首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Geoclimatic factors related to the uplift of the Himalaya and the Quaternary climatic oscillations influence the population genetic connectivity in the Himalaya–Hengduan Mountains (HHM) biodiversity hotspot. Therefore, to explore the relative roles played by these two factors, we examined the population dynamics and dispersal corridors of Incarvillea arguta (Royle) Royle incorporating ensemble species distribution modelling (SDM). Thirty‐seven populations were genotyped using plastid chloroplast DNA and low copy nuclear gene (ncpGS) sequences. Phylogeographic analysis was carried out to reveal the genetic structure and lineage differentiation. Ensemble SDMs were carried out for distributional change in the last glacial maximum, present, and future. Finally, the least cost path method was used to trace out possible dispersal corridors. The haplotypes were divided into four clades with strong geographical structure. The late Miocene origin of I. arguta in the western Himalaya ca. 7.92 Ma indicates lineage diversification related to the uplift of the HHM. The variability in habitat connectivity revealed by SDM is due to change in suitability since the Pleistocene. A putative dispersal corridor was detected along the drainage systems and river valleys, with strong support in the eastern Hengduan Mountains group. Our results support the signature of geoclimatic influence on population genetic connectivity of I. arguta in the HHM. We proposed that the major drainage systems might have assisted the rapid dispersal of isolated riverine plant species I. arguta in the HHM. The population genetic connectivity, using the fine‐tuned ensemble SDMs, enables scientists and policymakers to develop conservation strategies for the species gene pool in the HHM biodiversity hotspots.  相似文献   

2.

Aim

The practical value of the single‐species approach to conserve biodiversity could be minimal or negligible when sympatric species are limited by factors that are not relevant to the proposed umbrella species. In this study, we quantitatively evaluated as follows: (1) habitat suitability and potential movement corridors of a single umbrella species, giant panda (Ailuropoda melanoleuca); (2) habitat suitability of sympatric mammals; and (3) the potential effectiveness of the single‐species corridor planning to preserve suitable habitat and its connectivity of other focal species.

Location

Qinling Mountains, central part of China (15,000 km2).

Methods

We collected species distribution, environmental and anthropogenic data and conducted species occupancy modelling for giant panda and six other sympatric species (i.e., takin Budorcas taxicolor, tufted deer Elaphodus cephalophus, Chinese goral Naemorhedus griseus, Reeve's muntjac Muntiacus reevesi, leopard cat Prionailurus bengalensis and yellow‐throated marten Martes flavigula). We then conducted circuit models to identify potential corridors for each species and evaluated the effectiveness of giant panda corridors to restore the habitat connectivity for these sympatric mammals.

Results

Occupancy modelling revealed that each species had a unique set of environmental variables associated with its distribution in the Qinling Mountains. We found that giant panda and all other focal species had some degree of fragmentation to their suitable habitat that required restoring habitat connectivity. Among the eight potential giant panda corridors, conservation efforts to reduce anthropogenic impacts would significantly improve the effectiveness of six corridors, while the other two corridors would require altering the vegetation. Five proposed giant panda corridors had remarkable overlap with corridors proposed for other species. We suggest two giant panda corridors as a priority due to their potential to maximize the benefits to both giant panda and a broader suite of mammals.

Main conclusions

Corridor planning in this region of China will likely continue using the single‐species policy, but our results highlight that not all potential giant panda corridors have equal effectiveness for other wildlife species. When offered multiple alternative actions, conservation planners can prioritize corridor development based on a multispecies perspective without loss of connectivity for the priority species. This approach has strong implications to the conservation of wildlife communities in China, and elsewhere, where conservation plans developed for a single‐species garner most available funding and institutional support.
  相似文献   

