首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 15 毫秒
1.
In mixed or 'bet-hedging' strategies, offspring phenotypes are taken randomly from a distribution determined by the genotype and shaped by evolution. Offspring of a single parent represent a finite sample from this distribution, and therefore are subject to variability because of sampling. Contrary to a recent article by A.M. Simons (2007; J. Evol. Biol.20: 813-817), I show that selection does not favour the production of many offspring just to reduce sampling variability when such mixed strategies are used in large populations.  相似文献   

2.
We artificially selected on egg size in a butterfly to study the consequences for fecundity, reproductive effort and offspring fitness. Correlated responses in either pupal mass, larval or pupal development time were virtually absent. Offspring size was positively related to fitness, but only partly traded off against fecundity. Rather, total reproductive effort (measured as fresh mass), egg water content and the decline of egg size with female age increased in the large-egg selected lines compared to either small-egg or control lines. Accounting for these effects showed that reproductive investment (in dry mass) was in fact similar across lines. Such mechanisms may enable increased investment in (early) offspring without a reduction in their number, revealing a much more complex picture than a simple trade-off between offspring size and number. Substantial variation among replicates suggests that there are different underlying mechanisms for change, rather than any single, unitary pathway.  相似文献   

3.
Abstract. In some insects, the finding of oviposition substrate triggers the uptake into oocytes of yolk proteins that are stored in the fat body during post‐embryonic development. The main host of the bean weevil Zabrotes subfasciatus (Coleoptera; Chrysomelidae; Bruchinae; Amblycerini), in which larval resources are the sole source for future egg maturation, is Phaseolus vulgaris. Despite not feeding as adults, females of this species are able to lay eggs after encountering host seeds but it is not known how females react to changes in the availability of bean seeds. In the present study, the behaviour of Z. subfasciatus facing two very different environments for oviposition is investigated, as well as how this influences offspring fitness. The results obtained show that females of Z. subfasciatus react to variations in the availability of seeds belonging to the same host species by adjusting egg size and number. Females on low bean seed density lay larger and fewer eggs than those on high bean seed density, demonstrating a trade‐off between these reproductive traits. Moreover, females can adjust egg size to changing levels of host availability during the first 4 days of their oviposition period. Although no difference in offspring weight is found, those from small eggs (low competition environment) result in larger adults. No response to selection on these traits after rearing beetles on the same host for 40 generations is observed. This unresponsiveness may indicate that beetle populations behave according to their reaction norm that already allows rapid adaptation to a varying amount of host‐seed availability and better exploitation of the environments of this widespread stored‐seed pest.  相似文献   

4.
Offspring size can have large and direct fitness implications, but we still do not have a complete understanding of what causes offspring size to vary. Daphnia (water fleas) generally produce fewer and larger offspring when food is limited. Here, we use a mathematical model to show that this could be explained by either: (1) an advantage of producing larger eggs when food is limited; or (2) a lower boundary on egg volume (below which eggs do not have sufficient resources to be viable), that is similar in volume to the evolutionarily stable egg volume predicted by standard clutch size models. We tested the first possibilities experimentally by placing offspring from mothers kept at two food treatments (high and low - leading to relatively small and large eggs respectively) into two food treatments (same as maternal treatments, in a fully factorial design) and measuring their fitness (reproduction, age at maturity, and size at maturity). We also tested survival under starvation conditions of offspring produced from mothers at low and high food treatments. We found that (larger) offspring produced by low-food mothers actually had lower fitness as they took longer to reproduce, regardless of their current food treatment. Additionally, we found no survival advantage to being born of a food-stressed mother. Consequently, our results do not support the hypothesis that there is an advantage to producing larger eggs when food is limited. In contrast, data from the literature support the importance of a lower boundary on egg size.  相似文献   

5.
Ecological networks incorporate myriad biotic interactions that determine the selection pressures experienced by the embedded populations. We argue that within food webs, the negative scaling of abundance with body mass and foraging theory predict that the selective advantages of larger egg size should be smaller for sit‐and‐wait than active‐hunting generalist predators, leading to the evolution of a difference in egg size between them. Because body mass usually scales negatively with predator abundance and constrains predation rate, slightly increasing egg mass should simultaneously allow offspring to feed on more prey and escape from more predators. However, the benefits of larger offspring would be relatively smaller for sit‐and‐wait predators because (i) due to their lower mobility, encounters with other predators are less common, and (ii) they usually employ a set of alternative hunting strategies that help to subdue relatively larger prey. On the other hand, for active predators, which need to confront prey as they find them, body‐size differences may be more important in subduing prey. This difference in benefits should lead to the evolution of larger egg sizes in active‐hunting relative to sit‐and‐wait predators. This prediction was confirmed by a phylogenetically controlled analysis of 268 spider species, supporting the view that the structure of ecological networks may serve to predict relevant selective pressures acting on key life history traits.  相似文献   

6.
Triatomines (Hemiptera: Reduviidae) are vectors of Trypanosoma cruzi Chagas, the etiological agent of Chagas's disease. They display pre‐adult development delay – that is, a development time much longer than on average – which usually has been considered as a maladaptive trait. However, this hypothesis has not been tested. We carried out an experiment under controlled laboratory conditions to (1) test whether a development delay exists in the fifth nymphal stage of Rhodnius prolixus Stål (Hemiptera: Reduviidae, Rhodniini), and (2) measure any fitness cost related to such delay by estimating the relationship between individual development time and other life‐history traits. We analyzed the development time with various continuous statistical distributions (normal, log‐normal, Weibull, gamma, Pareto, Burr, and log‐logistic). Using goodness‐of‐fit tests, the best fit was obtained with asymmetrical distributions, with the Burr distribution showing the best fit to the data. We concluded that a development delay exists in stage five of R. prolixus without fitness cost. The combination of our results and previous work suggests that such a delay could be viewed as an adaptive response to environmental stochasticity and/or density‐dependence rather than as a maladaptive trait. We propose further investigations to provide a conclusive test of adaptive delay in triatomines.  相似文献   

7.
Plasticity of the phenotypic architecture of wild barley, Hordeum spontaneum, was studied in response to water and nutrient stress. Direct and indirect selection on several vegetative and reproductive traits was estimated and path analysis used to reveal how regulating pathways via maternal investment differed between environments. Vegetative traits displayed differential regulating effect on fitness across experimental environments: (1) increase in size was selected for under optimal conditions and under water stress, but not under nutrient stress; (2) allocation to root biomass was selected for under optimal conditions, but it had no effect under nutrient stress and was strongly selected against when water was limiting; (3) delayed onset of reproduction was selected under nutrient limitation whereas earlier onset was selected under water stress. The regulating effect of reproductive traits on final reproductive output also differed across treatments, operating either at the 'early' stage of plant development through varying the number of initiated spikelets per spike (no stress and water stress treatment) or at the 'late' developmental stage adjusting the fertile spikelet weight (no stress and nutrient stress treatment). Reproductive output was regulated via seed abortion under no stress and water stress treatments. Although the underlying mechanism of the regulation through abortion has yet to be discovered, the specific mechanism of abortion under water stress appears to be different from that under optimal conditions. Our results demonstrate that not only is the character architecture in wild barley plastic and sensitive to changing availability of water and nutrients, but the regulating mechanism of maternal investment is also environmentally sensitive.  相似文献   

8.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号