首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The common cuckoo Cuculus canorus is a brood parasite that utilizes many host species. These have evolved defense against parasitism to reject cuckoo eggs that look unlike their own and some cuckoos have evolved egg mimicry to counter this defense. Egg phenotype indeed plays a key role for both the cuckoo and its hosts to successfully reproduce. It has been argued that cuckoos should parasitize host nests where egg phenotype matches because this makes parasitism more successful. Details of the cuckoo’s parasitic behavior, however, largely remains unknown if they really parasitize hosts depending on “egg matching”. In this paper, we model a time sequence of parasitic events in which a cuckoo finds host nests and decides to parasitize them or not in the presence of egg polymorphism. We evaluate which strategy is optimal: (1) opportunistic parasitism where cuckoos parasitize hosts irrespective of the phenotype, or (2) non-opportunistic parasitism where cuckoos parasitize hosts where egg phenotype matches. The analysis showed that either of the two strategies can be optimal. Factors not considered in the model, e.g., ecological and evolutionary changes both in the cuckoo and the host side, are discussed to explain apparent contrasts observed in some cuckoo–host interactions.  相似文献   

2.
Avian hosts of brood parasites can evolve anti‐parasitic defenses to recognize and reject foreign eggs from their nests. Theory predicts that higher inter‐clutch and lower intra‐clutch variation in egg appearance facilitates hosts to detect parasitic eggs as egg‐rejection mainly depends on the appearance of the egg. Therefore, we predict that egg patterns and rejection rates will differ when hosts face different intensity of cuckoo parasitism. We tested this prediction in two populations of the plain prinia Prinia inornata: Guangxi in mainland China with high diversity and density of cuckoo species, and Taiwan where there is only one breeding cuckoo species, the oriental cuckoo Cuculus optatus. As expected, egg patterns were similar within clutches but different among clutches (polymorphic eggs) in the mainland population, while the island population produced more uniform egg morphs. Furthermore, the mainland population showed a high rate of egg rejection, while the island population exhibited dramatically reduced egg grasp‐rejection ability in the absence of parasitism by the common cuckoo Cuculus canorus. Our study suggests that prinias show lower intra‐clutch consistency in egg colour and lose egg‐rejecting ability under relaxed selection pressure from brood parasitism.  相似文献   

3.
In avian brood parasitism, egg phenotype plays a key role for both host and parasite reproduction. Several parrotbill species of the genus Paradoxornis are parasitized by the common cuckoo Cuculus canorus, and clear polymorphism in egg phenotype is observed. In this article, we develop a population genetics model in order to identify the key parameters that control the maintenance of egg polymorphism. The model analyses show that egg polymorphism can be maintained either statically as an equilibrium or dynamically with frequency oscillations depending on the sensitivity of the host against unlike eggs and how the parasite targets host nests with specific egg phenotypes. On the basis of the model, we discuss egg polymorphism observed in parrotbills and other host species parasitized by the cuckoo. We suggest the possibility that frequencies of egg phenotypes oscillate and we appeal for monitoring of cuckoo-host interactions over a large spatiotemporal scale.  相似文献   

4.
Coevolutionary theories of brood parasite strategy and host defense have been informed by research on egg mimicry and host recognition. However, there is no information on the strategies of New World parasitic cuckoos and their hosts. The striped cuckoo Tapera naevia is a New World cuckoo that uses multiple host species and maintains an egg color polymorphism. To investigate if color‐matching influenced rejection behavior in hosts, I conducted an egg rejection experiment on a host that lays blue‐green eggs, the rufous‐and‐white wren Thryophilus rufalbus and a host that lays white eggs, the plain wren Cantorchilus modestus. I used spectrophotometric analysis of egg color to determine the degree of egg color‐matching. I found that at the field site the striped cuckoo lays highly mimetic eggs for the rufous‐and‐white wren, in both color and brightness. The rufous‐and‐white wren was more likely to accept mimetic artificial eggs than non‐mimetic eggs. The plain wren exhibited low rejection rates for both mimetic and non‐mimetic artificial eggs. The evidence from this study indicates that the striped cuckoo lays eggs that are closely color‐matched to those of its preferred host, the rufous‐and‐white wren, and that this mimicry improves acceptance.  相似文献   

