首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The population genetic structure of the razor clam Sinonovacula constricta was investigated between populations collected from China, Korea and Vietnam using cytochrome oxidase subunit 1 (COI) mtDNA and internal transcribed spacer 2 (ITS2) rDNA markers. A total of 622 bp of COI and 495 bp of ITS2 were sequenced. Highly significant Fst values and low rates of migration were observed from populations between Vietnam and China, (Fst = 0.7578, P < 0.001, Nm = 0.05 for COI; Fst = 0.91389, P < 0.001, Nm = 0.07 for ITS2) and Korea (Fst = 0.79783, P < 0.001, Nm = 0.07 for COI; Fst = 0.74143, P < 0.001, Nm = 0.03 for ITS2). However, lower Fst values and higher gene flow were detected between populations from China and Korea (Fst = 0.25733, P < 0.001, Nm = 0.73) based on COI analysis. The similar pattern was also captured by ITS2 rDNA marker. In addition, Neighbor-joining phylogenetic tree analysis of the two markers resulted in one cluster consisting of haplotypes from Vietnam, and a second group comprising haplotypes from China and Korea. This research revealed a closer genetic relationship between clam population from China and Korea but less similarity to population from Vietnam.  相似文献   

2.
The diversity and genetic structure of seven populations of Microcycas calocoma (Miq.) A. DC, were analyzed by gel electrophoresis using 19 allozymes. The mean number of alleles per locus (A) was 1.49 and the percentage of polymorphic loci was relatively high (P = 48.09). The mean observed (Ho) and expected heterozygosity (He) were 0.20 and 0.17, respectively. The F-statistics revealed a high population structure (Fst = 0.34). Mean gene flow between population pairs was Nm = 0.96. Results were compared with those of other cycad species, and indicate that M. calocoma populations have become fragmented due to increasing pressures of habitat conversion and disturbance. Also, geographical isolation among populations has generated allele loss in relation to altitude. The establishment and maintenance of protected areas for in situ conservation is critical to preserve the high genetic diversity of M. calocoma. Conservation strategy guidelines have been specified.  相似文献   

3.
The Chinese walnut (Juglans cathayensis L.), valued for both its nut and wood, is an ecologically important tree species endemic temperate southern China. Investigation of the genetic diversity of Chinese walnut has been limited to natural population genetics and genetic germplasm resources. Here, we describe the development of 12 polymorphic microsatellite markers using next-generation sequencing to screen 96 Chinese walnut individuals collected from 11 natural populations. The number of alleles per locus ranged from 5 to 12. The observed heterozygosity (0.288–0.748) overlapped well with the expected heterozygosity (0.337–0.751). This species has high genetic diversity and gene flow among different populations (FST = 0.075, Nm = 3.088). These markers will be useful for future studies on population genetic structure, evolutionary ecology, and genetic breeding of this walnut tree or other Juglans species.  相似文献   

4.
Neopicrorhiza scrophulariiflora Pennel (Hong) (Scrophulariaceae) is an endangered medicinal plant, endemic to the Eastern Himalayas and the Hengduan Mountains. Levels of genetic variation and genetic structure of seven populations of N. scrophulariiflora in China were studied using inter-simple sequence repeat (ISSR) markers. Thirteen primers amplified 82 total loci from 7 populations composed of 136 individuals. All 82 loci were polymorphic, showing a percentage of polymorphic bands (PPB) of 100%, indicating considerable genetic variation at the species level. In contrast, a low level of genetic diversity within populations was detected with a mean PPB of 30.56%. In addition, Nei’s genetic diversity analysis (0.4073) and Shannon’s diversity index (0.5917) revealed similar genetic structure. High levels of genetic differentiation (Gst = 0.6955) and restricted gene flow (Nm = 0.2198) among populations were also detected. Anthropologic impacts, together with clonal propagation, genetic drift and geographical isolation might be the reasons which had shaped the genetic structure of this species.  相似文献   

