首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mode in which sexual organisms choose mates is a key evolutionary process, as it can have a profound impact on fitness and speciation. One way to study mate choice in the wild is by measuring trait correlation between mates. Positive assortative mating is inferred when individuals of a mating pair display traits that are more similar than those expected under random mating while negative assortative mating is the opposite. A recent review of 1134 trait correlations found that positive estimates of assortative mating were more frequent and larger in magnitude than negative estimates. Here, we describe the scale‐of‐choice effect (SCE), which occurs when mate choice exists at a smaller scale than that of the investigator's sampling, while simultaneously the trait is heterogeneously distributed at the true scale‐of‐choice. We demonstrate the SCE by Monte Carlo simulations and estimate it in two organisms showing positive (Littorina saxatilis) and negative (L. fabalis) assortative mating. Our results show that both positive and negative estimates are biased by the SCE by different magnitudes, typically toward positive values. Therefore, the low frequency of negative assortative mating observed in the literature may be due to the SCE's impact on correlation estimates, which demands new experimental evaluation.  相似文献   

2.
Assortative mating in the wild is commonly estimated by correlating between traits in mating pairs (e.g. the size of males and females). Unfortunately, such an approach may suffer from considerable sampling bias when the distribution of different expressions of a trait in the wild is nonrandom (e.g. when segregation of different size classes of individuals occurs in different microhabitats or areas). Consequently, any observed trait correlation in the wild can be an artefact of pooling heterogeneous samples of mating pairs from different microhabitats or areas rather than true nonrandom matings. This bias in estimating trait correlations as a result of sampling scale is termed the scale‐of‐choice effect (SCE). In the present study, we use two intertidal littorinid species from Hong Kong to show how the SCE can bias size‐assortative mating estimates from mating pairs captured in the wild, empirically demonstrating the influence of this effect on measures of positive assortative mating. This finding cautions that studies overlooking the SCE may have misinterpreted the magnitude and the cause of assortative mating, and we provide a new analytical approach for protecting against this potential bias in future studies.  相似文献   

3.
Simulating the evolution of reproductive isolation under sympatric speciation scenarios is a complex process that requires modelling several phases, including evolution of phenotypes, demography, migration, fitness components and mating preference. The last has been shown to be a key parameter in several simulation studies, allowing the incorporation of assortative mating (premating isolation). Mating preference can be modelled by different mathematical functions but, as far as we know, a formal comparison of those functions has not yet been undertaken. In this work, we briefly review the main functions used in the literature and suggest a new one. In doing so, we also define three basic properties (monotonicity, proportionality and symmetry) that an ideal function should satisfy when generating assortative mating. We simulated several scenarios to compare how all these functions perform based on these properties. We also draw attention to the fact that the existing functions are affected distinctly by changing the scale of the preferred trait value. Some functions remain unaffected by scaling the trait, while in others assortative mating increases proportionally to the trait value. Most of the functions tested did not fulfil all the properties studied, and we find certain flaws in some of them that should be considered before being used in future studies. We provide some general recommendations for using the preference functions in simulation studies, and suggest that an unnoticed scaling effect could have underestimated the chance to obtain speciation under certain scenarios. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 642–657.  相似文献   

4.
Two ecotypes of a marine intertidal snail (Littorina saxatilis), living at different microhabitats and shore levels, have evolved in sympatry and in parallel across the Galician rocky shore. These ecotypes differ in many traits (including size) due to differential adaptation. They meet, mate assortatively, and partially hybridize at the mid shore where the two microhabitats overlap. The partial sexual isolation observed is claimed to be a side‐effect of the size differences between ecotypes combined with a size assortative mating found in most populations of this species. We investigated this hypothesis using three complementary experimental approaches. First, we investigated which of the different shell variables contributed most to the variation in individual sexual isolation in the field by using two new statistics developed for that purpose: (1) pair sexual isolation and (2) ri, which is based on the Pearson correlation coefficient. We found that size is the most important trait explaining the sexual isolation and, in particular, the males appear to be the key sex contributing to sexual isolation. Second, we compared the size assortative mating between regions: exposed rocky shore populations from north‐westwern Spain (showing incomplete reproductive isolation due to size assortative mating) and protected Spanish and Swedish populations (showing size assortative mating but not reproductive isolation between ecomorphs). Most of the variation in size assortative mating between localities was significantly explained by the within‐population level of variation on size. Third, we performed a laboratory male choice experiment, which further suggested that the choice is made predominantly on the basis of size. These results confirm the mechanism proposed to explain the sexual isolation in the Galician hybrid zone and thus support this case as a putative example of parallel incipient speciation. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 94 , 513–526.  相似文献   