5.
Coevolutionary arms races are a powerful force driving evolution, adaptation, and diversification. They can generate phenotypic polymorphisms that render it harder for a coevolving parasite or predator to exploit any one individual of a given species. In birds, egg polymorphisms should be an effective defense against mimetic brood parasites and are extreme in the African tawny-flanked prinia (Prinia subflava) and its parasite, the cuckoo finch (Anomalospiza imberbis). Here we use models of avian visual perception to analyze the appearance of prinia and cuckoo finch eggs from the same location over 40 years. We show that the two interacting populations have experienced rapid changes in egg traits. Egg colors of both species have diversified over time, expanding into avian color space as expected under negative frequency-dependent selection. Egg pattern showed signatures of both frequency-dependent and directional selection in different traits, which appeared to be evolving independently of one another. Host and parasite appear to be closely tracking one another's evolution, since parasites showed closer color mimicry of contemporaneous hosts. This correlational evidence suggests that hosts and parasites are locked in an ongoing arms race in egg appearance, driven by constant change in the selective advantage of different phenotypes, and that coevolutionary arms races can generate remarkably rapid phenotypic change.  相似文献   

6.
Recent evidence suggests that blue‐green coloration of bird eggshells may be related to female and/or egg phenotypic quality, and that such colour may affect parental effort and therefore the nutritional environment of developing nestlings. Here we suggest that these relationships and the signal function of eggshell coloration would affect the outcome of coevolution between avian brood parasites and their hosts in at least three different non‐exclusive evolutionary pathways. First, by laying blue‐green coloured eggs, cuckoo females may exploit possible sensory biases of their hosts, constraining the evolution of parasitic egg recognition, and thus avoid rejection. Second, because of the relatively high costs of laying blue eggs, cuckoo females may be limited in their ability to mimic costly blue‐green eggs of their hosts because cuckoo females lay many more eggs than their hosts. Furthermore, costs associated with foreign egg recognition errors would be relatively higher for hosts laying blue eggs. Third, cuckoos may use coloration of host eggs for selecting individuals or specific hosts of appropriate phenotypic quality (i.e. parental abilities). We here explored some predictions emerging from the above scenarios and found partial support for two of them by studying egg coloration of European cuckoos (Cuculus canorus) and that of their 25 main hosts, as well as parasitism and rejection rate of hosts. Cuckoo hosts parasitized with more blue, green, and ultraviolet cuckoo eggs, or those laying more blue‐green eggs, were more prone to accept experimental parasitism with artificial cuckoo eggs. In addition, coloration of cuckoo eggs is more variable when parasitizing hosts laying bluer‐greener eggs, even after controlling for the effect of host egg coloration (i.e. degree of egg matching). Globally, our results are consistent with the proposed hypothesis that host egg traits that are related to phenotypic quality of hosts, such as egg coloration, may have important implications for the coevolutionary interaction between hosts and brood parasites. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 154–168.  相似文献   

7.
Hosts either tolerate avian brood parasitism or reject it by ejecting parasitic eggs, as seen in most rejecter hosts of common cuckoos, Cuculus canorus, or by abandoning parasitized clutches, as seen in most rejecter hosts of brown‐headed cowbirds, Molothrus ater. What explains consistent variation between alternative rejection behaviours of hosts within the same species and across species when exposed to different types of parasites? Life history theory predicts that when parasites decrease the fitness of host offspring, but not the future reproductive success of host adults, optimal clutch size should decrease. Consistent with this prediction, evolutionarily old cowbird hosts, but not cuckoo hosts, have lower clutch sizes than related rarely‐ or newly parasitized species. We constructed a mathematical model to calculate the fitness payoffs of egg ejector vs. nest abandoner hosts to determine if various aspects of host life history traits and brood parasites’ virulence on adult and young host fitness differentially influence the payoffs of alternative host defences. These calculations showed that in general egg ejection was a superior anti‐parasite strategy to nest abandonment. Yet, increasing parasitism rates and increasing fitness values of hosts’ eggs in both currently parasitized and future replacement nests led to switch points in fitness payoffs in favour of nest abandonment. Nonetheless, nest abandonment became selectively more favourable only at lower clutch sizes and only when hosts faced parasitism by a cowbird‐ rather than a cuckoo‐type brood parasite. We suggest that, in addition to evolutionary lag and gape‐size limitation, our estimated fitness differences based on life history trait variation provide new insights for the consistent differences observed in the anti‐parasite rejection strategies between many cuckoo‐ and cowbird‐hosts.  相似文献   