3.
The Bridled Skink, Trachylepis vittata, is widespread in the Middle East and eastern coastal Mediterranean areas and inhabits foothills throughout the arid regions of the Middle East. With the help of more than 146 distribution records from Iran, Turkey, Syria, Israel, Jordan, Cyprus, Egypt, Lebanon and Libya, we analysed the influence of climate on the distribution pattern. According to the Maximum Entropy model, the most influential factors that determined T. vittata distribution are: precipitation of coldest quarter, Normalised Difference Vegetation Index (NDVI) and precipitation in the warmest quarter. The model suggests that the western slopes of the Zagros Mountains in Iran and slopes in the southern regions of Anatolia around the Mediterranean Sea are suitable for this species. The species is associated with areas with intermediate NDVI (150-180) (a measure of primary productivity), high winter precipitation (>300?mm) and dry summer (<50mm). The association with rainy winter limits the presence of the species in lowlands. The Zagros Mountains may act as a biogeographic barrier that limits the species dispersal eastward, because of their scarce precipitation.  相似文献   

4.
The biogeographical relationships between far-separated populations, in particular, those in the mainland and islands, remain unclear for widespread species in eastern Asia where the current distribution of plants was greatly influenced by the Quaternary climate. Deciduous Oriental oak (Quercus variabilis) is one of the most widely distributed species in eastern Asia. In this study, leaf material of 528 Q. variabilis trees from 50 populations across the whole distribution (Mainland China, Korea Peninsular as well as Japan, Zhoushan and Taiwan Islands) was collected, and three cpDNA intergenic spacer fragments were sequenced using universal primers. A total of 26 haplotypes were detected, and it showed a weak phylogeographical structure in eastern Asia populations at species level, however, in the central-eastern region of Mainland China, the populations had more haplotypes than those in other regions, with a significant phylogeographical structure (N ST = 0.751> G ST = 0.690, P<0.05). Q. variabilis displayed high interpopulation and low intrapopulation genetic diversity across the distribution range. Both unimodal mismatch distribution and significant negative Fu’s FS indicated a demographic expansion of Q. variabilis populations in East Asia. A fossil calibrated phylogenetic tree showed a rapid speciation during Pleistocene, with a population augment occurred in Middle Pleistocene. Both diversity patterns and ecological niche modelling indicated there could be multiple glacial refugia and possible bottleneck or founder effects occurred in the southern Japan. We dated major spatial expansion of Q. variabilis population in eastern Asia to the last glacial cycle(s), a period with sea-level fluctuations and land bridges in East China Sea as possible dispersal corridors. This study showed that geographical heterogeneity combined with climate and sea-level changes have shaped the genetic structure of this wide-ranging tree species in East Asia.  相似文献   

5.
Both a complex topography and climate change have huge impacts on the distribution and genetic structure of extant species. Due to the lack of relevant molecular research, little is definitively known about the phylogeography of herbaceous plants in East Asia. Here we investigate the genetic diversity, population structure and historical population dynamics of Iris dichotoma Pallas, a widespread perennial herbaceous species in northeastern and northern China. Twenty-nine populations, totalling 297 individuals, were sampled throughout the Chinese distributional range of I. dichotoma. The combined sequences of six chloroplast DNA fragments (petA-psbE, rps18-clpp, psbJ-petA, trnD-trnT, rps16 and ndhA) were used to identify 13 haplotypes, of which six were private ones restricted in a single population. Genetic differentiation among I. dichotoma populations, enabled us to infer potential refugia during the glacial period in the Yinshan Mountains–Yanshan Mountains, where high levels of haplotype and nucleotide diversity were detected. The results of a neutral test and mismatch distribution analysis both indicated that I. dichotoma underwent a recent population expansion. In East Asia, postglacial environmental and climatic changes appear to have promoted genetic diversification not only in better-studied woody species, but also in herbaceous ones like I. dichotoma. Future studies of more herbaceous plant species are needed to obtain better insight into how modern temperate biodiversity has developed in East Asia.  相似文献   

6.
Habitat fragmentation may reduce gene flow and population viability of rare species. We tested whether riparian corridors enhanced gene flow and if human habitat modification between riparian corridors subsequently reduced dispersal and gene flow of a wetland butterfly, the US federally endangered St. Francis’ satyr butterfly (Neonympha mitchellii francisci). We surveyed nine populations throughout the taxon’s range using five polymorphic microsatellite loci. We found that genetic diversity of N. m. francisci was relatively high despite its restricted distribution, and that there is little evidence of population bottlenecks or extensive inbreeding within populations. We found substantial gene flow and detectable first generation migration, suggesting that N. m. francisci is unlikely to be currently endangered by genetic factors. Pairwise population differentiation and clustering indicate some structuring between populations on different drainages and suggest that dispersal probably occurs mainly via a stepping stone from the closest riparian corridors. However, genetic differentiation between geographically close populations suggests that isolation by distance is not solely responsible for population structure, and that management actions should be targeted at maintaining connectivity of riparian and upland habitats.  相似文献   

