is known about the habitat use and requirements for many members of its avian community. During summer 2005–2007, we assessed avian nesting substrates within piñon (Pinus edulis)–juniper (Juniperus osteosperma) woodlands in northwestern New Mexico. Of all nests in live trees, 86% were in junipers. The selection of juniper as a nest tree was significantly higher than expected from the region's piñon–juniper ratio (1:1.06) for the community as a whole, for both open cup and cavity nesting species, and for 8 species (of which 6 are piñon–juniper obligate or semi-obligate species). Nest survival, however, was not higher in juniper than in piñon for the nesting community as a whole or for chipping sparrows (Spizella passerina), the single species that was well represented nesting in piñon. The high use of juniper as a nesting substrate differs from previous studies, which have suggested that a presence of piñon is among the most important habitat features for many piñon–juniper species. Because of their importance to nesting birds, managers should avoid preferential thinning of junipers within piñon–juniper woodlands. © 2011 The Wildlife Society.  相似文献   

3.
Overstory reduction and slash mulching (ORSM) has been shown to be an effective means for increasing herbaceous cover and diversity in degraded piñon (Pinus edulis) and juniper (Juniperus monosperma) woodlands of north‐central New Mexico. Local fire history, tree age‐class structure, and grazing records suggest that many areas now occupied by dense piñon‐juniper woodlands were formerly more open, with grassy understories that supported well‐developed soils and a fire regime. At Bandelier National Monument, studies are evaluating the use of ORSM treatments as a restoration management tool. In 1999 and 2001, we evaluated the effects of an ORSM treatment implemented in 1997 upon butterfly abundance and species richness between a pair of treated and control watersheds. Butterfly abundance and species richness were significantly greater on the treated watershed in both years, and these measures were correlated with significant increases in forb and grass cover in the treated watershed. Five of the 10 most common nectar and larval host plants had significantly greater cover in the treated watershed, including the legume Lotus wrightii. Our results suggest that the increased herbaceous cover resulting from an ORSM treatment of a single watershed induced a positive, initial response by butterflies. Using butterflies as indicators of site productivity and species richness, our results suggest ORSM is a promising technique for restoring biodiversity in degraded piñon‐juniper woodlands.  相似文献   

4.
Plant hydraulic conductance (ks) is a critical control on whole‐plant water use and carbon uptake and, during drought, influences whether plants survive or die. To assess long‐term physiological and hydraulic responses of mature trees to water availability, we manipulated ecosystem‐scale water availability from 2007 to 2013 in a piñon pine (Pinus edulis) and juniper (Juniperus monosperma) woodland. We examined the relationship between ks and subsequent mortality using more than 5 years of physiological observations, and the subsequent impact of reduced hydraulic function and mortality on total woody canopy transpiration (EC) and conductance (GC). For both species, we observed significant reductions in plant transpiration (E) and ks under experimentally imposed drought. Conversely, supplemental water additions increased E and ks in both species. Interestingly, both species exhibited similar declines in ks under the imposed drought conditions, despite their differing stomatal responses and mortality patterns during drought. Reduced whole‐plant ks also reduced carbon assimilation in both species, as leaf‐level stomatal conductance (gs) and net photosynthesis (An) declined strongly with decreasing ks. Finally, we observed that chronically low whole‐plant ks was associated with greater canopy dieback and mortality for both piñon and juniper and that subsequent reductions in woody canopy biomass due to mortality had a significant impact on both daily and annual canopy EC and GC. Our data indicate that significant reductions in ks precede drought‐related tree mortality events in this system, and the consequence is a significant reduction in canopy gas exchange and carbon fixation. Our results suggest that reductions in productivity and woody plant cover in piñon–juniper woodlands can be expected due to reduced plant hydraulic conductance and increased mortality of both piñon pine and juniper under anticipated future conditions of more frequent and persistent regional drought in the southwestern United States.  相似文献   

