共查询到5条相似文献,搜索用时 0 毫秒
1.
2.
Landscape characteristics influencing the genetic structure of greater sage‐grouse within the stronghold of their range: a holistic modeling approach 下载免费PDF全文
Jeffrey R. Row Sara J. Oyler‐McCance Jennifer A. Fike Michael S. O'Donnell Kevin E. Doherty Cameron L. Aldridge Zachary H. Bowen Bradley C. Fedy 《Ecology and evolution》2015,5(10):1955-1969
Given the significance of animal dispersal to population dynamics and geographic variability, understanding how dispersal is impacted by landscape patterns has major ecological and conservation importance. Speaking to the importance of dispersal, the use of linear mixed models to compare genetic differentiation with pairwise resistance derived from landscape resistance surfaces has presented new opportunities to disentangle the menagerie of factors behind effective dispersal across a given landscape. Here, we combine these approaches with novel resistance surface parameterization to determine how the distribution of high‐ and low‐quality seasonal habitat and individual landscape components shape patterns of gene flow for the greater sage‐grouse (Centrocercus urophasianus) across Wyoming. We found that pairwise resistance derived from the distribution of low‐quality nesting and winter, but not summer, seasonal habitat had the strongest correlation with genetic differentiation. Although the patterns were not as strong as with habitat distribution, multivariate models with sagebrush cover and landscape ruggedness or forest cover and ruggedness similarly had a much stronger fit with genetic differentiation than an undifferentiated landscape. In most cases, landscape resistance surfaces transformed with 17.33‐km‐diameter moving windows were preferred, suggesting small‐scale differences in habitat were unimportant at this large spatial extent. Despite the emergence of these overall patterns, there were differences in the selection of top models depending on the model selection criteria, suggesting research into the most appropriate criteria for landscape genetics is required. Overall, our results highlight the importance of differences in seasonal habitat preferences to patterns of gene flow and suggest the combination of habitat suitability modeling and linear mixed models with our resistance parameterization is a powerful approach to discerning the effects of landscape on gene flow. 相似文献
3.
Rolando De la Cruz Guillermo Marshall Fernando A. Quintana 《Biometrical journal. Biometrische Zeitschrift》2011,53(5):735-749
In many studies, the association of longitudinal measurements of a continuous response and a binary outcome are often of interest. A convenient framework for this type of problems is the joint model, which is formulated to investigate the association between a binary outcome and features of longitudinal measurements through a common set of latent random effects. The joint model, which is the focus of this article, is a logistic regression model with covariates defined as the individual‐specific random effects in a non‐linear mixed‐effects model (NLMEM) for the longitudinal measurements. We discuss different estimation procedures, which include two‐stage, best linear unbiased predictors, and various numerical integration techniques. The proposed methods are illustrated using a real data set where the objective is to study the association between longitudinal hormone levels and the pregnancy outcome in a group of young women. The numerical performance of the estimating methods is also evaluated by means of simulation. 相似文献
4.
A comparison of regression methods for model selection in individual‐based landscape genetic analysis 下载免费PDF全文
Anthropogenic migration barriers fragment many populations and limit the ability of species to respond to climate‐induced biome shifts. Conservation actions designed to conserve habitat connectivity and mitigate barriers are needed to unite fragmented populations into larger, more viable metapopulations, and to allow species to track their climate envelope over time. Landscape genetic analysis provides an empirical means to infer landscape factors influencing gene flow and thereby inform such conservation actions. However, there are currently many methods available for model selection in landscape genetics, and considerable uncertainty as to which provide the greatest accuracy in identifying the true landscape model influencing gene flow among competing alternative hypotheses. In this study, we used population genetic simulations to evaluate the performance of seven regression‐based model selection methods on a broad array of landscapes that varied by the number and type of variables contributing to resistance, the magnitude and cohesion of resistance, as well as the functional relationship between variables and resistance. We also assessed the effect of transformations designed to linearize the relationship between genetic and landscape distances. We found that linear mixed effects models had the highest accuracy in every way we evaluated model performance; however, other methods also performed well in many circumstances, particularly when landscape resistance was high and the correlation among competing hypotheses was limited. Our results provide guidance for which regression‐based model selection methods provide the most accurate inferences in landscape genetic analysis and thereby best inform connectivity conservation actions. 相似文献
5.
Shinichi Nakagawa Holger Schielzeth 《Biological reviews of the Cambridge Philosophical Society》2010,85(4):935-956
Repeatability (more precisely the common measure of repeatability, the intra‐class correlation coefficient, ICC) is an important index for quantifying the accuracy of measurements and the constancy of phenotypes. It is the proportion of phenotypic variation that can be attributed to between‐subject (or between‐group) variation. As a consequence, the non‐repeatable fraction of phenotypic variation is the sum of measurement error and phenotypic flexibility. There are several ways to estimate repeatability for Gaussian data, but there are no formal agreements on how repeatability should be calculated for non‐Gaussian data (e.g. binary, proportion and count data). In addition to point estimates, appropriate uncertainty estimates (standard errors and confidence intervals) and statistical significance for repeatability estimates are required regardless of the types of data. We review the methods for calculating repeatability and the associated statistics for Gaussian and non‐Gaussian data. For Gaussian data, we present three common approaches for estimating repeatability: correlation‐based, analysis of variance (ANOVA)‐based and linear mixed‐effects model (LMM)‐based methods, while for non‐Gaussian data, we focus on generalised linear mixed‐effects models (GLMM) that allow the estimation of repeatability on the original and on the underlying latent scale. We also address a number of methods for calculating standard errors, confidence intervals and statistical significance; the most accurate and recommended methods are parametric bootstrapping, randomisation tests and Bayesian approaches. We advocate the use of LMM‐ and GLMM‐based approaches mainly because of the ease with which confounding variables can be controlled for. Furthermore, we compare two types of repeatability (ordinary repeatability and extrapolated repeatability) in relation to narrow‐sense heritability. This review serves as a collection of guidelines and recommendations for biologists to calculate repeatability and heritability from both Gaussian and non‐Gaussian data. 相似文献