7.
Cercidiphyllum japonicum, a Tertiary relict, recolonized areas north of the Yangtze River after the last glacial; however, little is known about its specific colonization corridors. Together with distribution models, the least cost path (LCP) analysis has been used to reveal the landscape connectivity of species. In this study, we utilized the categorical LCP method, combining the species distribution with genetic data from cpDNA and nuclear markers, to identify the possible dispersal routes of C. japonicum after the LGM. Across time periods and genetic markers, the results revealed that the species generally spread from the western edge of the Sichuan Basin, while the highest degree of dispersal potential corresponds with the year 2080 and the cpDNA haplotype. Furthermore, shifts in the species' range and the indication of an area of low genetic divergence further support the existence of a dispersal corridor. Overall, we believe that a dispersal route from the western edge of the Sichuan Basin through the Qinling Mountains and further to the northeast could exist, and therefore, the results are an important supplement to the evolutionary history of C. japonicum. In the future, we believe species distribution models (SDM) and connectivity assessment in relation to climate change will provide increasingly useful information and new implications for prioritizing the conservation of the endangered species.  相似文献   

8.
Climate change is likely to alter population connectivity, particularly for species associated with higher elevation environments. The goal of this study is to predict the potential effects of future climate change on population connectivity and genetic diversity of American marten populations across a 30.2 million hectare region of the in the US northern Rocky Mountains. We use a landscape resistance model validated from empirical landscape genetics modeling to predict the current and expected future extent and fragmentation of American marten dispersal habitat under five climate change scenarios, corresponding to climatic warming of between 0.7 and 3.3 °C, consistent with expected climate change by year 2080. We predict the regions of the current and future landscapes where gene flow is expected to be governed by isolation by distance and the regions where population fragmentation is expected to limit gene flow. Finally, we predict changes in the strength and location of predicted movement corridors, fracture zones and the location of dispersal barriers across the study area in each scenario. We found that under the current climate, gene flow is predicted to be limited primarily by distance (isolation), and landscape structure does not significantly limit gene flow, resulting in very high genetic diversity over most of the study area. Projected climatic warming substantially reduces the extent and increases the fragmentation of marten populations in the western and northwestern parts of the study area. In contrast, climate change is not predicted to fragment the extensive higher elevation mountain massifs in central Idaho, the northern U.S. continental divide, and Greater Yellowstone Ecosystem. In addition, we show locations in the study area that are important corridors in the current landscape that remain intact across the climate change scenarios.  相似文献   

9.
To reveal the role of climate oscillations of the Quaternary in forming the contemporary plant diversity in the temperate Sino‐Japanese Floristic Region of mainland China, we assess the phylogeographical patterns of four Sagittaria species in the region using sequence data from plastid DNA non‐coding regions (psbA‐trnH, the rpl16 intron and trnC‐ycf6) and the internal transcribed spacers of nuclear ribosomal DNA (nrITS). Based on both datasets, the divergence time among the four studied species was estimated to fall in the Late Tertiary (plastid DNA: 7.1–13.7 Mya; ITS: 11.1–16.1 Mya). The ancestral distribution analyses revealed that regions with a great diversity in topography, climate and ecological conditions, e.g. the Hengduan Mountains, Central China and East China, were the areas where the endemics originated. Mismatch distribution analyses revealed that each species had experienced a range expansion in response to Quaternary climatic oscillations. Our findings contradict the hypothesis of Quaternary origins of the endemic Sagittaria spp.; we support the view that modern species in the Northern Hemisphere originated mostly during the Tertiary. Range expansion may have profoundly modified the current distribution ranges of Sagittaria species in the Sino‐Japanese Floristic Region. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2016, 180 , 6–20.  相似文献   