5.
Choosing the right mate is crucial for successful breeding, particularly in monogamous species with long and extensive bi‐parental care, and when the breeding pair is presumed to last many seasons. We investigated the degree of assortative mating in the Little Auk Alle alle, a long‐lived seabird with long‐term pair bonds and bi‐parental care for fixed (morphological) and labile (physiological, behavioural) traits. Using randomization tests, we suggest assortative mating with respect to wing length, extent of the white area on the upper eyelid and hormonal stress response (the difference between stress‐induced and baseline corticosterone levels). We discuss how the assortative mating patterns that we found in the Little Auk may be adaptive.  相似文献   

6.
In many animals, body size plays a crucial role in mating success in the context of competition and preference for mates. Increasing evidence has shown that male mate preference can be size‐dependent and, therefore, an important driver of size‐assortative mating. To test this theory, mate choice experiments were performed during the three consecutive stages of mating behaviour, namely trail following, shell mounting and copulation, in the dioecious mangrove snail, Littoraria ardouiniana. These experiments identified two possible forms of size‐dependent male mate preference which could contribute to the formation of size‐assortative mating in these snails. Firstly, whereas small males were unselective, large males were selective and preferred to follow mucus trails laid by large females. Alternatively, the results can also be interpreted as all males were selective and adopted a mating strategy of selecting females similar to, or larger than, their own sizes. Both small and large males also copulated for longer with large than with small females, and this was more pronounced in large males. When two males encountered a female, they engaged in physical aggression, with the larger male excluding the smaller male from copulating with the female. This study, therefore, demonstrated that size‐dependent male mate preference may, along with male–male competition, play an important role in driving size‐assortative mating in these mangrove snails, and this may also be the case in other species that exhibit male mate choice.  相似文献   

7.
8.
This article extends and adds more realism to Lande's analytical model for evolution under mate choice by using individual‐based simulations in which females sample a finite number of males and the genetic architecture of the preference and preferred trait evolves. The simulations show that the equilibrium heritabilities of the preference and preferred trait and the genetic correlation between them (rG), depend critically on aspects of the mating system (the preference function, mode of mate choice, choosiness, and number of potential mates sampled), the presence or absence of natural selection on the preferred trait, and the initial genetic parameters. Under some parameter combinations, preferential mating increased the heritability of the preferred trait, providing a possible resolution for the lek paradox. The Kirkpatrick–Barton approximation for rG proved to be biased downward, but the realized genetic correlations were also low, generally <0.2. Such low values of rG indicate that coevolution of the preference and preferred trait is likely to be very slow and subject to significant stochastic variation. Lande's model accurately predicted the incidence of runaway selection in the simulations, except where preferences were relative and the preferred trait was subject to natural selection. In these cases, runaways were over‐ or underestimated, depending on the number of males sampled. We conclude that rapid coevolution of preferences and preferred traits is unlikely in natural populations, but that the parameter combinations most conducive to it are most likely to occur in lekking species.  相似文献   

9.
The consequences of preferential mating in the presence of partial assortative and sexual selection mechanisms are ascertained for a two-allele one-locus trait involving two phenotype classes C1 = {all homozygotes} and C2 = {heterozygotes}. Relevant biological cases may include Burley (1977, Proc. Nat. Acad. Sci. USA 74, 3476–3479), Wilbur et al. (1978, Evolution 32, 264–270), and Singh and Zouros (1978, Evolution 32, 342–353). When the preference rate for the heterozygote exceeds that for homozygotes, it is established that the unique stable state is the central Hardy-Weinberg equilibrium. The rate of approach is faster with sexual selection than for the corresponding model of assortative mating. When the preference rates favor the homozygotes then in this symmetric model of sexual selection two asymmetric Hardy-Weinberg polymorphisms can evolve, and which succeeds depends on initial conditions. The models are also analyzed with natural selection acting on phenotypes superimposed on assortative mating. In this case we can have up to three coexisting stable states involving both fixation alternatives and a central polymorphism. The corresponding model with sexual selection maintains either the central equilibrium as in assortative mating or two asymmetric polymorphic equilibria.  相似文献   