8.
Mimicry of a harmless model (aggressive mimicry) is used by egg, chick and fledgling brood parasites that resemble the host''s own eggs, chicks and fledglings. However, aggressive mimicry may also evolve in adult brood parasites, to avoid attack from hosts and/or manipulate their perception of parasitism risk. We tested the hypothesis that female cuckoo finches (Anomalospiza imberbis) are aggressive mimics of female Euplectes weavers, such as the harmless, abundant and sympatric southern red bishop (Euplectes orix). We show that female cuckoo finch plumage colour and pattern more closely resembled those of Euplectes weavers (putative models) than Vidua finches (closest relatives); that their tawny-flanked prinia (Prinia subflava) hosts were equally aggressive towards female cuckoo finches and southern red bishops, and more aggressive to both than to their male counterparts; and that prinias were equally likely to reject an egg after seeing a female cuckoo finch or bishop, and more likely to do so than after seeing a male bishop near their nest. This is, to our knowledge, the first quantitative evidence for aggressive mimicry in an adult bird, and suggests that host–parasite coevolution can select for aggressive mimicry by avian brood parasites, and counter-defences by hosts, at all stages of the reproductive cycle.  相似文献   

9.
Recently, Brooker and Brooker suggested an equilibrium in thelevel of host defense and parasite counter-defense despite thepassage of sufficient time for the evolution of host defensesthrough coevolution between brood parasites and their hosts.A long coevolutionary history of brood parasitism and nest predationhas favored an adjustment of the host's life-history patternto the point where total acceptance of a cuckoo egg is now anevolutionarily stable strategy. In a comparative study basedon host species as independent observations, some predictionswere tested for the European cuckoo (Cuculus canorus) and Horsfield'sbronze cuckoo (Chrysococcyx basalis). In this article I reanalyzethe predictions made by Brooker and Brooker using informationon the European cuckoo and its hosts in the British Isles whilecontrolling for common phylogenetic descent. Only 1 of the 12 predictionsof Brooker and Brooker was supported using the new analyses,and none of the life-history variables was related to rejectionbehavior of the hosts of the European cuckoo, implying weaksupport for the hypothesis. Therefore, we conclude that whenanalyzing life-history variables that have a phylogenetic component,the use of modern comparative analyses is essential.  相似文献   

10.
Although parasites and their hosts often coexist in a set of environmentally differentiated populations connected by gene flow, few empirical studies have considered a role of environmental variation in shaping correlations between traits of hosts and parasites. Here, we studied for the first time the association between the frequency of adaptive parasitic common cuckoo Cuculus canorus phenotypes in terms of egg matching and level of defences exhibited by its reed warbler Acrocephalus scirpaceus hosts across seven geographically distant populations in Europe. We also explored the influence of spring climatic conditions experienced by cuckoos and hosts on cuckoo-host egg matching. We found that between-population differences in host defences against cuckoos (i.e. rejection rate) covaried with between-population differences in degree of matching. Between-population differences in host egg phenotype were associated with between-population differences in parasitism rate and spring climatic conditions, but not with host level of defences. Between-population differences in cuckoo egg phenotype covaried with between-population differences in host defences and spring climatic conditions. However, differences in host defences still explained differences in mimicry once differences in climatic conditions were controlled, suggesting that selection exerted by host defences must be strong relative to selection imposed by climatic factors on egg phenotypes.  相似文献   

11.
Although egg color polymorphism has evolved as an effective defensive adaptation to brood parasitism, spatial variations in egg color polymorphism remain poorly characterized. Here, we investigated egg polymorphism in 647 host species (68 families and 231 genera) parasitized by 41 species of Old Word cuckoos (1 family and 11 genera) across Asia, Europe, Africa, and Australia. The diversity of parasitic cuckoos differs among continents, reflecting the continent-specific intensities of parasitic selection pressure on hosts. Therefore, host egg polymorphism is expected to evolve more frequently on continents with higher cuckoo diversity. We identified egg polymorphism in 24.1% of all host species and 47.6% of all host families. The common cuckoo Cuculus canorus utilized 184 hosts (28.4% of all host species). Hosts of the common cuckoo and of Chrysococcyx species were more likely to have polymorphic eggs than hosts parasitized by other cuckoos. Both the number of host species and the host families targeted by the cuckoo species were positively correlated with the frequency of host egg polymorphism. Most host species and most hosts exhibiting egg color polymorphism were located in Asia and Africa. Host egg polymorphism was observed less frequently in Australia and Europe. Our results also suggested that egg polymorphism tends to occur more frequently in hosts that are utilized by several cuckoo species or by generalist cuckoo species. We suggest that selection pressure on hosts from a given continent increases proportionally to the number of cuckoo species, and that this selection pressure may, in turn, favor the evolution of host egg polymorphism.  相似文献   