10.
The Pleistocene climatic oscillations had profound effects on the demographic history and genetic diversification of plants in arid north-west China where some glacial refugia have been recognized. The genus Ixiolirion comprises three species, of which two, I. tataricum and I. songaricum (endemic), occur in China. In some locations they are sympatric. We investigated their population structure and population history in response to past climatic change using a sample of 619 individuals in 34 populations with nITS and ptDNA sequences. A significant genetic divergence between the two species was supported by a high level of pairwise genetic differentiation, very low gene flow, and phylogenetic analysis showing that I. songaricum haplotypes were monophyletic, whereas those of I. tataricum were polyphyletic. We found significant differentiation and phylogeographic structure in both species. The split of the two species was dated to the late Miocene (~7?Ma), but deep divergence occurred in the mid-late Quaternary. A similar haplotype distribution pattern was found in both species: one to two dominant haplotypes across most populations, with unique haplotypes in a few populations or a geographic group. The genetic diversity, haplotype number, and haplotype diversity decreased from the Yili Valley to the central Tianshan and Barluk Mountains. Additionally, ptDNA analysis showed that I. tataricum diversified in the eastern Tianshan and Barluk Mountains, which might be due to physical barriers to long distance seed dispersal such as desert. In conclusion, our results indicated that the Yili Valley was likely a glacial refuge for Ixiolirion in China, with postglacial dispersal from the Yili Valley eastward to the eastern Tianshan Mountains, and northward to the Barluk Mountains. The climatic changes in the Miocene and Pleistocene and geographic barriers are important factors driving species divergence and differentiation of Ixiolirion and other taxa.  相似文献   

11.
Using a case study of an isolated management unit of Sichuan snub‐nosed monkey (Rhinopithecus roxellana), we assess the extent that climate change will impact the species’ habitat distribution in the current period and projected into the 2050s. We identify refugia that could maintain the population under climate change and determine dispersal paths for movement of the population to future suitable habitats. Hubei Province, China. We identified climate refugia and potential movements by integrating bioclimatic models with circuit theory and least‐cost model for the current period (1960–1990) and the 2050s (2041–2060). We coupled a maximum entropy algorithm to predict suitable habitat for the current and projected future periods. Suitable habitat areas that were identified during both time periods and that also satisfied home range and dispersal distance conditions were delineated as refugia. We mapped potential movements measured as current flow and linked current and future habitats using least‐cost corridors. Our results indicate up to 1,119 km2 of currently suitable habitat within the study range. Based on our projections, a habitat loss of 67.2% due to climate change may occur by the 2050s, resulting in a reduced suitable habitat area of 406 km2 and very little new habitat. The refugia areas amounted to 286 km2 and were located in Shennongjia National Park and Badong Natural Reserve. Several connecting corridors between the current and future habitats, which are important for potential movements, were identified. Our assessment of the species predicted a trajectory of habitat loss following anticipated future climate change. We believe conservation efforts should focus on refugia and corridors when planning for future species management. This study will assist conservationists in determining high‐priority regions for effective maintenance of the endangered population under climate change and will encourage increased habitat connectivity.  相似文献   

12.
滕扬  张沼  张书理  杨永昕  贺伟  王娜  张正一  鲍伟东 《生态学报》2022,42(14):5990-6000
构建生态廊道在缓解生境破碎化对生物多样性的影响、维持濒危物种的遗传多样性、维护自然生态系统结构完整与功能稳定方面具有重要作用。以内蒙古大兴安岭南段分布的马鹿(Cervus elaphus)种群为研究对象,利用MaxEnt模型对其生境适宜性进行分析,并利用最小累积阻力模型构建潜在生态扩散廊道,探讨大兴安岭南段区域隔离马鹿种群的栖息地连通方案。结果显示,马鹿栖息地呈破碎化状态,种群有明显的隔离分布趋势,现有适宜栖息地具有海拔较低(800—1200 m)、坡度较缓(<15°)、靠近水源、植被类型多为靠近山林的灌丛或草地等特点。所构建12条生态廊道具有经过河流浅水节段、远离村落等特点,便于落实栖息地生态恢复管理措施。研究从区域尺度综合分析了大兴安岭南段马鹿栖息地现状及连通性,有助于优化适宜栖息地格局,促进马鹿扩散和栖息地连通,为该物种隔离种群及其栖息地保护规划提供现实指导和基础资料。  相似文献   