5.
Knowledge of the seed and seedling ecology of the piñon and juniper woodlands of western North America is essential for understanding both the northward migration and expansion of the woodlands during the Holocene (< 11,500 B.P.), and the accelerated expansion of the woodlands since settlement of the West by Anglo-Americans around 200 years ago. We follow the fates of seeds and seedlings of the different piñon and juniper species within the woodlands from seed development to seedling establishment, and discuss the implications of this information for the past and present expansion of the woodlands. While seed development requires about two and one-half years in pinons, it is species-dependent in junipers and can take one, two, or even three years. Substantial seed losses can occur during seed development due to developmental constraints, and before or after seed maturation as a result of insects, pathogens, or predatory animals. In piñon pines, the primary seed dispersers are scatterhoarding birds (corvids) and rodents that harvest seeds from the trees or after seed fall and cache them in the soil. In contrast, most junipers appear to be dispersed primarily by frugivorous birds and mammals that ingest the seeds and defecate them onto the soil surface. We have recently documented that scatter-hoarding rodents also disperse juniper seeds. Disperser effectiveness, or the contribution a disperser makes to the future reproduction of a plant population, may vary among species of piñons and especially junipers. Piñon seeds are short-lived and exhibit little dormancy, and they probably only germinate the spring following dispersal. Juniper seeds are long-lived and seed dispersal can occur over one or more years. Seed germination can be delayed for several years due to impermeable seed coats, embryo dormancy, or the presence of inhibitors. Seedling establishment of piñon pines is facilitated by nurse plants but, while junipers often establish beneath nurse plants, they are capable of establishing in open environments. In the southwestern United States, higher establishment of juniper occurs in open environments due to more favorable precipitation, and competition may be more important than facilitation in determining establishment. When considering the mechanisms involved in the past and present expansion of the woodlands, short-distance dispersal, local population growth, and long-distance dispersal are all important. Different classes of dispersers, some of which appear to have coevolved with the tree species, appear to be responsible for local (short-distance) vs. long-distance dispersal in pinons and junipers. Because ecotones form the interface between the woodlands and adjacent communities, they can provide valuable information on both the seed dispersal and seedling establishment processes responsible for tree expansion. Disturbance regimes and, recently, the effects of humans on those regimes have major effects on the expansion and contraction of the woodlands. Before Anglo-American settlement, fires occurred as frequently as every 50–100 years throughout much of the woodlands. During this century, fire frequencies have been reduced due to the indirect effects of livestock grazing and the direct effects of removing Native Americans from the ecosystem and implementing active fire-prevention programs. The result has been an increase in tree-dominated successional stages at the expense of grass-dominated stages. Various management techniques, including controlled burning and chaining, have been implemented to reduce tree dominance, but their effects depend largely on the life histories of the tree species and the disturbance characteristics. Several areas relating to the seed and seedling ecology of the piñon and juniper require additional research if we are to truly understand the dynamics of the woodlands.  相似文献   

6.
Reestablishment of perennial vegetation is often needed after wildfires to limit exotic species and restore ecosystem services. However, there is a growing body of evidence that questions if seeding after wildfires increases perennial vegetation and reduces exotic plants. The concern that seeding may not meet restoration goals is even more prevalent when native perennial vegetation is seeded after fire. We evaluated vegetation cover and density responses to broadcast seeding native perennial grasses and mountain big sagebrush (Artemisia tridentata Nutt. spp. vaseyana [Rydb.] Beetle) after wildfires in the western United States in six juniper (Juniperus occidentalis ssp. occidentalis Hook)‐dominated mountain big sagebrush communities for 3 years postfire. Seeding native perennial species compared to not seeding increased perennial grass and sagebrush cover and density. Perennial grass cover was 4.3 times greater in seeded compared to nonseeded areas. Sagebrush cover averaged 24 and less than 0.1% in seeded and nonseeded areas at the conclusion of the study, respectively. Seeding perennial species reduced exotic annual grass and annual forb cover and density. Exotic annual grass cover was 8.6 times greater in nonseeded compared to seeded areas 3 years postfire. Exotic annual grass cover increased over time in nonseeded areas but decreased in seeded areas by the third‐year postfire. Seeded areas were perennial‐dominated and nonseeded areas were annual‐dominated at the end of the study. Establishing perennial vegetation may be critical after wildfires in juniper‐dominated sagebrush steppe to prevent the development of annual‐dominated communities. Postwildfire seeding increased perennial vegetation and reduced exotic plants and justifies its use.  相似文献   