10.
Assortative mating is a key aspect in the speciation process because it is important for both initial divergence and maintenance of distinct species. However, it remains a challenge to explain how assortative mating evolves when diverging populations are undergoing gene flow (e.g., during hybridization). Here I experimentally test how assortative mating is maintained with frequent gene flow between diverged head‐color morphs of the Gouldian finch (Erythrura gouldiae). Contrary to the predominant view on the development of sexual preferences in birds, cross‐fostered offspring did not imprint on the phenotype of their conspecific (red or black morphs) or heterospecific (Bengalese finch) foster parents. Instead, the mating preferences of F1 and F2 intermorph‐hybrids are consistent with inheritance on the Z chromosomes, which are also the location for genes controlling color expression and the genes causing low fitness of intermorph‐hybrids. Genetic associations between color signal and preference loci on the sex chromosomes may prevent recombination from breaking down these associations when the morphs interbreed, helping to maintain assortative mating in the face of gene flow. Although sex linkage of reproductively isolating traits is theoretically expected to promote speciation, social and ecological constraints may enforce frequent interbreeding between the morphs, thus preventing complete reproductive isolation.  相似文献   

11.
Summary This study examined how assortative mating (without selection) based on linear combinations of two traits could be used to change genetic parameters so as to increase efficiency of selection. The efficiency of the Smith-Hazel index for improvement of multiple traits is a function of phenotypic and genetic variances and covariances, and of the relative economic values of the traits involved. Assortative mating is known to change genetic variances and covariances. Recursive formulae were derived to obtain these variances and covariances after t generations of assortative mating on linear combinations (mating rules) of phenotypic values for two traits, with a given correlation between mates. Selection efficiency after t generations of assortative mating without selection was expressed as a function of random mating genetic parameters, economic values, the mating rule, and the correlation between mates. Selection efficiency was maximized with respect to the coefficients in the mating rule. Because the objective function was nonlinear, a computer routine was used for maximizing it. Two cases were considered. When random mating heritabilities for the two traits were h X 2 =0.25 and h Y 2 =0.50, the genetic correlation rXY=-0.60, and the economic values were aX=3 and aY=1, continued assortative mating based on the optimal mating rule for 31 generations (with a correlation of 0.80 between mates) increased selection efficiency by 29%. Heritabilities changed to 0.38 and 0.66, respectively, and the genetic correlation became – 0.79. When h X 2 =0.60, h Y 2 =0.60, rXY=– 0.20, a1=1 and a2=1, 36 generations of continued assortative mating with the optimal mating rule increased the efficiency of selection by 17%, heritabilities became h X 2 = h Y 2 =0.71, and the genetic correlation changed to 0.25. Only three generations of assortative mating were required to change the sign of the genetic correlation.  相似文献   

12.
Size‐assortative mating is a nonrandom association of body size between members of mating pairs and is expected to be common in species with mutual preferences for body size. In this study, we investigated whether there is direct evidence for size‐assortative mating in two species of pipefishes, Syngnathus floridae and S. typhle, that share the characteristics of male pregnancy, sex‐role reversal, and a polygynandrous mating system. We take advantage of microsatellite‐based “genetic‐capture” techniques to match wild‐caught females with female genotypes reconstructed from broods of pregnant males and use these data to explore patterns of size‐assortative mating in these species. We also develop a simulation model to explore how positive, negative, and antagonistic preferences of each sex for body size affect size‐assortative mating. Contrary to expectations, we were unable to find any evidence of size‐assortative mating in either species at different geographic locations or at different sampling times. Furthermore, two traits that potentially confer a fitness advantage in terms of reproductive success, female mating order and number of eggs transferred per female, do not affect pairing patterns in the wild. Results from model simulations demonstrate that strong mating preferences are unlikely to explain the observed patterns of mating in the studied populations. Our study shows that individual mating preferences, as ascertained by laboratory‐based mating trials, can be decoupled from realized patterns of mating in the wild, and therefore, field studies are also necessary to determine actual patterns of mate choice in nature. We conclude that this disconnect between preferences and assortative mating is likely due to ecological constraints and multiple mating that may limit mate choice in natural populations.  相似文献   

13.
The orb-web spiderNephila clavata satisfies three conditions for assortative mating proposed by Ridley (The Explanation of Organic Diversity. The Comparative Method and Adaptations for Mating, Clarendon, Oxford, 1983); (1) a large male advantage in male-male competition, (2) a correlation between female size and fecundity, and (3) a long pairing duration. To test Ridley's hypothesis, size assortative mating and guarding were examined in the field. When data were pooled over time, assortative mating was found but this was due to temporal covariation of body sizes of males and receptive females. After controlling for the effect of time, size assortative guarding was not detected, although females guarded by males were larger than those not guarded in the early breeding season. Possible reasons for the absence of size assortative guarding were discussed.  相似文献   