13.
Himalayan hemlock (Tsuga dumosa) experienced a recolonization event during the Quaternary period; however, the specific dispersal routes are remain unknown. Recently, the least cost path (LCP) calculation coupled with population genetic data and species distribution models has been applied to reveal the landscape connectivity. In this study, we utilized the categorical LCP method, combining species distribution of three periods (the last interglacial, the last glacial maximum, and the current period) and locality with shared chloroplast, mitochondrial, and nuclear haplotypes, to identify the possible dispersal routes of T. dumosa in the late Quaternary. Then, both a coalescent estimate of migration rates among regional groups and establishment of genetic divergence pattern were conducted. After those analyses, we found that the species generally migrated along the southern slope of Himalaya across time periods and genomic makers, and higher degree of dispersal was in the present and mtDNA haplotype. Furthermore, the direction of range shifts and strong level of gene flow also imply the existence of Himalayan dispersal path, and low area of genetic divergence pattern suggests that there are not any obvious barriers against the dispersal pathway. Above all, we inferred that a dispersal route along the Himalaya Mountains could exist, which is an important supplement for the evolutionary history of T. dumosa. Finally, we believed that this integrative genetic and geospatial method would bring new implications for the evolutionary process and conservation priority of species in the Tibetan Plateau.  相似文献   

14.
The apheloriine millipede genus Brachoria as presented here comprises 34 species distributed throughout the south‐eastern US Appalachian Mountains. Members of this genus are blind (like all millipedes in the order Polydesmida), large (4–6 cm in length), and display conspicuous aposematic coloration in yellow, red, orange, and violet. Many Brachoria species participate in Müllerian mimicry rings with co‐occurring Apheloriini, in particular with species in the genus Apheloria. Some areas contain five co‐mimic species of Apheloriini and a high local density totalling 43 individuals per 50 m2. Since the first revision in 1959, workers have suggested that many more species were awaiting discovery in the Cumberland Mountains. Here I present a taxonomic revision and describe ten new species: Brachoria badbranchensis , Brachoria blackmountainensis , Brachoria campcreekensis , Brachoria cumberlandmountainensis , Brachoria flammipes , Brachoria grapevinensis , Brachoria guntermountainensis , Brachoria hendrixsoni , Brachoria sheari , and Brachoria virginia . Five of these new species occur in the Cumberland Mountain Thrust Block region and five occur elsewhere throughout the Appalachian Highlands in eastern Kentucky, north‐eastern Alabama, southern West Virginia, south‐western Virginia, and the Blue Ridge Mountains of Tennessee. A molecular phylogeny of Brachoria species is well supported at deeper divergences, corresponds closely with geography, and is used as a phylogenetic basis for the taxonomy presented here. © 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159 , 817–889.  相似文献   

15.
Aim The biogeography of the tropical plant family Monimiaceae has long been thought to reflect the break‐up of West and East Gondwana, followed by limited transoceanic dispersal. Location Southern Hemisphere, with fossils in East and West Gondwana. Methods We use phylogenetic analysis of DNA sequences from 67 of the c. 200 species, representing 26 of the 28 genera of Monimiaceae, and a Bayesian relaxed clock model with fossil prior constraints to estimate species relationships and divergence times. Likelihood optimization is used to infer switches between biogeographical regions on the highest likelihood tree. Results Peumus from Chile, Monimia from the Mascarenes and Palmeria from eastern Australia/New Guinea form a clade that is sister to all other Monimiaceae. The next‐deepest split is between the Sri Lankan Hortonia and the remaining genera. The African Monimiaceae, Xymalos monospora, then forms the sister clade to a polytomy of five clades: (I) Mollinedia and allies from South America; (II) Tambourissa and allies from Madagascar and the Mascarenes; (III) Hedycarya, Kibariopsis and Leviera from New Zealand, New Caledonia and Australia; (IV) Wilkiea, Kibara, Kairoa; and (V) Steganthera and allies, all from tropical Australasia. Main conclusions Tree topology, fossils, inferred divergence times and ances‐tral area reconstruction fit with the break‐up of East Gondwana having left a still discernible signature consisting of sister clades in Chile and Australia. There is no support for previous hypotheses that the break‐up of West Gondwana (Africa/South America) explains disjunctions in the Monimiaceae. The South American Mollinedia clade is only 28–16 Myr old, and appears to have arrived via trans‐Pacific dispersal from Australasia. The clade apparently spread in southern South America prior to the Andean orogeny, fitting with its first‐diverging lineage (Hennecartia) having a southern‐temperate range. The crown ages of the other major clades (II–V) range from 20 to 29 Ma, implying over‐water dispersal between Australia, New Caledonia, New Zealand, and across the Indian Ocean to Madagascar and the Mascarenes. The endemic genus Monimia on the Mascarenes provides an interesting example of an island lineage being much older than the islands on which it presently occurs.  相似文献   