7.
Hydraulic architecture imposes a fundamental control on water transport, underpinning plant productivity, and survival. The extent to which hydraulic architecture of mature trees acclimates to chronic drought is poorly understood, limiting accuracy in predictions of forest responses to future droughts. We measured seasonal shoot hydraulic performance for multiple years to assess xylem acclimation in mature piñon (Pinus edulis ) and juniper (Juniperus monosperma ) after 3+ years of precipitation manipulation. Our treatments consisted of water addition (+20% ambient precipitation), partial precipitation‐exclusion (?45% ambient precipitation), and exclusion‐structure control. Supplemental watering elevated leaf water potential, sapwood‐area specific hydraulic conductivity, and leaf‐area specific hydraulic conductivity relative to precipitation exclusion. Shifts in allocation of leaf area to sapwood area enhanced differences between irrigated and droughted K L in piñon but not juniper. Piñon and juniper achieved similar K L under ambient conditions, but juniper matched or outperformed piñon in all physiological measurements under both increased and decreased precipitation treatments. Embolism vulnerability and xylem anatomy were unaffected by treatments in either species. Absence of significant acclimation combined with inferior performance for both hydraulic transport and safety suggests piñon has greater risk of local extirpation if aridity increases as predicted in the southwestern USA.  相似文献   

8.
Drought‐related tree mortality occurs globally and may increase in the future, but we lack sufficient mechanistic understanding to accurately predict it. Here we present the first field assessment of the physiological mechanisms leading to mortality in an ecosystem‐scale rainfall manipulation of a piñon–juniper (Pinus edulisJuniperus monosperma) woodland. We measured transpiration (E) and modelled the transpiration rate initiating hydraulic failure (Ecrit). We predicted that isohydric piñon would experience mortality after prolonged periods of severely limited gas exchange as required to avoid hydraulic failure; anisohydric juniper would also avoid hydraulic failure, but sustain gas exchange due to its greater cavitation resistance. After 1 year of treatment, 67% of droughted mature piñon died with concomitant infestation by bark beetles (Ips confusus) and bluestain fungus (Ophiostoma spp.); no mortality occurred in juniper or in control piñon. As predicted, both species avoided hydraulic failure, but safety margins from Ecrit were much smaller in piñon, especially droughted piñon, which also experienced chronically low hydraulic conductance. The defining characteristic of trees that died was a 7 month period of near‐zero gas exchange, versus 2 months for surviving piñon. Hydraulic limits to gas exchange, not hydraulic failure per se, promoted drought‐related mortality in piñon pine.  相似文献   

9.
Habitat modeling across a landscape that has gradients of habitat conditions requires potential predictor data that can be quantified at biologically relevant scales. We used remotely sensed data to develop a multi-scale density model in 2018 for the golden-cheeked warbler (Setophaga chrysoparia; warbler), a species that breeds in Ashe juniper (Juniperus ashei)-oak (Quercus spp.) woodlands in central Texas, USA. We first classified Ashe juniper and broadleaf tree cover at a 1-m resolution and used this to map potential habitat across the warbler's >67,000-km2 breeding range. We then designed a survey for estimating warbler density based on hierarchical distance sampling. We used stratified random sampling to survey for male warblers at 1,804 points across the continuum of tree canopy cover and composition and detected 810 warblers during our surveys. We developed a suite of potential predictor variables for modeling warbler density that reflected vegetation, topography, climate, and anthropogenic land use conditions across the breeding range and developed these at 3 scales representing the territory, site, and landscape. We modeled warbler density and used the best fit model to produce a spatially explicit estimate. Predicted warbler density was influenced by tree canopy cover and canopy height at the territory scale (100-m radius); tree canopy cover, percent of the canopy comprised of juniper, and an interaction between canopy cover and compound topographic index at the site scale (1-km radius); and annual temperature range at the landscape scale (5-km radius). We estimated a population size of 217,444 male warblers (95% CI = 153,917–311,965) and >3,000 males in each recovery unit. After controlling for the duration of point count surveys, our estimate of population size was similar to that reported from the only previous breeding range survey conducted in 2008–2009. Our model results indicated that management activities to increase warbler density should promote woodlands with high tree canopy cover, approximately 60–80% Ashe juniper composition, and tree heights >3 m. In contrast to a patch-based approach, our treatment of habitat variables as continuous helped to credibly map the warbler distribution across areas with broad transitions from woodlands to shrublands. By measuring these predictor variables at biologically relevant scales, we allowed the warbler survey data to define habitat relationships instead of using anthropogenically defined habitat patches. Outcomes from our study show the benefits of developing spatial products tailored to individual species of interest for conservation and management decisions.  相似文献   