12.
The evolution of brood parasitism has long attracted considerable attention among behavioural ecologists, especially in the common cuckoo system. Common cuckoos (Cuculus canorus) are obligatory brood parasites, laying eggs in nests of passerines and specializing on specific host species. Specialized races of cuckoos are genetically distinct. Often in a given area, cuckoos encounter multiple hosts showing substantial variation in egg morphology. Exploiting different hosts should lead to egg-phenotype specialization in cuckoos to match egg phenotypes of the hosts. Here we test this assumption using a wild population of two sympatrically occurring host species: the great reed warbler (Acrocephalus arundinaceus) and reed warbler (A. scirpaceus). Using colour spectrophotometry, egg shell dynamometry and egg size measurements, we studied egg morphologies of cuckoos parasitizing these two hosts. In spite of observing clear differences between host egg phenotypes, we found no clear differences in cuckoo egg morphologies. Interestingly, although chromatically cuckoo eggs were more similar to reed warbler eggs, after taking into account achromatic differences, cuckoo eggs seemed to be equally similar to both host species. We hypothesize that such pattern may represent an initial stage of an averaging strategy of cuckoos, that – instead of specializing for specific hosts or exploiting only one host – adapt to multiple hosts.  相似文献   

13.

Background

Antagonistic species often interact via matching of phenotypes, and interactions between brood parasitic common cuckoos (Cuculus canorus) and their hosts constitute classic examples. The outcome of a parasitic event is often determined by the match between host and cuckoo eggs, giving rise to potentially strong associations between fitness and egg phenotype. Yet, empirical efforts aiming to document and understand the resulting evolutionary outcomes are in short supply.

Methods/Principal Findings

We used avian color space models to analyze patterns of egg color variation within and between the cuckoo and two closely related hosts, the nomadic brambling (Fringilla montifringilla) and the site fidelic chaffinch (F. coelebs). We found that there is pronounced opportunity for disruptive selection on brambling egg coloration. The corresponding cuckoo host race has evolved egg colors that maximize fitness in both sympatric and allopatric brambling populations. By contrast, the chaffinch has a more bimodal egg color distribution consistent with the evolutionary direction predicted for the brambling. Whereas the brambling and its cuckoo host race show little geographical variation in their egg color distributions, the chaffinch''s distribution becomes increasingly dissimilar to the brambling''s distribution towards the core area of the brambling cuckoo host race.

Conclusion

High rates of brambling gene flow is likely to cool down coevolutionary hot spots by cancelling out the selection imposed by a patchily distributed cuckoo host race, thereby promoting a matching equilibrium. By contrast, the site fidelic chaffinch is more likely to respond to selection from adapting cuckoos, resulting in a markedly more bimodal egg color distribution. The geographic variation in the chaffinch''s egg color distribution could reflect a historical gradient in parasitism pressure. Finally, marked cuckoo egg polymorphisms are unlikely to evolve in these systems unless the hosts evolve even more exquisite egg recognition capabilities than currently possessed.  相似文献   

14.
Brood parasite – host systems continue to offer insights into species coevolution. A notable system is the redstart Phoenicurus phoenicurus parasitized by the ‘redstart‐cuckoo’ Cuculus canorus gens. Redstarts are the only regular cuckoo hosts that breed in cavities, which challenges adult cuckoos in egg laying and cuckoo chicks in host eviction. We investigated parasitism in this system and found high overall parasitism rates (31.1% of 360 redstart nests), but also that only 33.1% of parasitism events (49 of 148 eggs) were successful in laying eggs into redstart nest cups. The majority of cuckoo eggs were mislaid and found on the rim of the nest; outside the nest cup. All available evidence suggests these eggs were not ejected by hosts. The effective parasitism rate was therefore only 12.8% of redstart nests. Redstarts responded to natural parasitism by deserting their nests in 13.0% of cases, compared to desertion rates of 2.8% for non‐parasitized nests. Our egg parasitism experiments found low rates (12.2%) of rejection of artificial non‐mimetic cuckoo eggs. Artificial mimetic and real cuckoo eggs added to nests were rejected at even lower rates, and were always rejected via desertion. Under natural conditions, only 21 cuckoo chicks fledged of 150 cuckoo eggs laid. Adding to this low success, is that cuckoo chicks are sometimes unable to evict all host young, and were more likely to die as a result compared to cuckoo chicks reared alone. This low success seems to be mainly due to the cavity nesting strategy of the redstart which is a challenging obstacle for the cuckoo. The redstart‐cuckoo system appears to be a fruitful model system and we suggest much more emphasis should be placed on frontline defences such as nest site selection strategies when investigating brood parasite–host coevolution.  相似文献   