5.
Oreochromis andersonii and O. macrochir are two important cichlid species native to Southern Africa. We describe in this paper their genetic population structure in the Upper Zambezi River, Kafue River, and Lake Bangweulu representing part of the Congo and Zambezi River Basins. Microsatellite genetic markers were employed to analyse the genetic population structure of the two species using 177 tissue samples. The average allele richness of O. andersonii was higher in the Zambezi River (10.500) than in the Kafue River (9.583) though not statistically different. For O. macrochir, it was highest in the Zambezi River (11.170) followed by the Kafue River (9.781) and least in Lake Bangweulu (7.067) and their differences were significant. The gene diversity indices; gene diversity (hs), observed heterozygosity (HO), expected heterozygosity (HE) were high and similar in O. andersonii populations. However, in O. macrochir HE was significantly lower in Lake Bangweulu (0.678) compared to the Kafue River (0.799) and Zambezi River (0.802) populations. Population differentiation estimated by RST and DEST revealed high differentiation in both species (RST = 0.598, DEST = 0.777 for O. andersonii; RST = 0.379, DEST = 0.710 for O. macrochir). The highest source of variation was among populations (84.71%) for O. andersonii and within populations (67.09%) for O. macrochir. Comparisons of population pairs revealed a close genetic similarity between the Zambezi River and Lake Bangweulu populations of O. macrochir. Bottlenecks were observed in both species using the Two-Phase Model (T.P.M.) indicative of a recent genetic loss or reduction in effective population size. Though our results indicate that the populations of both species still maintain sufficiently high levels of genetic diversity in the sampled areas, the bottlenecks observed are a source of concern. We recommend a more robust study of genetic diversity of these species in all sections of these river systems and that some key conservation sites should be identified to protect the gene pool of these native species.  相似文献   

6.
Bitter gourd (Momordica charantia L.) cultivated in China is regarded as an important vegetable crop and is of considerable economic importance. However, it is susceptible to fusarium wilt, which causes heavy economic losses. Forty‐eight isolates were isolated from diseased bitter gourd plants that displayed typical fusarium wilt symptoms. Based on the morphological features, the rDNA internal transcribed space (ITS) sequences, pathogenicity and host biotypes, all of the isolates tested were pathogenic to the susceptible bitter gourd plants species (cv. ‘Guinongke No. 2’) and were identified as Fusarium oxysporum f. sp. momordicae (FOM). Our results classified different isolates as slightly, moderately or highly virulent. Among the isolates tested, 43 isolates slightly infected bottle gourd (Lagenaria siceraria var. clavata), whereas they did not infect other species from the family Cucurbitaceae. Genetic diversity among 48 isolates was characterized using amplified fragment length polymorphism (AFLP) analysis. The number of bands amplified by each primer pairs ranged from 41 to 66, with sizes ranging from 200 to 500 bp. A total of 366 bands were observed, out of which 363 were polymorphic (99.14%). The Nei's genetic identity of the six geographical populations varied from 0.7362 to 0.9707. The mean Nei's gene diversity index (= 0.2644) and the mean Shannon's information index (= 0.4071) at species level were higher than ones at populations level, indicated that the variation within populations was greater than that among populations. The Nei's GST (0.5103) and gene flow (Nm = 0.4923) revealed that genetic differentiation was mainly among populations and few gene exchanges. The dendrogram obtained from AFLP marker showed that there was a good correlation between isolates from different geographical locations and their pathogenicity. The AFLP marker effectively distinguished the high virulent isolates from the less virulent isolates. The highly virulent isolates were distinctly separated in different clusters, which indicated a significantly high correlation with the geographical origin in the AFLP dendrogram. The pathogenicity and molecular marker analysis confirmed the presence of variation in virulence as well as genetic diversity among the FOM isolates studied.  相似文献   

7.
Dendrothrips minowai Priesner (Thysanoptera: Thripidae) is one of the most destructive insect pests on tea plants. Although outbreaks of this pest occur annually in South China, especially in Guizhou Province, little is known about its population genetics, such as genetic diversity and gene flow. To investigate its population genetic structure and migration routes in Guizhou Province, we analyzed 24 D. minowai populations across Guizhou using six microsatellite loci. We detected the moderate genetic diversity and the population genetic structure of this thrip species. Neighbor‐joining (NJ) phylogenetic tree and STRUCTURE analyses recognized two clusters within the studied populations. No correlation between genetic and geographical distances (r = 0.0139, P = 0.5830) was detected and more than 89% of the variation occurred among samples within populations. Gene flow analysis revealed high migration rates (74.0 – 894.1) among D. minowai populations. Overall, the trend of asymmetrical gene flow was from northeast to southwest. Our analyses demonstrated that D. minowai derived or originated from multiple sites and could be eventually divided into two groups in Guizhou.  相似文献   