10.
Leaf gas‐exchange regulation plays a central role in the ability of trees to survive drought, but forecasting the future response of gas exchange to prolonged drought is hampered by our lack of knowledge regarding potential acclimation. To investigate whether leaf gas‐exchange rates and sensitivity to drought acclimate to precipitation regimes, we measured the seasonal variations of leaf gas exchange in a mature piñon–juniper Pinus edulisJuniperus monosperma woodland after 3 years of precipitation manipulation. We compared trees receiving ambient precipitation with those in an irrigated treatment (+30% of ambient precipitation) and a partial rainfall exclusion (?45%). Treatments significantly affected leaf water potential, stomatal conductance and photosynthesis for both isohydric piñon and anisohydric juniper. Leaf gas exchange acclimated to the precipitation regimes in both species. Maximum gas‐exchange rates under well‐watered conditions, leaf‐specific hydraulic conductance and leaf water potential at zero photosynthetic assimilation all decreased with decreasing precipitation. Despite their distinct drought resistance and stomatal regulation strategies, both species experienced hydraulic limitation on leaf gas exchange when precipitation decreased, leading to an intraspecific trade‐off between maximum photosynthetic assimilation and resistance of photosynthesis to drought. This response will be most detrimental to the carbon balance of piñon under predicted increases in aridity in the southwestern USA.  相似文献   

11.
Brian F. Jacobs 《Ecography》2011,34(6):1085-1095
Apparent changes in the local occurrence and regional extent of southwestern U.S. piñon–juniper woodlands since Euro‐American settlement (i.e. historic expansion) are widely reported. These changes are commonly attributed to rapid onset of intensive and unregulated livestock grazing in western rangelands beginning ca 1850. However, other potential drivers of historic expansion including climatic warming, biological inertia, elevated CO2, and post‐disturbance successional recovery have also been noted. Landscape patterns of woodland expansion have not been well characterized, thus the magnitude, extent, and timing of historic change remains uncertain and the relative importance of ecological drivers difficult to assess. Previous work within a monsoonal north‐central New Mexico study area demonstrated the utility of logistic modeling to address these questions. Here I expand these efforts by sampling and modeling piñon‐juniper woodlands across a climatically variable four‐state area (i.e. New Mexico, Arizona, Colorado, and Utah). Using MARS, a piece‐wise linear procedure, I model occurrence of pre‐ versus post‐settlement aged stands in relation to environmental factors, predictively map woodland expansion patterns, and evaluate grazing versus other potential drivers of historic change. Pre‐settlement woodlands were most commonly found in upland settings consistent with previous work, although this relationship was less pronounced in winter moisture areas on the Colorado Plateau. Post‐settlement stands in contrast were typically associated with more productive valley‐terrace and toe‐slope settings. However, predicted extent of expansion regionally was largely restricted to summer moisture areas within the range of one‐seed juniper. This dichotomy, where historic expansion was directional into depositional settings atypical of pre‐settlement woodland occurrence supports the view of intensive grazing as a disruptive disturbance. However, the more limited expansion predicted for winter moisture areas suggests grazing effects were likely contingent on bio‐climatic context including ecological potential of different juniper species and affected sites.  相似文献   