15.
Why should the hosts of brood parasites accept and raise parasitic offspring that differ dramatically in appearance from their own? There are two solutions to this evolutionary enigma. (1) Hosts may not yet have evolved the capability to discriminate against the parasite, or (2) parasite-host systems have reached an evolutionary equilibrium. Avian brood parasites may either gain renesting opportunities or force their hosts to raise parasitic offspring by destroying or preying upon host eggs or nestlings following host ejection of parasite offspring. These hypotheses may explain why hosts do not remove parasite offspring because only then will hosts avoid clutch destruction by the cuckoo. Here we show experimentally that if the egg of the parasitic great spotted cuckoo Clamator glandarius is removed from nests of its magpie Pica pica host, nests suffer significantly higher predation rates than control nests in which parasite eggs have not been removed. Using plasticine model eggs resembling those of magpies and observations of parasites, we also confirm that great spotted cuckoos that have laid an ejected egg are indeed responsible for destruction of magpie nests with experimentally ejected parasite eggs. Cuckoos benefit from destroying host offspring because they thereby induce some magpies to renest and subsequently accept a cuckoo egg.  相似文献   

16.
Brood parasites dramatically reduce the reproductive successof their hosts, which therefore have developed defenses againstbrood parasites. The first line of defense is protecting thenest against adult parasites. When the parasite has successfullyparasitized a host nest, some hosts are able to recognize andreject the eggs of the brood parasite, which constitutes the secondline of defense. Both defense tactics are costly and would be counteractedby brood parasites. While a failure in nest defense implies successfulparasitism and therefore great reduction of reproductive successof hosts, a host that recognizes parasitic eggs has the opportunityto reduce the effect of parasitism by removing the parasiticegg. We hypothesized that, when nest defense is counteractedby the brood parasite, hosts that recognize cuckoo eggs shoulddefend their nests at a lower level than nonrecognizers becausethe former also recognize adult cuckoos. Magpie (Pica pica) hoststhat rejected model eggs of the brood parasitic great spottedcuckoo (Clamator glandarius) showed lower levels of nest defensewhen exposed to a great spotted cuckoo than when exposed toa nest predator (a carrion crow Corvus corone). Moreover, magpiesrejecting cuckoo eggs showed lower levels of nest defense againstgreat spotted cuckoos than nonrecognizer magpies, whereas differencesin levels of defense disappeared when exposed to a carrion crow.These results suggest that hosts specialize in antiparasitedefense and that different kinds of defense are antagonistically expressed.We suggest that nest-defense mechanisms are ancestral, whereasegg recognition and rejection is a subsequent stage in the coevolutionaryprocess. However, host recognition ability will not be expressedwhen brood parasites break this second line of defense.  相似文献   

17.
The common cuckoo Cuculus canorus parasitism greatly reduces the reproductive success of its hosts and imposes strong selection pressure for hosts to evolve defences against parasitism, such as the ability to recognize and reject dissimilar parasitic eggs, which, in turn, selects for better egg mimicry by the cuckoo. In the co-evolutionary interaction, however, it remains unknown how the cuckoo successfully expanded its range of host usage and how they developed egg mimicry. Most previous studies were conducted in areas where a very few number of host species (i.e. one or two at most) are sympatric with the cuckoo. Several host species, however, breed sympatric with the cuckoo and have been parasitized in the study site in Nagano, central Japan. Such a multiple-hosts system will provide valuable insights for understanding the cuckoo–hosts interactions in the past. In the present study, we report quantitative profiles of eggs based on spectrometer reflectance for four major host species and the corresponding cuckoo gentes. The hosts include the oriental reed warbler ( Acrocephalus orientalis ), bull-headed shrike ( Lanius bucephalus ), azure-winged magpie ( Cyanopica cyana ), and black-faced bunting ( Emberiza spodocephala ). We show that (1) egg morphs of each host and corresponding cuckoo gens can be categorized by two chromatic components of reflectance spectra and (2) there is a significant difference in a particular chroma component between hosts and the cuckoo. We suggest that the cuckoo parasitism in central Japan originated from parasitism on the black-faced bunting.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 98 , 291–300.  相似文献   