16.
Shifts in the geographic distribution of habitats over time can promote dispersal and vicariance, thereby influencing large‐scale biogeographic patterns and ecological processes. An example is that of transient corridors of suitable habitat across disjunct but ecologically similar regions, which have been associated with climate change over time. Such connections likely played a role in the assembly of tropical communities, especially within the highly diverse Amazonian and Atlantic rainforests of South America. Although these forests are presently separated by open and dry ecosystems, paleoclimatic and phylogenetic evidence suggest that they have been transiently connected in the past. However, little is known about the timing, magnitude and the distribution of former forest connections. We employ sequence data at multiple loci from three codistributed arboreal lizards (Anolis punctatus, Anolis ortonii and Polychrus marmoratus) to infer the phylogenetic relationships among Amazonian and Atlantic Forest populations and to test alternative historical demographic scenarios of colonization and vicariance using coalescent simulations and approximate Bayesian computation (ABC). Data from the better‐sampled Anolis species support colonization of the Atlantic Forest from eastern Amazonia. Hierarchical ABC indicates that the three species colonized the Atlantic Forest synchronously during the mid‐Pleistocene. We find support of population bottlenecks associated with founder events in the two Anolis, but not in P. marmoratus, consistently with their distinct ecological tolerances. Our findings support that climatic fluctuations provided key opportunities for dispersal and forest colonization in eastern South America through the cessation of environmental barriers. Evidence of species‐specific histories strengthens assertions that biological attributes play a role in responses to shared environmental change.  相似文献   

17.
Dispersal ability plays a key role in the maintenance of species in spatially and temporally discrete niches of deep-sea hydrothermal vent environments. On the basis of population genetic analyses in the eastern Pacific vent fields, dispersal of animals in the mid-oceanic ridge systems generally appears to be constrained by geographical barriers such as trenches, transform faults, and microplates. Four hydrothermal vent fields (the Kairei and Edmond fields near the Rodriguez Triple Junction, and the Dodo and Solitaire fields in the Central Indian Ridge) have been discovered in the mid-oceanic ridge system of the Indian Ocean. In the present study, we monitored the dispersal of four representative animals, Austinograea rodriguezensis, Rimicaris kairei, Alviniconcha and the scaly-foot gastropods, among these vent fields by using indirect methods, i.e., phylogenetic and population genetic analyses. For all four investigated species, we estimated potentially high connectivity, i.e., no genetic difference among the populations present in vent fields located several thousands of kilometers apart; however, the direction of migration appeared to differ among the species, probably because of different dispersal strategies. Comparison of the intermediate-spreading Central Indian Ridge with the fast-spreading East Pacific Rise and slow-spreading Mid-Atlantic Ridge revealed the presence of relatively high connectivity in the intermediate- and slow-spreading ridge systems. We propose that geological background, such as spreading rate which determines distance among vent fields, is related to the larval dispersal and population establishment of vent-endemic animal species, and may play an important role in controlling connectivity among populations within a biogeographical province.  相似文献   