12.
Drought‐induced forest mortality is an increasing global problem with wide‐ranging consequences, yet mortality mechanisms remain poorly understood. Depletion of non‐structural carbohydrate (NSC) stores has been implicated as an important mechanism in drought‐induced mortality, but experimental field tests are rare. We used an ecosystem‐scale precipitation manipulation experiment to evaluate leaf and twig NSC dynamics of two co‐occurring conifers that differ in patterns of stomatal regulation of water loss and recent mortality: the relatively desiccation‐avoiding piñon pine (Pinus edulis) and the relatively desiccation‐tolerant one‐seed juniper (Juniperus monosperma). Piñon pine experienced 72% mortality after 13–25 months of experimental drought and juniper experienced 20% mortality after 32–47 months. Juniper maintained three times more NSC in the foliage than twigs, and converted NSC to glucose and fructose under drought, consistent with osmoregulation requirements to maintain higher stomatal conductance during drought than piñon. Despite these species differences, experimental drought caused decreased leaf starch content in dying trees of both species (P < 0.001). Average dry‐season leaf starch content was also a good predictor of drought‐survival time for both species (R2 = 0.93). These results, along with observations of drought‐induced reductions to photosynthesis and growth, support carbon limitation as an important process during mortality of these two conifer species.  相似文献   

13.
Questions: How does landscape position influence biotic and abiotic attributes of western juniper (Juniperus occidentalis) encroached ecosystems? How does intercanopy plant community structure respond to changes in soil moisture and temperature based on juniper cover and topographic position? Location: Steens Mountain, southeast Oregon, USA. Objectives: Competition with western juniper modifies plant community composition, alters soil hydrology, and reduces plant productivity. Research is needed to understand these influences across heterogeneous landscapes. This study characterizes the relationship between juniper encroachment and soil water, soil temperature, topographic position, and intercanopy plant community structure. Methods: Using a completely randomized block design, plant density and cover, percent bare ground, percent soil moisture, soil temperature, heat accumulation, and elevation were sampled in 10 m2 plots representing low (<1%), moderate (~14%), and high (~27%) juniper cover at four aspects. The relationship and difference between vegetation patterns and environmental variables were analyzed using AOV, NMS, and MRPP (α=0.1). Indicator species analysis tested for shifts in dominant species along ecological gradients. Results: Soil moisture remained higher in low juniper cover sites than moderate and high juniper cover sites. North‐facing sites had highest soil moisture at 5 cm depth with low and moderate juniper cover levels. With increasing soil temperature from May to June, soil moisture declined by 19.7% at 5 cm depth. Achnatherum lemmonii and Pseudoreogneria spicata occurred in closed juniper stands while Achnatherum occidentale and Leymus cinereus were common when encroachment was limited. Application: This approach can be used to predict ecosystem response to western juniper encroachment across heterogeneous landscapes.  相似文献   

14.
Human activities are changing patterns of ecological disturbance globally. In North American deserts, wildfire is increasing in size and frequency due to fuel characteristics of invasive annual grasses. Fire reduces the abundance and cover of native vegetation in desert ecosystems. In this study, we sought to characterize stem growth and reproductive output of a dominant native shrub in the Mojave Desert, creosote bush (Larrea tridentata (DC.) Coville) following wildfires that occurred in 2005. We sampled 55 shrubs along burned and unburned transects 12 years after the fires (2017) and quantified age, stem diameter, stem number, radial and vertical growth rates, and fruit production for each shrub. The shrubs on the burn transects were most likely postfire resprouts based on stem age while stems from unburn transects dated from before the fire. Stem and vertical growth rates for shrubs on burned transects were 2.6 and 1.7 times higher than that observed for shrubs on unburned transects. Fruit production of shrubs along burned transects was 4.7‐fold more than shrubs along paired unburned transects. Growth rates and fruit production of shrubs in burned areas did not differ with increasing distance from the burn perimeter. Positive growth and reproduction responses of creosote following wildfires could be critical for soil stabilization and re‐establishment of native plant communities in this desert system. Additional research is needed to assess if repeat fires that are characteristic of invasive grass‐fire cycles may limit these benefits.  相似文献   