18.
Obligate brood parasites only account for 1% of birds in the world, but utilize a great variety of avian species as hosts. Host switch theory predicts that parasites should shift from one host to another during the long‐term arms race with hosts whenever such a shift would be facilitated by similarity in ecology and distribution. However, few studies have been conducted to address this puzzle because it is extremely difficult for humans to witness such host shifts during the long‐lasting process of evolution. Here we adopted an alternative way to understand host switch behaviour of brood parasites by comparing egg colour variation, cuckoo egg mimicry and egg recognition capacity between two sympatric hosts, the Chinese babax (Babax lanceolatus) and the white‐browed laughing thrush (Garrulax sannio), which are both parasitized by the large hawk‐cuckoo (Cuculus sparverioides). The babax lays dark blue eggs whilst the laughing thrush lays white to pale blue eggs, and the large hawk‐cuckoo parasitizes them by laying eggs that optimally match laughing thrush eggs according to avian vision. The laughing thrush possesses a greater capacity of egg recognition than the babax because it rejected all non‐mimetic eggs while the babax is an intermediate rejecter. Furthermore, all the nest characteristics measured were similar in these two host species with no statistical significant differences. These results are consistent with the hypothesis that the white‐browed laughing thrush is the original and main host species that has a longer coevolutionary interaction with the large hawk‐cuckoo than the Chinese babax, which is a recent host acquired through a host switch by the hawk‐cuckoo. We discuss the possible outcome of the interaction between the large hawk‐cuckoo and these two host species, and emphasize that host switch behaviour in brood parasites is more likely an adaptation to expand the range of host species rather than a change in host species favoring an increase in reproductive output. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, ●● , ●●–●●.  相似文献   

19.
Selection due to cuckoo parasitism is responsible for the evolution of anti-parasitism defenses in hosts. Different host species breeding sympatrically with a single parasitic cuckoo may evolve different strategies to reduce the risk of counter cuckoo parasitism, resulting in different interactions between cuckoos and hosts in areas of sympatry. Here, we studied the coevolutionary interactions between Himalayan cuckoos Cuculus saturatus and 2 sympatric and closely related potential hosts belonging to the family Pycnonotidae, the brown-breasted bulbul Pycnonotus xanthorrhous and the collared finchbill Spizixos semitorques. We investigated parasitism rates and nest-site selection (nest height, nest cover, human disturbance, perch height, forest distance, and degree of concealment) related to parasitism risk, nest defense against a cuckoo dummy, and egg rejection against cuckoo model eggs. Bulbuls used specific nest sites that were further away from forests than those of finchbills, and they behaved more aggressively toward cuckoos than finchbills. In contrast, bulbuls possessed moderate egg rejection ability, whereas the finchbill rejected 100% of cuckoo model eggs. We suggest that selection of a nest site away from forests by the bulbul explains the absence of parasitism by Himalayan cuckoos. We suggest that these interspecific differences in nest-site selection and nest defense indicate alternative responses to selection due to cuckoos.  相似文献   

20.
Species that suffer from brood parasitism face a considerable reduction in their fitness which selects for the evolution of host defences. To prevent parasitism, hosts can mob or attack brood parasites when they approach the host nest and block the access to the nest by sitting on the clutch. In turn, as a counter‐adaptation, brood parasites evolved secretive behaviours near their host nests. Here, we have studied great spotted cuckoo (Clamator glandarius) egg‐laying behaviour and defence by their magpie (Pica pica) hosts inside the nest using continuous video recordings. We have found several surprising results that contradict some general assumptions. The most important is that most (71%) of the parasitic events by cuckoo females are completed while the magpie females are incubating. By staying in the nest, magpies force cuckoo females to lay their egg facing the high risk of being attacked by the incubating magpie (attack occurred in all but one of the events, n = 15). During these attacks, magpies pecked the cuckoo violently, but could never effectively avoid parasitism. These novel observations expand the sequence of adaptations and counter‐adaptations in the arms race between brood parasites and their hosts during the pre‐laying and laying periods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号