14.
The consequences of preferential mating in the presence of partial assortative and sexual selection mechanisms are ascertained for a two-allele one-locus trait involving two phenotype classes C1 = {all homozygotes} and C2 = {heterozygotes}. Relevant biological cases may include Burley (1977, Proc. Nat. Acad. Sci. USA74, 3476–3479), Wilbur et al. (1978, Evolution32, 264–270), and Singh and Zouros (1978, Evolution32, 342–353). When the preference rate for the heterozygote exceeds that for homozygotes, it is established that the unique stable state is the central Hardy-Weinberg equilibrium. The rate of approach is faster with sexual selection than for the corresponding model of assortative mating. When the preference rates favor the homozygotes then in this symmetric model of sexual selection two asymmetric Hardy-Weinberg polymorphisms can evolve, and which succeeds depends on initial conditions. The models are also analyzed with natural selection acting on phenotypes superimposed on assortative mating. In this case we can have up to three coexisting stable states involving both fixation alternatives and a central polymorphism. The corresponding model with sexual selection maintains either the central equilibrium as in assortative mating or two asymmetric polymorphic equilibria.  相似文献   

15.
In this study, assortative mating for different morphological traits was studied in a captive population of house sparrows (Passer domesticus). Males were larger than females. Assortative mating was found for tail length, wing length and general body size. Males with larger badge size mated with females with longer tails. The strongest assortative mating occurred for tail length (r=0.77), and this assortative mating remained significant after controlling for wing length, mass and tarsus length, suggesting that it was not an artefact of assortative mating for body size. The possibility of sexual selection for tail length in the house sparrow is discussed.  相似文献   

16.
Reinforcement speciation is the process whereby selection against hybrids drives the evolution of enhanced pre‐mating reproductive isolation. Work has focused on divergent mating preferences (assortative mating) but pre‐mating isolation can also arise via various migration modification behaviours, such as divergent habitat preferences. The relative importance of these two different mechanisms of reinforcement remains unclear. A recent theoretical model (Yukilevich–True model) found that relative fixation probabilities between these mechanisms can vary. Additionally, natural populations of Timema cristinae walking‐sticks exhibit variation (polymorphism) in both mechanisms, generating questions about the patterns expected for allele frequencies prior to fixation, during the early stages of the speciation process. In the present study, we report: (1) new analyses examining the correlation between fixation probabilities for assortative mating and migration modification in the Yukilevich–True model; (2) novel simulations examining allele frequencies in polymorphic populations; and (3) empirical patterns of reinforcement in T. cristinae in the context of theoretical predictions. Simulations of both types yielded congruent results, revealing that the outcome of reinforcement was dependent on the strength of selection. Under weak selection, reinforcement by either mechanism is unlikely. Under intermediate selection, the conditions favoring the rise and fixation of one mechanism favored the rise and fixation of the other. However, assortative mating evolved somewhat more readily than migration modification. Populations of T. cristinae, which experience such intermediate selection, supported these predictions. Under strong selection, the evolution of migration modification generally interfered with the evolution of assortative mating by decreasing migration between populations, thereby reducing selection for assortative mating. Congruence of the results for allele frequencies versus fixation probabilities suggests that similar patterns of reinforcement are expected during different stages of the speciation process. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 305–319.  相似文献   

17.
A two-locus haploid model of sexual selection is investigated to explore evolution of disassortative and assortative mating preferences based on imprinting. In this model, individuals imprint on a genetically transmitted trait during early ontogeny and choosy females later use those parental images as a criterion of mate choice. It is assumed that the presence or absence of the female preference is determined by a genetic locus. In order to incorporate such mechanisms as inbreeding depression and heterozygous advantage into our haploid framework, we assume that same-type matings are less fertile than different-type mating. The model suggests that: if all the females have a disassortative mating preference a viability-reducing trait may be maintained even without the fertility cost of same-type matings; a disassortative mating preference can be established even if it is initially rare, when there is a fertility cost of same-type matings. Further, an assortative mating preference is less likely to evolve than a disassortative mating preference. The model may be applicable to the evolution of MHC-disassortative mating preferences documented in house mice and humans.  相似文献   