15.
Aim Increasing geographical range and density of conifers is a major form of land‐cover change in the western United States, affecting fire frequency, biogeochemistry and possibly biodiversity. However, the extent and magnitude of the change are uncertain. This study aimed to quantify the relationship between changing conifer cover and topography. Location The central Great Basin in the state of Nevada, USA. Methods We used a series of Landsat Thematic Mapper satellite images from 1986, 1995 and 2005 to map change in pinyon–juniper woodlands (Pinus monophylla, Juniperus spp.) in the montane central Great Basin of Nevada. We derived fractional greenness for each year using spectral mixture analysis and identified all areas with an above average increase in greenness from 1986 to 1995 and 1995 to 2005. Results Areas with high fractional greenness in 2005 were most likely to occur at elevations between 2200 and 2600 m a.s.l. Increases in fractional greenness between 1986 and 2005 were most likely to occur at elevations below 2000 m a.s.l. and on south‐facing slopes. However, relationships between elevation and increasing greenness for individual mountain ranges varied considerably from the average trend. Fractional greenness values measured by Landsat suggest that the majority of pinyon–juniper woodlands have not reached their maximum potential tree cover. Main conclusions Expansion of pinyon–juniper at low elevations and on south‐facing slopes probably reflects increasing precipitation in the 20th century, higher water use efficiency caused by increasing atmospheric CO2 in the late 20th century and livestock grazing at the interface between shrubland and woodland. Identification of the spatial relationships between changing fractional greenness of pinyon–juniper woodland and topography can inform regional land management and improve projections of long‐term ecosystem change.  相似文献   

16.
We investigated stem radial growth and water storage dynamics of 2 conifer species differing in hydraulic carbon strategies, Juniperus monosperma and Pinus edulis, under conditions of ambient, drought (~45% reduction in precipitation), heat (~4.8 °C temperature increase), and the combination of drought + heat, in 2013 and 2014. Juniper maintained low growth across all treatments. Overall, the relatively isohydric piñon pine showed significantly greater growth and water storage recharge than the relatively anisohydric juniper across all treatments in the average climate year (2014) but no differences in the regionally dry year (2013). Piñon pine ceased growth at a constant predawn water potential across all treatments and at a less negative water potential threshold than juniper. Heat has a greater negative impact on piñon pines' growth and water storage than drought, whereas juniper was, in contrast, unaffected by heat but strongly impacted by drought. The whole‐plant hydraulic carbon strategies, in this case captured using the isohydric/anisohydric concept, translate into alternative growth and water storage strategies under drought and heat conditions.  相似文献   

17.
This study investigated the impacts of livestock grazing on native plant species cover, litter cover, soil surface condition, surface soil physical and chemical properties, surface soil hydrology, and near ground and soil microclimate in remnant Eucalyptus salmonophloia F. Muell woodlands. Vegetation and soil surveys were undertaken in three woodlands with a history of regular grazing and in three woodlands with a history of little or no grazing. Livestock grazing was associated with a decline in native perennial cover and an increase in exotic annual cover, reduced litter cover, reduced soil cryptogam cover, loss of surface soil microtopography, increased erosion, changes in the concentrations of soil nutrients, degradation of surface soil structure, reduced soil water infiltration rates and changes in near ground and soil microclimate. The results suggest that livestock grazing changes woodland conditions and disrupts the resource regulatory processes that maintain the natural biological array in E. salmonophloia woodlands. Consequently the conditions and resources in many remnant woodlands may be above or below critical thresholds for many species. The implications of these findings for restoration of plant species diversity and community structure are discussed. Simply removing livestock from degraded woodlands is unlikely to result in the restoration of plant species diversity and community structure. Restoration will require strategies that capture resources, increase their retention and improve microclimate.  相似文献   