8.
Landscape features often shape patterns of gene flow and genetic differentiation in plant species. Populations that are small and isolated enough also become subject to genetic drift. We examined patterns of gene flow and differentiation among 12 floodplain populations of the selfing annual jewelweed (Impatiens capensis Meerb.) nested within four river systems and two major watersheds in Wisconsin, USA. Floodplain forests and marshes provide a model system for assessing the effects of habitat fragmentation within agricultural/urban landscapes and for testing whether rivers act to genetically connect dispersed populations. We generated a panel of 12,856 single nucleotide polymorphisms and assessed genetic diversity, differentiation, gene flow, and drift. Clustering methods revealed strong population genetic structure with limited admixture and highly differentiated populations (mean multilocus FST = 0.32, FST’ = 0.33). No signals of isolation by geographic distance or environment emerged, but alleles may flow along rivers given that genetic differentiation increased with river distance. Differentiation also increased in populations with fewer private alleles (R2 = 0.51) and higher local inbreeding (R2 = 0.22). Populations varied greatly in levels of local inbreeding (FIS = 0.2–0.9) and FIS increased in more isolated populations. These results suggest that genetic drift dominates other forces in structuring these Impatiens populations. In rapidly changing environments, species must migrate or genetically adapt. Habitat fragmentation limits both processes, potentially compromising the ability of species to persist in fragmented landscapes.  相似文献   

9.
Fig wasps are short-lived, weak fliers, and their long-distance dispersal depends on the ability to enter fast-flowing air above the canopy. Therefore, growth form of fig species may affect fig wasps’ dispersal. We employed six microsatellite markers to examine gene flow in Chinese populations of the dioecious Ficus tikoua, a prostrate shrub with figs partially buried in the soil. Moderate genetic diversity was found within populations of F. tikoua. Differentiation among six F. tikoua populations (FST = 0.196, p < 0.001) was higher than those of other dioecious figs, and significant differentiation was found between each pair of populations, indicating potential restricted gene flow. This was further demonstrated by significant isolation-by-distance pattern (p = 0.039), because low gene flow among population was needed to balance the minor effect of genetic drift, given F. tikoua was locally common. Restricted gene flow suggests that growth form may determine differences in gene flow between fig species.  相似文献   

10.
At what intensity the grazing should be practiced on the Qinghai-Tibetan Plateau in China is always confusing farmers, scientists and policy makers for a long time owing to its geographical exception. In order to develop a strategy for sustainable grazing management, we used the dominant Stipa purpurea as a model species to detect genetic diversity and fine spatial structure under different grazing intensities. Intra-population neutral genetic diversity in non-grazed population was significantly higher than three grazed populations; however, the highest value among grazed populations appeared in the moderately grazed population. A relatively low degree of genetic differentiation among populations by AMOVA analysis and a high level of gene flow existed among populations (Gst = 0.2649, Nm = 1.3875 〉 1). The genetic ‘patch’ size increased from 4 m to 16 m and subpopulation number within the S. purpurea populations ranged from 7 to 5 with increasing grazing intensity, therefore grazing will be beneficial to reduce the fragmentation and to increase the population-level adaptation. Though enclosure or no grazing is the best protection of plant germplasm like wind-pollination S. purpurea, moderate grazing is better strategy for grassland use on the Qinghai-Tibetan Plateau.  相似文献   

11.
Patterns of local adaptation at fine spatial scales are central to understanding how evolution proceeds, and are essential to the effective management of economically and ecologically important forest tree species. Here, we employ single and multilocus analyses of genetic data (= 116 231 SNPs) to describe signatures of fine‐scale adaptation within eight whitebark pine (Pinus albicaulis Engelm.) populations across the local extent of the environmentally heterogeneous Lake Tahoe Basin, USA. We show that despite highly shared genetic variation (FST = 0.0069), there is strong evidence for adaptation to the rain shadow experienced across the eastern Sierra Nevada. Specifically, we build upon evidence from a common garden study and find that allele frequencies of loci associated with four phenotypes (mean = 236 SNPs), 18 environmental variables (mean = 99 SNPs), and those detected through genetic differentiation (n = 110 SNPs) exhibit significantly higher signals of selection (covariance of allele frequencies) than could be expected to arise, given the data. We also provide evidence that this covariance tracks environmental measures related to soil water availability through subtle allele frequency shifts across populations. Our results replicate empirical support for theoretical expectations of local adaptation for populations exhibiting strong gene flow and high selective pressures and suggest that ongoing adaptation of many P. albicaulis populations within the Lake Tahoe Basin will not be constrained by the lack of genetic variation. Even so, some populations exhibit low levels of heritability for the traits presumed to be related to fitness. These instances could be used to prioritize management to maintain adaptive potential. Overall, we suggest that established practices regarding whitebark pine conservation be maintained, with the additional context of fine‐scale adaptation.  相似文献   