18.
Reinforcement and the genetics of nonrandom mating   总被引:8,自引:0,他引:8  
Abstract.— The occurrence of reinforcement is compared when premating isolation is caused by the spread of a gene causing females to prefer to mate with males carrying a population-specific trait (a "preference" model) and by a gene that causes females to prefer to mate with males that share their own trait phenotype (an "assortative mating" model). Both two-island models, which have symmetric gene flow, and continent-island models, which have one-way gene flow, are explored. Reinforcement is found to occur much more easily in a two-island assortative mating model than in any of the other three models. This is due primarily to the fact that in this model the assortative mating allele will automatically become genetically associated in each population with the trait allele that is favored by natural selection on that island. In contrast, natural selection on the trait both favors and opposes the evolution of premating isolation in the two-island preference model, depending on the particular population. These results imply that species recognition in the context of mating may evolve particularly easily when it targets cues that are favored by natural selection in each population. In the continent-island models, reinforcement is found to occur more often under the preference model than the assortative mating model, thus reversing the trend from the two-island models. Patterns of population subdivision may therefore play a role in determining what types of premating isolation may evolve.  相似文献   

19.
Eurosta solidaginis Fitch (Diptera: Tephritidae) has formed host races on Solidago altissima L. and Solidago gigantea Ait. (Asteraceae), and reproductive isolation between these host races is brought about in part by host‐associated assortative mating. Any non‐assortative mating creates the potential for gene flow between the populations, and we investigated the conditions that favored non‐assortative mating. We hypothesized that the frequency of non‐assortative mating would be influenced by differences in the behaviors of the host races and sexes and by the presence and pattern of distribution of the two host species. To test these hypotheses, we caged flies on four combinations of 32 potted host plants: all S. altissima, all S. gigantea, and cages with both host species arranged in either two pure species blocks or randomly dispersed. We recorded the number of flies of each host race that alighted on each host species and the frequency of mating within and between the host races. Males of both host races were observed on plants more frequently than females. Flies of the host race from S. gigantea (gig flies) were observed on plants in greater absolute numbers, and they mated more frequently than flies of the host race from S. altissima (alt flies). In all treatments, gig flies of both sexes were found on non‐natal host plants significantly more frequently than alt flies, and gig females showed a weaker preference for their host species than did gig males or alt flies of either gender for their respective natal hosts. Assortative mating predominated in all treatments, and flies from each host race mated more frequently in cages containing their own host plant. The frequency of non‐assortative mating varied among treatments, with the matings between alt ♀ × gig ♂ being more common in the pure S. altissima treatment and the gig ♀ × alt ♂ being more frequent in the pure S. gigantea and random treatments. Matings between gig ♂ × alt ♀ were more common overall than the reciprocal mating, because gig males were more active in pursuing matings and in alighting on the non‐natal host plant than alt flies. Non‐assortative matings were more frequent in the random than in the block treatments, but this difference was not significant. Because of strong selection against oviposition into the alternate host, we hypothesized that host plant distribution would not affect oviposition preference. We tested this hypothesis by examining the oviposition behavior of naïve, mated females in two treatments in which both host species were present: either arranged in blocks or randomly dispersed. Females oviposited only into their natal host, regardless of host plant distribution.  相似文献   

20.
It is widely accepted that the genetic divergence and reproductive incompat- ibility between closely related species and/or populations is often viewed as an important step toward speciation. In this study, sexual compatibility in crosses between the southern XS population and the northern TA population of the polyandrous cabbage beetle Co- laphellus bowringi was investigated by testing their mating preferences, mating latency, copulation duration, and reproductive performances of post-mating. In choice mating ex- periments, the percentages ofmatings were significantly higher in intra-population crosses than in inter-population crosses. Both isolation index (/) and index of pair sexual isolation (/PSi) indicated partial mating incompatibility or assortative mating in crosses between the two different geographical populations. In single pair mating experiments, XS females in inter-population crosses mated significantly later and copulated significantly shorter than those in intra-population crosses. However, TA females in inter-population crosses mated significantly earlier and copulated longer than those in intra-population crosses, suggesting that larger XS males may enhance heterotypic mating. The lifetime fecundity was highest in XS homotypic matings, lowest in TA homotypic matings, and intermedi- ate in heterotypic rnatings between their parents. The inter-population crosses resulted in significantly lower egg hatching rate and shorter female longevity than intra-population crosses. These results demonstrated that there exist some incompatibilities in premating, postmating-prezygotic, and postzygotic stages between the southern XS population and northern TA population of the cabbage beetle Colaphellus bowringi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号