18.
Wildfires are rare in the disturbance history of Hawaiian forests but may increase in prevalence due to invasive species and global climate change. We documented survival rates and adaptations facilitating persistence of native woody species following 2002–2003 wildfires in Hawaii Volcanoes National Park, Hawaii. Fires occurred during an El Niño drought and were ignited by lava flows. They burned across an environmental gradient occupied by two drier shrub-dominated communities and three mesic/wet Metrosideros forest communities. All the 19 native tree, shrub, and tree fern species demonstrated some capacity of postfire persistence. While greater than 95% of the dominant Metrosideros trees were top-killed, more than half survived fires via basal sprouting. Metrosideros trees with diameters >20 cm sprouted in lower percentages than smaller trees. At least 17 of 29 native woody species colonized the postfire environment via seedling establishment. Although the native biota possess adaptations facilitating persistence following wildfire, the presence of highly competitive invasive plants and ungulates will likely alter postfire succession.  相似文献   

19.
Seedling recruitment in many highly serotinous populations of Pinus coulteri on California's central coast depends almost entirely on periodic, stand-replacing fire. Compared to serotinous pines of the Mediterranean Basin, little detailed information is available on the postfire demography of California closed-cone pines, including P. coulteri. In September 1996 a wildfire burned the 760-ha American Canyon Research Natural Area (RNA). Using aerial photography, we mapped burn severity of P. coulteri-chaparral woodlands and forests within the RNA. From May to September of 1997, we also quantified seedling establishment and mortality in relation to biophysical site characteristics including fire severity. Seventy-six percent of P. coulteri forests and woodlands experienced high-severity burns, 9% moderate-severity burns, and 15% low-severity or unburned. Of the 53 plots used for seedling counts, 70% were high-severity, 26% moderate-severity, and 4% low-severity. Seedling densities 13 months postfire were low (0.21 m–2), but seedling mortality also was low (8.4%). Aerial seed bank size increased from north-facing to south-facing slopes and from high-severity to low-severity burns. Seedling recruitment was unrelated to burn severity and increased with the size of the canopy seed bank (cone density). Many seedlings established from rodent seed caches; 23% of the seedlings established in clumps from seeds cached by Dipodomys agilis, Chaetodipus californicus and Peromyscus maniculatus. Pinus coulteri seeds have low potential for dispersal by wind, but secondary dispersal by rodents moves seeds away from source trees and into neighboring chaparral. We discuss the potential importance of rodent seed caching to postfire demography of California and Mediterranean serotinous pines.  相似文献   

20.
Vegetation change from drought-induced mortality can alter ecosystem community structure, biodiversity, and services. Although drought-induced mortality of woody plants has increased globally with recent warming, influences of soil type, tree and shrub groups, and species are poorly understood. Following the severe 2002 drought in northern Arizona, we surveyed woody plant mortality and canopy dieback of live trees and shrubs at the forest–woodland ecotone on soils derived from three soil parent materials (cinder, flow basalt, sedimentary) that differed in texture and rockiness. Our first of three major findings was that soil parent material had little effect on mortality of both trees and shrubs, yet canopy dieback of trees was influenced by parent material; dieback was highest on the cinder for pinyon pine (Pinus edulis) and one-seed juniper (Juniperus monosperma). Ponderosa pine (Pinus ponderosa) dieback was not sensitive to parent material. Second, shrubs had similar mortality, but greater canopy dieback, than trees. Third, pinyon and ponderosa pines had greater mortality than juniper, yet juniper had greater dieback, reflecting different hydraulic characteristics among these tree species. Our results show that impacts of severe drought on woody plants differed among tree species and tree and shrub groups, and such impacts were widespread over different soils in the southwestern U.S. Increasing frequency of severe drought with climate warming will likely cause similar mortality to trees and shrubs over major soil types at the forest–woodland ecotone in this region, but due to greater mortality of other tree species, tree cover will shift from a mixture of species to dominance by junipers and shrubs. Surviving junipers and shrubs will also likely have diminished leaf area due to canopy dieback.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号