12.
Parrotia subaequalis (Hamamelidaceae) is a Tertiary relic species endemic in eastern China. We used inter‐simple sequence repeat (ISSR) markers to access genetic diversity and population genetic structure in natural five populations of P. subaequalis. The levels of genetic diversity were higher at species level (= 0.2031) but lower at population level (= 0.1096). The higher genetic diversity at species levels might be attributed to the accumulation of distinctive genotypes which adapted to the different habitats after Quaternary glaciations. Meanwhile, founder effects on the early stage, and subsequent bottleneck of population regeneration due to its biological characteristics, environmental features, and human activities, seemed to explain the low population levels of genetic diversity. The hierarchical AMOVA revealed high levels (42.60%) of among‐population genetic differentiation, which was in congruence with the high levels of Nei's genetic differentiation index (GST = 0.4629) and limited gene flow (Nm = 0.5801) among the studied populations. Mantel test showed a significant isolation‐by‐distance, indicating that geographic isolation has a significant effect on genetic structure in this species. Unweighted pair‐group method with arithmetic average clustering, PCoA, and Bayesian analyses uniformly recovered groups that matched the geographical distribution of this species. In particular, our results suggest that Yangtze River has served as a natural barrier to gene flow between populations occurred on both riversides. Concerning the management of P. subaequalis, the high genetic differentiation among populations indicates that preserving all five natural populations in situ and collecting enough individuals from these populations for ex situ conservation are necessary.  相似文献   

13.
Populations of many species are isolated within narrow elevation bands of Neotropical mountain habitat, and how well dispersal maintains genetic connectivity is unknown. We asked whether genetic structure of an epiphytic orchid, Epidendrum firmum, corresponds to gaps between Costa Rican mountain ranges, and how these gaps influence pollen and seed flow. We predicted that significant genetic structure exists among mountain ranges due to different colonization histories and limited gene flow. Furthermore, we predicted that pollen movement contributes more to gene flow than seeds because seeds are released into strong winds perpendicular to the narrow northwest–southeast species distribution, while the likely pollinators are strong fliers. Individuals from 12 populations and three mountain ranges were genotyped with nuclear microsatellites (nDNA) and chloroplast sequences (cpDNA). Genetic diversity was high for both markers, while nDNA genetic structure was low (FSTn = 0.020) and cpDNA structure was moderate (FSTc = 0.443). Significant cpDNA barriers occurred within and among mountain ranges, but nDNA barriers were not significant after accounting for geographic distance. Consistent with these contrasting patterns of genetic structure, pollen contributes substantially more to gene flow among populations than seed (mp/ms = 46). Pollinators mediated extensive gene flow, eroding nDNA colonization footprints, while seed flow was comparatively limited, possibly due to directional prevailing winds across linearly distributed populations. Dispersal traits alone may not accurately inform predictions about gene flow or genetic structure, supporting the need for research into the potentially crucial role of pollinators and landscape context in gene flow among isolated populations.  相似文献   