18.
Aim To investigate the historical biogeography of the pantropical flowering plant family Hernandiaceae (Laurales), which today comprises 62 species in five genera. Location Hernandiaceae occur in Africa (9 species), Madagascar (4), the Neotropics (25), Australia (3), southern China, Indochina, Malesia, and on numerous Pacific Islands (32). These numbers include two widespread species, Hernandia nymphaeifolia, which ranges from East Africa to the Ogasawara Islands and New Caledonia, and Gyrocarpus americanus, thought to have a pantropical range. Methods We sampled 37 species from all genera, the widespread ones with multiple accessions, for a chloroplast DNA matrix of 2210 aligned nucleotides, and used maximum likelihood to infer species relationships. Divergence time estimation relied on an uncorrelated‐rates relaxed molecular clock calibrated with outgroup fossils of Lauraceae and Monimiaceae. Results The deepest split in the family is between a predominantly African–Madagascan–Malesian lineage comprising Hazomalania, Hernandia and Illigera, and an African–Neotropical lineage comprising Gyrocarpus and Sparattanthelium; this split may be 122 (110–134) Myr old. The stem lineages of the five genera date back at least to the Palaeocene, but six splits associated with transoceanic range disjunctions date only to the Oligocene and Miocene, implying long‐distance dispersal. It is inferred that Hernandia beninensis reached the West African islands of São Tomé and Bioko from the West Indies or the Guianas; Hernandia dispersed across the Pacific; and Illigera madagascariensis reached Madagascar from across the Indian Ocean. Main conclusions The disjunct ranges and divergence times of sister clades in the Hernandiaceae are partly congruent with the break‐up of West Gondwana, but mostly with later transoceanic dispersal. An exceptional ability to establish following prolonged oceanic dispersal may be largely responsible for the evolutionary persistence of this small clade.  相似文献   

19.
In agricultural landscapes, linear habitats, such as hedgerows at field margins increase structural connectivity among forest patches, potentially providing dispersal corridors for forest herbs. The spatial structure of linear habitats, however, also results in edge effects and perturbations that can influence the individual and population performance of forest plants. This study compares the stage structure and components of growth and reproduction of 14 Trillium grandiflorum populations in hedgerows and forests. Hedgerow Trillium tended to grow faster and, when mature, produced more flowers and more ovules per flowers than forest Trillium, a pattern possibly associated to differences in nutrients and light availability between the two habitats. Seed production and germination rate, however, did not differ between hedgerows and forests. At the population level, seedlings and juveniles were proportionally less abundant in hedgerows than in forests. Although well-established plants can thrive in hedgerows, reduced recruitment may eventually limit the capacity to establish new populations and therefore hamper migration along hedgerow-corridors. Considering the strategies by which plants persist in linear habitats becomes particularly relevant at a time when species are expected to be much in need of dispersal corridors because of climatic stress.  相似文献   

20.
The effects of late Quaternary climate on distributions and evolutionary dynamics of insular species are poorly understood in most tropical archipelagoes. We used ecological niche models under past and current climate to derive hypotheses regarding how stable climatic conditions shaped genetic diversity in two ecologically distinctive frogs in Puerto Rico. Whereas the mountain coquí Eleutherodactylus portoricensis is restricted to montane forest in the Cayey and Luquillo Mountains, the red‐eyed coquí E. antillensis is a habitat generalist distributed across the entire Puerto Rican Bank (Puerto Rico and the Virgin Islands, excluding St Croix). To test our hypotheses, we conducted phylogeographic and population genetic analyses based on mitochondrial and nuclear loci of each species across their range in Puerto Rico. Patterns of population differentiation in E. portoricensis, but not in E. antillensis, supported our hypotheses. For E. portoricensis, these patterns include: individuals isolated by long‐term unsuitable climate in the Río Grande de Loíza Basin in eastern Puerto Rico belong to different genetic clusters; past and current climate strongly predicted genetic differentiation; and Cayey and Luquillo Mountains populations split prior to the last interglacial. For E. antillensis, these patterns include: genetic clusters did not fully correspond to predicted long‐term unsuitable climate; and past and current climate weakly predicted patterns of genetic differentiation. Genetic signatures in E. antillensis are consistent with a recent range expansion into western Puerto Rico, possibly resulting from climate change and anthropogenic influences. As predicted, regions with a large area of long‐term suitable climate were associated with higher genetic diversity in both species, suggesting larger and more stable populations. Finally, we discussed the implications of our findings for developing evidence‐based management decisions for E. portoricensis, a taxon of special concern. Our findings illustrate the role of persistent suitable climatic conditions in promoting the persistence and diversification of tropical island organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号