14.
Genetic structure and major climate factors may contribute to the distribution of genetic diversity of a highly valued oil tree species Xanthoceras sorbifolium (yellowhorn). Long‐term over utilization along with climate change is affecting the viability of yellowhorn wild populations. To preserve the species known and unknown valuable gene pools, the identification of genetic diversity “hotspots” is a prerequisite for their consideration as in situ conservation high priority. Chloroplast DNA (cpDNA) diversity was high among 38 natural populations (Hd = 0.717, K = 4.616, Tajmas’ D = ?0.22) and characterized by high genetic divergence (FST = 0.765) and relatively low gene flow (Nm = 0.03), indicating populations isolation reflecting the species’ habitat fragmentation and inbreeding depression. Six out of the studied 38 populations are defined as genetic diversity “hotspots.” The number and geographic direction of cpDNA mutation steps supported the species southwest to northeast migration history. Climatic factors such as extreme minimum temperature over 30 years indicated that the identified genetic “hotspots” are expected to experience 5°C temperature increase in next following 50 years. The results identified vulnerable genetic diversity “hotspots” and provided fundamental information for the species’ future conservation and breeding activities under the anticipated climate change. More specifically, the role of breeding as a component of a gene resource management strategy aimed at fulfilling both utilization and conservation goals.  相似文献   

15.
The Orchidaceae is characterised by a diverse range of life histories, reproductive strategies and geographic distribution, reflected in a variety of patterns in the population genetic structure of different species. In this study, the genetic diversity and structure was assessed within and among remnant populations of the critically endangered sexually deceptive orchid, Caladenia huegelii. This species has experienced severe recent habitat loss in a landscape marked by ancient patterns of population fragmentation within the Southwest Australian Floristic Region, a global biodiversity hotspot. Using seven polymorphic microsatellite loci, high levels of within-population diversity (mean alleles/locus = 6.73; mean H E = 0.690), weak genetic structuring among 13 remnant populations (F ST = 0.047) and a consistent deficit of heterozygotes from Hardy–Weinberg expectation were found across all populations (mean F IS = 0.22). Positive inbreeding coefficients are most likely due to Wahlund effects and/or inbreeding effects from highly correlated paternity and typically low fruit set. Indirect estimates of gene flow (Nm = 5.09 using F ST; Nm = 3.12 using the private alleles method) among populations reflects a historical capacity for gene flow through long distance pollen dispersal by sexually deceived wasp pollinators and/or long range dispersal of dust-like orchid seed. However, current levels of gene flow may be impacted by habitat destruction, fragmentation and reduced population size. A genetically divergent population was identified, which should be a high priority for conservation managers. Very weak genetic differentiation indicates that the movement and mixing of seeds from different populations for reintroduction programs should result in minimal negative genetic effects.  相似文献   

16.
Genetic drift, together with natural selection and gene flow, affects genetic variation and is the major source of changes in allele frequencies in small and isolated populations. Temporal shifts in allele frequencies at five polymorphic loci were used to estimate the amount of genetic drift in an isolated population of perch (Perca fluviatilis L.) and roach (Rutilus rutilus L.). Here, I used the populations from the Biotest basin at Forsmark, Sweden, to investigate genetic diversity between 1977 and 2000, during which time the population can be considered to be totally isolated from other populations. Microsatellite data reveal stable levels of gene diversity over time for both species. Estimates of genetic differentiation (F ST) showed a significant divergence between 1977 and 2000 for both perch and roach. A positive correlation between genetic distance and time was found (Mantel test, perch: r = 0.724, P = 0.0112; roach: r = 0.59, P = 0.036). Estimates of effective population size (N e) differed with a factor six between two different estimators (NeEstimator and TempoFS) applying the temporal method. Ratios of N e/N ranged between 10−2 and 10−3, values normally found in marine species. Despite low N e the populations have not lost their evolutionary potential due to drift. But two decades of isolation have lead to isolation by time for populations of perch and roach, respectively.  相似文献   

17.
Using genetic markers, we investigated the genetic structure of three clonal aquatic moss species, Calliergon megalophyllum Mikut., Fontinalis antipyretica Hedw. and F. hypnoides Hartm. on two scales: among populations in a connected lake system (large‐scale spatial genetic structure) and among individuals within populations (fine‐scale spatial genetic structure). Mean genetic diversities per population were 0.138, 0.247 and 0.271, respectively, and total diversities equalled 0.223, 0.385 and 0.421, respectively. Relative differentiation levels (FST values of 0.173, 0.280 and 0.142, respectively) were significant but showed that there is a moderate amount of gene flow taking place within the lake system connected with narrow streams. Bayesian STRUCTURE analysis provided some indication that the direction of water flow influences population genetic structuring in the studied aquatic mosses. We propose that dispersal leading to gene flow in C. megalophyllum, F. antipyretica and F. hypnoides takes place both along water via connecting streams and by animal vectors, such as waterfowl. Nevertheless, the slight genetic structuring pattern along the direction of water flow suggests that dispersal of shoots or their fragments along water is a means of dispersal in these mosses. The absence of sexual reproduction and spores may have caused the observed spatial genetic structure within populations, including aggregations of similar genotypes (clones or closely related genotypes) at short distances in populations otherwise showing an isolation by distance effect. Regardless of the results pointing to the dominance of vegetative propagation, it is impossible to completely rule out the potential role of rare long‐distance spore dispersal from areas where the species are fertile.  相似文献   

18.
Sal (Shorea robusta Gaertn., Dipterocarpaceae) is a wind-pollinated tropical tree species found in southern Asia. We investigated the genetic diversity and structure at four microsatellites of 15 populations comprising continuous-peripheral and disjunct-peripheral populations in Nepal. Estimates of genetic diversity (N A = 8.98, H O = 0.62, H E = 0.69) were similar when compared with those of other tropical tree species. A higher level of genetic diversity was observed in continuous-peripheral populations (N A = 9.61, H O = 0.67, H E = 0.72) as compared to disjunct-peripheral (N A = 8.04, H O = 0.55, H E = 0.64). Population differentiation was higher among disjunct-peripheral populations (F ST = 0.043) than among continuous peripherals (F ST = 0.012). There was a significant association between gene flow distances and genetic differentiation (r 2 = 0.128, P ≤ 0.007). No spatial arrangement of populations according to their geographical locations was found. Based on observed genetic diversity protection of some populations in continuous-peripheral range are suggested for the sustainable conservation of genetic resources of the species while protection of some disjunct-peripheral populations are also recommended for conserving rare alleles.  相似文献   

19.
Resolving the genetic population structure of species inhabiting pristine, high latitude ecosystems can provide novel insights into the post‐glacial, evolutionary processes shaping the distribution of contemporary genetic variation. In this study, we assayed genetic variation in lake trout (Salvelinus namaycush) from Great Bear Lake (GBL), NT and one population outside of this lake (Sandy Lake, NT) at 11 microsatellite loci and the mtDNA control region (d‐loop). Overall, population subdivision was low, but significant (global FST θ = 0.025), and pairwise comparisons indicated that significance was heavily influenced by comparisons between GBL localities and Sandy Lake. Our data indicate that there is no obvious genetic structure among the various basins within GBL (global FST = 0.002) despite the large geographic distances between sampling areas. We found evidence of low levels of contemporary gene flow among arms within GBL, but not between Sandy Lake and GBL. Coalescent analyses suggested that some historical gene flow occurred among arms within GBL and between GBL and Sandy Lake. It appears, therefore, that contemporary (ongoing dispersal and gene flow) and historical (historical gene flow and large founding and present‐day effective population sizes) factors contribute to the lack of neutral genetic structure in GBL. Overall, our results illustrate the importance of history (e.g., post‐glacial colonization) and contemporary dispersal ecology in shaping genetic population structure of Arctic faunas and provide a better understanding of the evolutionary ecology of long‐lived salmonids in pristine, interconnected habitats.  相似文献   

20.
Prince Rupprecht's Larch (Larix principis-rupprechtii Mayr.) is one of dominant components of middle and high elevation forests in North China. Shanxi Province is well known as “the Hometown of Prince Rupprecht's Larch” in China. In this study, six natural populations of this species across Shanxi were selected to investigate the genetic variation of the species using amplified fragment length polymorphism (AFLP) markers. Results showed that in comparison with some other species of Larix, higher genetic diversity was revealed at the species level for L. principis-rupprechtii (percentage of polymorphic loci PPL = 71.9%, Nei's gene diversity HE = 0.225, Shannon information index I = 0.341). Most of genetic variation existed within populations (80.5%), while the genetic differentiation among populations was significant (p < 0.001) and higher (Gst = 0.194) than most other species of Larix. The differentiation can be attributed to the limited gene flow (Nm = 1.035) among populations, which could be due to the spatial isolation and habitat fragmentation. The six populations can be divided into three groups based on the Nei's genetic distances between populations (from 0.033 to 0.076). There was no significant correlation (r = 0.268, p > 0.05) between genetic distance and geographic distance among populations. The measures for in-situ or ex-situ conservation should be taken to preserve the genetic diversity of this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号